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Abstract. We introduce a modal logic for describing statistical knowl-
edge, which we call statistical epistemic logic. We propose a Kripke model
dealing with probability distributions and stochastic assignments, and
show a stochastic semantics for the logic. To our knowledge, this is the
first semantics for modal logic that can express the statistical knowledge
dependent on non-deterministic inputs and the statistical significance of
observed results. By using statistical epistemic logic, we express a no-
tion of statistical secrecy with a confidence level. We also show that this
logic is useful to formalize statistical hypothesis testing and differential
privacy in a simple and abstract manner.
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1 Introduction

Knowledge representation and reasoning have been studied in two research ar-
eas: logic and statistics. Broadly speaking, logic describes our knowledge using
formal languages and reasons about it using symbolic techniques, while statistics
interprets collected data having random variation and infers properties of their
underlying probability models. As research advances demonstrate, logical and
statistical approaches are respectively successful in many applications, including
artificial intelligence, software engineering, and information security.

The techniques of these two approaches are basically orthogonal and could
be integrated to get the best of both worlds. For example, in a large system
with artificial intelligence (e.g., an autonomous car), both rule-based knowledge
and statistical machine learning models may be used, and the way of combining
them would be crucial to the performance and security of the whole system.
However, even in theoretical research on knowledge models, there still remains
much to be done to integrate techniques from the two approaches. For a very
basic example, epistemic logic [39], a formal logic for representing and reasoning
about knowledge, has not yet been able to model “statistical knowledge” with
sampling and statistical significance, although a lot of epistemic models [14, 20,
21] have been proposed so far.

? This work was supported by JSPS KAKENHI Grant Number JP17K12667, and by
Inria under the project LOGIS.
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One of the important challenges in integrating logical and statistical knowl-
edge is to design a logical model for statistical knowledge, which can be up-
dated by a limited number of sampling of probabilistic events and by the non-
deterministic inputs from an external environment. Here we note that non-
deterministic inputs are essential to model the security of the system, because we
usually do not have a prior knowledge of the probability distribution of adver-
sarial inputs and need to reason about the worst scenarios caused by the attack.
Nevertheless, to the best of our knowledge, no previous work on epistemic logic
has proposed an abstract model for the statistical knowledge that involves non-
deterministic inputs and the statistical significance of observed results.

In the present paper, we propose an epistemic logic for describing statistical
knowledge. To define its semantics, we introduce a variant of a Kripke model [29]
in which each possible world is defined as a probability distribution of states and
each variable is probabilistically assigned a value. In this model, the stochastic
behaviour of a system is modeled as a distribution of states at each world, and
each non-deterministic input to the system corresponds to a distinct possible
world. As for applications of this model, we define an accessibility relation as a
statistical distance between distributions of observations, and show that our logic
is useful to formalize statistical hypothesis testing and differential privacy [11]
of statistical data.

Our contributions. The main contributions of this work are as follows:

– We introduce a modal logic, called statistical epistemic logic (StatEL), to
describe statistical knowledge.

– We propose a Kripke model incorporating probability distributions and stochas-
tic assignments by regarding each possible world as a distribution of states
and by defining an accessibility relation using a metric/divergence between
distributions.

– We introduce a stochastic semantics for StatEL based on the above models.
As far as we know, this is the first semantics for modal logic that can express
the statistical knowledge dependent on non-deterministic inputs and the
statistical significance of observed results.

– We present basic properties of the probability quantification and epistemic
modality in StatEL. In particular, we show that the transitivity and Eu-
clidean axioms rely on the agent’s capability of observation in our model.

– By using StatEL we introduce a notion of statistical secrecy with a signif-
icance level α. We also show that StatEL is useful to formalize statistical
hypothesis testing and differential privacy in a simple and abstract manner.

Paper organization. The rest of this paper is organized as follows. Section 2
introduces background and notations used in this paper. Section 3 presents an
example of coin flipping to explain the motivation for a logic of statistical knowl-
edge. Section 4 shows the syntax and semantics of the statistical epistemic logic
StatEL. Section 5 presents basic properties of the logic. As for applications, Sec-
tions 6 and 7 respectively model statistical hypothesis testing and statistical data
privacy using StatEL. Section 8 presents related work and Section 9 concludes.



Statistical Epistemic Logic 3

2 Preliminaries

In this section we recall the definitions of divergence and metrics, which are used
in later sections to quantitatively model an agent’s capability of distinguishing
possible worlds.

2.1 Notations

Let R≥0 be the set of non-negative real numbers, and [0, 1] = {r ∈ R≥0 | r ≤ 1}.
We denote by DO the set of all probability distributions over a set O. For a finite
set O and a distribution µ ∈ DO, the probability of sampling a value y from µ
is denoted by µ[y]. For a subset R ⊆ O, let µ[R] =

∑
y∈R µ[y]. The support of a

distribution µ over a finite set O is supp(µ) = {v ∈ O : µ[v] > 0}. For a set D, a
randomized algorithm A : D → DO and a set R ⊆ O we denote by A(d)[R] the
probability that given input d ∈ D, A outputs one of the elements of R.

2.2 Metric and Divergence

A metric over a non-empty set O is a function d : O×O → R≥0 such that for all
y, y′, y′′ ∈ O, (i) d(y, y′) ≥ 0; (ii) d(y, y′) = 0 iff y = y′; (iii) d(y, y′) = d(y′, y);
(iv) d(y, y′′) ≤ d(y, y′) + d(y′, y′′). Recall that (iii) and (iv) are respectively
referred to as symmetry and subadditivity.

A divergence over a non-empty set O is a function D(· ‖ ·) : DO×DO → R≥0
such that for all µ, µ′ ∈ DO, (i) D(µ ‖ µ′) ≥ 0 and (ii) D(µ ‖ µ′) = 0 iff µ = µ′.
Note that a divergence may not be symmetric or subadditive.

To describe a statistical hypothesis testing in Section 6, we recall the defini-
tion of χ2 divergence due to Pearson [16] as follows:

Definition 1 (Pearson’s χ2 divergence). Given two distributions µ, µ′ over
a finite set O, the χ2-divergence Dχ2(µ ‖ µ′) of µ from µ′ is defined by:

Dχ2(µ ‖ µ′) =
∑

y∈supp(µ)

(µ′[y]− µ[y])2

µ[y]
.

χ2 statistics is the multiplication of χ2-divergence with a sample size n.

To introduce a notion of statistical data privacy in Section 7, we recall the
definition of the max-divergence D∞ as follows.

Definition 2 (Max divergence). For two distributions µ, µ′ over a finite
set O, the max divergence D∞(µ ‖ µ′) of µ from µ′ is defined by:

D∞(µ ‖ µ′) = max
R⊆supp(µ)

ln
µ[R]

µ′[R]
.

Note that neither Dχ2 nor D∞ is symmetric.



4 Y. Kawamoto

● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
■

■

■

■

■

■

■

■

■
■

■

■

■

■

■

■

■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

● p(heads)  0.4
■ p(heads)  0.5

10 20 30 40
0.00

0.02

0.04

0.06

0.08

0.10

��� ������ �� �����

�
��
��
��
�

(a) Given 50 coin flips, the two distri-
butions overlap much.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●●●●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

■■■
■■
■■
■
■
■
■
■
■
■
■

■

■

■

■

■

■

■

■

■

■

■
■
■
■
■■■■■
■
■
■
■

■

■

■

■

■

■

■

■

■

■

■
■
■
■
■
■
■
■
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

● p(heads)  0.4
■ p(heads)  0.5

0 100 200 300 400
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

��� ������ �� �����

�
��
��
��
�

(b) Given 500 coin flips, the two distri-
butions are distinguished more clearly.

Fig. 1: The frequency distributions of the numbers of heads in coin flipping.

3 Motivating Example

In this section we present a motivating example to explain why we need to
introduce a new model for epistemic logic to describe statistical knowledge.

Example 1 (Coin flipping). Let us consider a simple running example of flipping
a coin in two possible worlds w0 and w1 respectively. We assume that in the
world w0 the coin is fair (represented by p(heads) = 0.5), whereas in w1 the
probability of getting a heads is 0.4 (represented by p(heads) = 0.4). Here we
do not have any prior belief on the probabilities of the worlds w0 and w1. This
does not mean p(w0) = p(w1) = 0.5, but means we have no idea on the values
of p(w0) and p(w1) at all, i.e., either w0 or w1 is chosen non-deterministically.

When we flip a coin just once and observe its outcome (heads or tails), we
do not know whether the coin is fair or biased, that is, we cannot tell whether
we are located in the world w0 or w1.

As shown in Fig. 1, however, when we increase the number n of coin flips, we
can more clearly see the difference between the numbers of getting heads in w0

and in w1. If the fraction of observing heads goes to 0.5 (resp. 0.4), then we learn
we are located in the world w0 (resp. w1) with a stronger confidence, namely,
we have a stronger belief that the coin is fair (resp. biased). This implies that a
larger number of observing the outcome enables us to distinguish two possible
worlds more clearly, hence to obtain a stronger belief.

To model such statistical beliefs, we regard each possible world as a prob-
ability distribution of two states heads and tails as shown in Fig. 2 (e.g.,
w1[heads] = 0.4 and w1[tails] = 0.6). Then for a divergence D between two
distributions, we define an accessibility relation Rε between worlds such that for
any worlds w and w′, (w,w′) ∈ Rε iff D(w ‖w′) ≤ ε. Then (w0, w1) ∈ Rε for a
smaller threshold ε represents that a larger number of sampling is required to
distinguish w0 from w1.

This relation Rε is used to formalize statistical knowledge in a model of epis-
temic logic in Section 4. Intuitively, given a threshold ε determining a confidence
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(b) The world w1 with the biased coin.

Fig. 2: One of the possible worlds (i.e., w0 or w1) is chosen non-deterministically.
Then one of the states (i.e., heads or tails) is chosen probabilistically.

level, we say that we know a proposition ϕ in a world w if ϕ is satisfied in all
possible worlds that are indistinguishable from w in terms of Rε. In Section 6 we
will revisit the coin flipping example to see how we formalize it using our logic.

To our knowledge, no previous work on epistemic logic has modeled a sta-
tistical knowledge that depends on the agent’s capability of observing events.
In fact, in most of the Kripke models used in previous work, a possible world
represents a single state instead of a probability distribution of states, hence the
relation between possible worlds does not involve the probability of distinguish-
ing them. Therefore, no prior work on epistemic logic has proposed an abstract
model for the statistical knowledge that involves the sample size of observing
random variables and the statistical significance of the observed results.

4 Statistical Epistemic Logic (StatEL)

In this section we introduce the syntax and semantics of the statistical epistemic
logic (StatEL).

4.1 Syntax

We first present the syntax of the statistical epistemic logic as follows. To ex-
press both deterministic and probabilistic properties, we introduce two levels of
formulas: static formulas and epistemic formulas. Intuitively, a static formula
represents a proposition that can be satisfied at a state with probability 1, while
an epistemic formula represents a proposition that can be satisfied at a proba-
bility distribution of states with some probability.

Formally, let Mes be a set of symbols called measurement variables, and Γ
be a set of atomic formulas of the form γ(x1, x2, . . . , xn) for a predicate symbol
γ and x1, x2, . . . , xn ∈ Mes (n ≥ 0). Let I ⊆ [0, 1] be a finite union of intervals,
and A be a finite set of indices (typically associated with the names of agents
and/or statistical tests). Then the static and epistemic formulas are defined by:

Static formulas: ψ ::= γ(x1, x2, . . . , xn) | ¬ψ | ψ ∧ ψ
Epistemic formulas: ϕ ::= PI ψ | ¬ϕ | ϕ ∧ ϕ | ψ ⊃ ϕ | Ka ϕ

where a ∈ A. Let F be the set of all epistemic formulas. Note that we have no
quantifiers over measurement variables. (See Section 4.5.)
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The probability quantification PI ψ represents that a static formula ψ is sat-
isfied with a probability belonging to a set I. For instance, P(0.5,1] ψ represents
that ψ holds with a probability greater than 0.5. The non-classical implication
⊃ is used to represent conditional probabilities. For example, by ψ0 ⊃ PI ψ1 we
represent that the conditional probability of ψ1 given ψ0 is included in a set I.
The epistemic knowledge Ka ϕ expresses that an agent a knows ϕ. The formal
meaning of these operators will be shown in the definition of semantics.

As syntax sugar, we use disjunction ∨, classical implication →, and epistemic
possibility operator Pa, defined by: ϕ0∨ϕ1 ::=¬(¬ϕ0∧¬ϕ1), ϕ0 → ϕ1 ::=¬ϕ0∨ϕ1,
and Pa ϕ ::= ¬Ka ¬ϕ. When I is a singleton {i}, we abbreviate P[i,i] as Pi.

4.2 Modeling of Systems

In this work we deal with a simple stochastic system with measurement variables.
Let O be the finite set of all data that can be assigned to the measurement
variables in Mes. We assume that all possible worlds share the same domain O.
We define a stochastic system as a pair (S, σ) consisting of:

– a stochastic program S that deals with input and output data through mea-
surement variables in Mes, behaves deterministically or probabilistically (by
using some randomly generated data), and terminates with probability 1;

– a stochastic assignment σ : Mes→ DO representing that each measurement
variable x has an observed value v with probability σ(x)[v].

Here we present only a general model and do not specify the data type of those
measurement variables, which can be (sequences of) bit strings, floating point
numbers, texts, or other types of data. Thanks to the assumption on the program
termination and on the finite range of data, the program S can reach finitely
many states. For the sake of simplicity, our model does not take timing into
account. Extension to time and temporal modality is left for future work.

4.3 Distributional Kripke Model

To define a semantics for StatEL, we recall the notion of a Kripke model [29]:

Definition 3 (Kripke model). Given a set Γ of atomic formulas, a Kripke
model is defined as a triple (W,R, V ) consisting of a non-empty setW, a binary
relation R on W, and a function V that maps each atomic formula γ ∈ Γ to a
subset V (γ) ofW. The setW is called a universe, its elements are called possible
worlds, R is called an accessibility relation, and V is called a valuation.

Now we introduce a Kripke model called a “distributional” Kripke model
where each possible world is a probability distribution of states over S and each
world w is associated with a stochastic assignment σw to measurement variables.

Definition 4 (Distributional Kripke model). Let A be a finite set of indices
(typically associated with the names of agents and/or statistical tests), S be a
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finite set of states1, and O be a finite set of data. A distributional Kripke model
is a tuple M = (W, (Ra)a∈A, (Vs)s∈S) consisting of:

– a non-empty set2 W of probability distributions of states over S;
– for each a ∈ A, an accessibility relation Ra ⊆ W ×W;
– for each s ∈ S, a valuation Vs that maps each k-ary predicate γ to a set
Vs(γ) ⊆ Ok.

We assume that each w ∈ W is associated with a function ρw : Mes×S → O that
maps each measurement variable x to its value ρw(x, s) observed at a state s.
We also assume that each state s in a world w is associated with the assignment
σs : Mes→ O defined by σs(x) = ρw(x, s).

Note that this model assumes a constant domain O; i.e., all measurement
variables range over the same set O in every world. Since each world w is a
probability distribution of states, we denote by w[s] the probability that a state
s is sampled from w. Then the probability that a variable x has a value v in a
world w is given by:

σw(x)[v] =
∑

s∈supp(w), σs(x)=v

w[s].

This means that when a state s is drawn from the distribution w, an input value
σs(x) is sampled from the distribution σw(x).

4.4 Divergence-based Accessibility Relation

Next we introduce a family of accessibility relations used in typical statistical
inferences. Since many notions of statistical distance are not metrics but diver-
gences, we introduce an accessibility relation based on a divergence as follows.

Suppose that an agent a observes some data through a single measurement
variable x. Then the distribution of the observed data at a world w is represented
by σw(x). Assume that the agent a distinguishes distributions in terms of a
divergence D(· ‖ ·) : DO × DO → R≥0. Then given a threshold ε ≥ 0, we define
a divergence-based accessibility relation Ra,ε by:

Ra,ε
def
= {(w,w′) ∈ W ×W | D(σw(x) ‖ σw′(x)) ≤ ε} .

For a smaller value of ε, the capability of distinguishing worlds is stronger.
If D is a metric instead, we call Ra,ε a metric-based accessibility relation. We

often omit a to write Rε when we do not compare different agents’ knowledge.
Intuitively, (w,w′) ∈ Ra,ε represents that the distribution of the data ob-

served in w is indistinguishable from that in w′ in terms of D. By the definition
of a divergence/metric D, D(σw(x) ‖ σw′(x)) = 0 implies σw(x) = σw′(x).
Therefore, the relation Ra,0 expresses that the agent a has an unlimited capa-
bility of observing the distributions σw(x) and σw′(x). In Sections 6 and 7 we
will show examples of divergence-based accessibility relations.

1 It is left for future work to investigate the case of infinite numbers of states.
2 Since W is not a multiset, each world in W is a different distribution of states.

However, this is still expressive enough when we take S to be sufficiently large.
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4.5 Stochastic Semantics

In this section we define the stochastic semantics for the StatEL formulas over
a distributional Kripke model M = (W, (Ra)a∈A, (Vs)s∈S) with W = DS.

The interpretation of static formulas ψ at a state s is given by:

s |= γ(x1, x2, . . . , xk) iff (σs(x1), σs(x2), . . . , σs(xk)) ∈ Vs(γ)

s |= ¬ψ iff s 6|= ψ

s |= ψ ∧ ψ′ iff s |= ψ and s |= ψ′.

Note that the satisfaction of the static formulas does not involve probability.
To interpret the non-classical implication ⊃, we define the restriction w|ψ

of a world w to a state formula ψ as follows. If there exists a state s such that
w[s] > 0 and s |= ψ, then w|ψ can be defined as the distribution over the finite
set S of states such that:

w|ψ[s] =

{
w[s]∑

s′:s′|=ψ w[s′] if s |= ψ

0 otherwise.

Then
∑
s w|ψ[s] = 1. Note that w|ψ is undefined if w does not have a state s

that satisfies ψ and has a non-zero probability in w.
Now we define the interpretation of epistemic formulas at a world w in M by:

M, w |= PI ψ iff Pr
[
s

$← w : s |= ψ
]
∈ I

M, w |= ¬ϕ iff M, w 6|= ϕ

M, w |= ϕ ∧ ϕ′ iff M, w |= ϕ and M, w |= ϕ′

M, w |= ψ ⊃ ϕ iff w|ψ is defined and M, w|ψ |= ϕ

M, w |= Ka ϕ iff for every w′ s.t. (w,w′) ∈ Ra, M, w′ |= ϕ,

where s
$← w represents that a state s is sampled from the distribution w.

Finally, the interpretation of an epistemic formula ϕ in M is given by:

M |= ϕ iff for every world w in M, M, w |= ϕ.

We remark that in each world w, measurement variables can be interpreted
using σw, as shown in Section 4.3. This allows one to assign different values to
distinct occurrences of a variable in a formula; E.g., in ϕ(x) → Ka ϕ

′(x), the
measurement variable x occurring in ϕ(x) can be interpreted using σw in a world
w, while x in ϕ′(x) can be interpreted using σw′ in another w′ s.t. (w,w′) ∈ Ra.

Note that our semantics for probability quantification is different from that
in the previous work. Halpern [19] shows two approaches to defining semantics:
giving probabilities (1) on the domain and (2) on possible worlds. However, our
semantics is different from both. It defines probabilities on the states belonging
to a possible world, while each world is not assigned a probability. Hence, unlike
Halpern’s approaches, our model can deal with both probabilistic behaviours of
systems and non-deterministic inputs from an external environment.
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We also remark that StatEL can be used to formalize conditional proba-
bilities. If the conditional probability of satisfying a static formula ψ1 given
another static formula ψ0 is included in a set I at a world w, then we have

Pr
[
s

$← w|ψ0
: s |= ψ1

]
∈ I, hence we obtain M, w |= ψ0 ⊃ PI ψ1.

5 Basic Properties of StatEL

In this section we present basic properties of StatEL. In particular, we show the
transitivity and Euclidean axioms rely on the agent’s capability of observation.

5.1 Properties of Probability Quantification

We can define a dual operator of PI as follows. Given a finite union I ⊆ [0, 1]

of disjoint intervals, let Ic
def
= [0, 1] \ I and I

def
= {1 − p | p ∈ I}. Then Ic = I

c
.

Negation with PI has the following properties.

Proposition 1 (Negation with probability quantification) For any world
w in a model M and any static formula ψ, we have:

1. M, w |= ¬PI ψ iff M, w |= PIc ψ
2. M, w |= PI ¬ψ iff M, w |= PI ψ.

By Proposition 1, ¬PI ¬ψ is logically equivalent to PIc ψ. For instance,
¬P(0,1] ¬ψ is equivalent to P1 ψ, and ¬P[0,1) ¬ψ is equivalent to P0 ψ.

5.2 Properties of Epistemic Modality

Next we show some properties of epistemic modality. As with the standard modal
logic, StatEL satisfies the necessitation rule and distribution axiom.

Proposition 2 (Minimal properties) For any distributional Kripke model
M, any ϕ,ϕ0, ϕ1 ∈ F , and any a ∈ A, we have:

(N) necessitation: M |= ϕ implies M |= Ka ϕ
(K) distribution: M |= Ka(ϕ0 → ϕ1)→ (Ka ϕ0 → Ka ϕ1).

The satisfaction of other properties depends on the definition of the acces-
sibility relation. Since many notions of statistical distance are not metrics but
divergences, we present some basic properties when M has a divergence-based
accessibility relation: Ra,ε = {(w,w′) ∈ W ×W | D(σw(x) ‖ σw′(x)) ≤ ε}.

Proposition 3 (Properties with divergence-based accessibility) Let a ∈
A and ε ≥ ε′ ≥ 0. For any distributional Kripke model M with a divergence-based
accessibility relation Ra,ε and any ϕ ∈ F , we have:

(T) reflexivity: M |= Ka,ε ϕ→ ϕ
(≥) comparison of observability: M |= Ka,εϕ→ Ka,ε′ϕ.
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If Ra,ε is symmetric (e.g., based on the Jensen-Shannon divergence [33]) then:

(B) symmetry: M |= ϕ→ Ka,ε Pa,ε ϕ.

Here the axiom (≥) represents that an agent having a stronger capability of
distinguishing worlds may have more beliefs.

Finally, we show some properties when Ra,ε is based on a metric (e.g. the
p-Wasserstein metric [38], including the Earth mover’s distance).

Proposition 4 (Properties with metric-based accessibility) Let a ∈ A
and ε, ε′ ≥ 0. For any distributional Kripke model M with a metric-based acces-
sibility relation Ra,ε and any ϕ ∈ F , we have (T)reflexivity, (B)symmetry, and:

(4q) quantitative transitivity: M |= Ka,ε+ε′ϕ→ Ka,ε Ka,ε′ϕ
(5q) relaxed Euclidean: M |= Pa,εϕ→ Ka,ε′Pa,ε+ε′ϕ.

If the agent has an unlimited capability of observation (i.e., ε = ε′ = 0), then:

(4) transitivity: M |= Ka,0 ϕ→ Ka,0 Ka,0 ϕ
(5) Euclidean: M |= Pa,0 ϕ→ Ka,0 Pa,0 ϕ.

By this proposition, for ε = 0, StatEL has the axioms of S5, hence the
epistemic operator Ka,0 represents knowledge rather than beleif.

However, if the agent has a limited observability (i.e., ε > 0), then nei-
ther transitivity nor Euclidean may hold. This means that, even when he know
whether ϕ holds or not with some confidence, he may not be perfectly confident
that he knows it.

6 Modeling Statistical Hypothesis Testing Using StatEL

In this section we formalize statistical hypothesis testing by using StatEL for-
mulas, and introduce a notion of statistical secrecy with a confidence level.

6.1 Statistical Hypothesis Testing

A statistical hypothesis testing is a method of statistical inference to check
whether given datasets provide sufficient evidence to support some hypothe-
sis. Typically, given two datasets, a null hypothesis H0 is defined to claim that
there is no statistical relationship between the two datasets (e.g., no difference
between the result of a medical treatment and the placebo effect), while an al-
ternative hypothesis H1 represents that there is some relationship between them
(e.g., the result of a medical treatment is better than the placebo effect).

Before performing a hypothesis test, we specify a significance level α, i.e.,
the probability that the test might reject the null hypothesis H0, given that H0

is true. Typically, α is 0.05 or 0.01. 1− α is called a confidence level.
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6.2 Formalization of Statistical Hypothesis Testing

Now we define a distributional Kripke model M with a universeW that includes
at least two worlds wreal and wideal corresponding to the two datasets we compare:

– the real world wreal where we have a dataset sampled from actual experiments
(e.g., from a medical treatment whose effectiveness we want to know);

– the ideal world wideal where we have a dataset that is synthesized from the
null hypothesis setting (e.g., the dataset obtained from the placebo effect).

Note thatW may include other worlds corresponding to different possible datasets.

Let n be the size of the dataset, and x be a measurement variable denoting a
single data value chosen from the dataset we have. We assume that each world w
has a state s corresponding to each single data value σs(x) in the dataset. Then
σwreal

(x) is the empirical distribution (histogram) calculated from the dataset
observed in the actual experiments in wreal, while σwideal

(x) is the distribution
calculated from the synthetic dataset in wideal. Then the number of data having
a value v in the dataset in a world w is given by n · σw(x)[v].

Assume that M has an accessibility relationRcα/n that is specific to the sam-
ple size n, the statistical hypothesis test, and the critical value cα for a signifi-
cance level α we use. For brevity let εα,n = cα/n. Intuitively, (wreal,wideal) ∈ Rεα,n
represents that the hypothesis test cannot distinguish the actual dataset from
the synthetic one. For instance, when we use Pearson’s χ2-test as the hypothesis
test, then Rεα,n is defined by:

Rεα,n
def
=
{

(w,w′) ∈ W ×W | Dχ2(σw(x) ‖ σw′(x)) ≤ εα,n
}
,

where Dχ2 is Pearson’s χ2 divergence (Definition 1).

Observe that when the confidence level 1 − α increases, then cα decreases,
hence εα,n = cα/n is smaller, i.e., the capability of distinguishing possible worlds
is stronger.

Let ϕsyn be a formula representing that the dataset is synthesized from the
null hypothesis setting (e.g., representing the placebo effect). Then M,wideal |=
ϕsyn. Since each world in W corresponds to a different dataset, it holds for any
w′ 6= wideal that M, w′ |= ¬ϕsyn. For instance, M,wreal |= ¬ϕsyn, since the actual
dataset is used in wreal even when it looks indistinguishable from the synthetic
dataset by the hypothesis test.

When the null hypothesis is rejected with a confidence level 1−α, then (wreal,
wideal) 6∈ Rεα,n . Since M, w′ |= ¬ϕsyn holds for any w′ 6= wideal, this rejection of
the null hypothesis implies:

M,wreal |= Kεα,n ¬ϕsyn,

which is logically equivalent to M,wreal |= ¬Pεα,n ϕsyn. This means that with the
confidence level 1− α, we know we are not located in the world wideal, hence do
not have a synthetic dataset.
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On the other hand, when the null hypothesis is not rejected with a confidence
level 1− α, then (wreal,wideal) ∈ Rεα,n . Thus we obtain:

M,wreal |= Pεα,n ϕsyn. (1)

This means that we cannot recognize whether we are located in the world wreal or
wideal, i.e., we are not sure which database we have. To see this in details, let ϕ′ be
a formula representing that we have a third database (different from those in wreal

and wideal). Suppose that another null hypothesis of satisfying ϕ′ is not rejected
with a confidence level 1−α. Then we have M,wreal |= Pεα,n ϕ

′. Since each world
inW corresponds to a different database, we obtain M,wreal |= Pεα,n ¬ϕsyn, which
implies M,wreal |= ¬Kεα,n ϕsyn. This represents that, when the null hypothesis is
not rejected, we are not sure whether the null hypothesis is true or false.

6.3 Formalization of Statistical Secrecy

Now let us formalize the coin flipping in Example 1 in Section 3 by using StatEL
as follows. Recall that p(heads) = 0.5 in w0 and p(heads) = 0.4 in w1. Let ψ be
a static formula representing that the coin is a heads. Then M, w0 |= P0.5 ψ and
M, w1 |= P0.4 ψ. Assume that either p(heads) = 0.5 or p(heads) = 0.4 holds,
i.e., M |= P0.5 ψ ∨ P0.4 ψ.

When we have a sufficient number n of coin flips (e.g., n = 500), we can dis-
tinguish p(heads) = 0.5 from p(heads) = 0.4 (i.e., w0 from w1) by a hypothesis
test. Hence we learn the probability p(heads) with some confidence level 1− α,
i.e., M, w0 |= Kεα,n P0.5 ψ and M, w1 |= Kεα,n P0.4 ψ. Therefore we obtain:

M |=
(
P0.5 ψ → Kεα,n P0.5 ψ

)
∧
(
P0.4 ψ → Kεα,n P0.4 ψ

)
.

Note that for a larger sample size n′ > n, we have εα,n′ = cα/n
′ < cα/n = εα,n,

hence it follows from the axiom (≥) in Proposition 3 that:

M |=
(
P0.5 ψ → Kεα,n′ P0.5 ψ

)
∧
(
P0.4 ψ → Kεα,n′ P0.4 ψ

)
.

This means that if our knowledge derived from a smaller sample is statistically
significant, then we derive the same conclusion from a larger sample.

On the other hand, when we have a very small number n′′ of coin flips, we
cannot distinguish w0 from w1. Then we are not sure about p(heads) with a
confidence level 1 − α, i.e., M, w0 |= Pεα,n′′ P0.5 ψ and M, w1 |= Pεα,n′′ P0.4 ψ.
Hence:

M |= (P0.5 ψ ∨ P0.4 ψ)→ (Pεα,n′′ P0.5 ψ ∧ Pεα,n′′ P0.4 ψ).

This expresses a secrecy of p(heads). We generalize this to introduce the following
definition of secrecy.

Definition 5 ((α, n)-statistical secrecy). Let Φ be a finite set of formulas,
α ∈ [0, 1] be a significance level, and n be a sample size. We say that Φ is
(α, n)-statistically secret if we have:

M |=
∨
ϕ∈Φ

ϕ→
∧
ϕ∈Φ

Pεα,n ϕ.
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In the above coin flipping example, {P0.5 ψ, P0.4 ψ} is (α, n)-statistically
secret for some significance level α and sample size n. Syntactically, (α, n)-
statistical secrecy resembles the notion of total anonymity [21], whereas in our
definition, the epistemic operator Pεα,n deals with the statistical significance and
ϕ is not limited to a formula representing an agent’s action.

7 Modeling Statistical Data Privacy Using StatEL

In this section we formalize a notion of statistical data privacy by using StatEL.

7.1 Differential Privacy

Differential privacy [11, 12] is a popular measure of data privacy guaranteeing
that by observing a statistics about a database d, we cannot learn whether an
individual user’s record is included in d or not.

As a toy example, let us assume that the body weight of individuals is sen-
sitive information, and we publish the average weight of all users recorded in a
database d. Then we denote by d′ the database obtained by adding to d a single
record of a new user u’s weight. If we also disclose the average weight of all users
in d′, then you learn u’s weight from the difference between these two averages.

To mitigate such privacy leaks, many studies have proposed obfuscation
mechanisms, i.e., randomized algorithms that add random noise to the statis-
tics calculated from databases. In the above example, an obfuscation mechanism
receives a database d and outputs a statistics of average weight to which some
random noise is added. Then you cannot learn much information on u’s weight
from the perturbed statistics of average weight.

The privacy achieved by such obfuscation is often formalized as differential
privacy. Intuitively, an ε-differential privacy mechanism makes every two “adja-
cent” (i.e., close) database d and d′ indistinguishable with a degree of ε.

Definition 6 (Differential privacy). Let e be the base of natural logarithm,
ε ≥ 0, D be the set of all databases, and Ψ ⊆ D × D be an adjacency rela-
tion between two databases. A randomized algorithm A : D → DO provides
ε-differential privacy w.r.t. Ψ if for any (d, d′) ∈ Ψ and any R ⊆ O,

Pr[A(d) ∈ R] ≤ eε Pr[A(d′) ∈ R]

where the probability is taken over the randomness in A.

For a smaller ε, the protection of differential privacy is stronger. It is known
that differential privacy can be defined using the max-divergence D∞ (Defini-
tion 2) as follows [12].

Proposition 5 An obfuscation mechanism A : D → DO provides ε-differential
privacy w.r.t. Ψ ⊆ D × D iff for any (d, d′) ∈ Ψ , D∞(A(d) ‖ A(d′)) ≤ ε and
D∞(A(d′) ‖ A(d)) ≤ ε.
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7.2 Formalization of Differential Privacy

Next we define a distributional Kripke model M = (W,Rε, (Vs)s∈S) where there
is a possible world corresponding to each database in D. We assume that each
world is a probability distribution of states in each of which an obfuscation mech-
anism A uses a different value of random seed for providing a probabilistically
perturbed output. Let x (resp. y) be a measurement variable denoting the input
(resp. output) of the obfuscation mechanism A. In each world w, σw(x) is the
database that A receives as input, and σw(y) is the distribution of statistics that
A outputs. Then the set of all databases is denoted by D = {σw(x) | w ∈ W}.

Now we define the accessibility relation Rε in M by using the max divergence
D∞ as follows3:

Rε
def
= {(w,w′) ∈ W ×W | D∞(σw(y)‖σw′(y)) ≤ ε, D∞(σw′(y)‖σw(y)) ≤ ε} .

Intuitively, (w,w′) ∈ Rε represents that, when we observe an output y of the
obfuscation mechanism A, we do not know which of the two worlds w and w′

we are located at. Hence we do not see which of the two databases σw(x) and
σw′(x) was the input to A.

For each d ∈ D, let ϕd be a formula representing that we have a database d.
Then the ε-differential privacy of A w.r.t. an adjacency relation Ψ is expressed as:

M |=
∧
d∈D

(
ϕd →

∧
d′∈Ψ(d)

Pε ϕd′
)
.

Note that the privacy of user attributes defined as distribution privacy [27]
can also be expressed using StatEL, since it is defined as the differential pri-
vacy w.r.t. a relation between the probability distributions that represent user
attributes. We will elaborate on this in future work.

8 Related Work

In this section, we overview related work, including the integration of logical and
statistical techniques, epistemic logic, and logical formalization of privacy.

Integration of logical and statistical techniques. There have been various studies
on integrating logical and statistical techniques in software engineering. Notable
examples are probabilistic programming [18], which has sampling from distribu-
tions and conditioning by observations, and statistical model checking [36, 40, 31],
which checks the satisfiability of logical formulas by simulations and statistical
hypothesis tests. In research of privacy, a few papers (e.g., [5]) present hybrid
methods combining symbolic and statistical analyses to quantify privacy leaks.
In future work, our logic may be used to define specifications of these techniques
and characterize their properties.

3 Since the relation Rε is symmetric, the symmetry axiom (B) also holds.
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Non-determinism and probability in Kripke models. Although many epistemic
models have been proposed [14, 20, 21], they often assume that each possible
world is a single deterministic state. To formalize the behaviours of stochastic
systems in their model, they assume that every world is assigned a probability
(e.g., [28]), which means the non-determinism needs to be resolved in advance.

However, not only probability but also non-deterministic inputs are essential
to reason about security and many applications in statistics. In the context of
security, we usually do not have a prior knowledge of the probability distribution
of adversarial inputs. Also in the statistical hypothesis testing (Section 6.1), we
do not assume the prior probabilities of the null/alternative hypotheses. The
notion of differential privacy (Definition 6) is also independent of the prior dis-
tribution on the databases. Therefore, unlike ours, the Kripke models in previous
work cannot be used for the purpose of formalizing such statistical knowledge.

Kripke model for some aspects of statistics. The random worlds model [20] is an
epistemic model that tries to formalize some aspects of statistics. In that model,
they assume that each possible world has an identical probability at the initial
time, although this causes problems as mentioned in Chapter 10 of [20]. Unlike
our distributional model, their model employs neither distributions of states nor
statistical significance. They assume only finite intervals of errors, and analyze
only the ideal situation that corresponds to an infinite sample size. Therefore,
the random worlds model cannot formalize statistical knowledge in our sense.

In research of philosophical logic, [32, 2] formalize the idea that when a ran-
dom value has various possible probability distributions, those distributions
should be represented on different possible worlds. Unlike our work, however,
they do not model statistical significance or explore accessibility relations.

Independently of our work, French et al. [15] propose a probability model
for a dynamic epistemic logic where each world is associated with a (subjective)
probability distribution over the universe and may have a different probability
for a propositional variable to be true. This is different from our distributional
Kripke model in that their model does not associate each world with a probability
distribution of observable variables, hence deals with neither non-deterministic
inputs, divergence-based accessibility relations, nor statistical significance.

Epistemic logic for privacy properties. Epistemic logic has been used to formalize
and reason about privacy properties, including anonymity [37, 21, 35, 17, 25, 13, 4,
6], role-interchangeability [34], receipt-freeness of electronic voting protocols [23,
4], and its extension called coercion-resistance [30]. Unlike our formalization in
Section 7, however, these do not regard possible worlds as probability distribu-
tions and cannot formalize privacy properties with a statistical significance.

Logical approaches to differential privacy. There have been studies that formal-
ize differential privacy using logics, such as Hoare logic [3] and HyperPCTL [1].
Compared to StatEL, these formalizations need to explicitly describe inequalities
of probabilities without much abstraction, hence the formulas are more compli-



16 Y. Kawamoto

cated. In addition, none of them formalizes the situation with finite sample sizes
or statistical significance.

9 Conclusion

We introduced statistical epistemic logic (StatEL) to describe statistical knowl-
edge, and showed its stochastic semantics based on the distributional Kripke
model. By using StatEL we introduced (α, n)-statistical secrecy with a signifi-
cance level α and a sample size n, and showed that StatEL is useful to formalize
hypothesis testing and differential privacy in a simple way. As shown in [24],
StatEL can also express certain properties of statistical machine learning.

In our ongoing work, we extend StatEL to deal with the security of cryp-
tography based on computational complexity theory. As for future work, we will
extend this logic with temporal modality and give its axiomatization. Our future
work includes an extension of StatEL to formalize the quantitative notions of
anonymity [9] and asymptotic anonymity [26]. We are also interested in clarifying
the relationships between our distributional Kripke model and the main stream
probabilistic epistemic logic assigning probabilities to worlds. Furthermore, we
plan to develop statistical epistemic logic for process calculi in an analogous way
to [6, 22, 10, 8], and to investigate the relationships between statistical epistemic
logic and bisimulation metrics analogously to [7].
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A Properties of Probability Quantification

In this section we present the proofs for properties of probability quantification.

Proposition 1 (Negation with probability quantification) For any world
w in a model M and any static formula ψ, we have:

1. M, w |= ¬PI ψ iff M, w |= PIc ψ
2. M, w |= PI ¬ψ iff M, w |= PI ψ.

Proof. We show the first claim as follows. By the definition of semantics, M, w |=
¬PI ψ is logically equivalent to Pr

[
s

$← w : s |= ψ
]
6∈ I, which is equivalent to

Pr
[
s

$← w : s |= ψ
]
∈ Ic, namely, M, w |= PIc ψ.

Next we show the second claim as follows. By the definition of seman-

tics, M, w |= PI ¬ψ is logically equivalent to 1 − Pr
[
s

$← w : s |= ψ
]
∈ I, i.e.,

Pr
[
s

$← w : s |= ψ
]
∈ I. This is equivalent to M, w |= PI ψ. ut
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B Properties of the Epistemic Operators

In this section we present properties of our epistemic operators and their proofs.

Proposition 2 (Minimal properties) For any distributional Kripke model
M, any ϕ,ϕ0, ϕ1 ∈ F , and any a ∈ A, we have:

(N) necessitation: M |= ϕ implies M |= Ka ϕ
(K) distribution: M |= Ka(ϕ0 → ϕ1)→ (Ka ϕ0 → Ka ϕ1).

Proof. We first show (N) necessitation rule as follows. Assume that M |= ϕ.
Then for any world w in M, we have M, w |= ϕ. Hence M, w |= Ka ϕ. Therefore
the necessitation rule holds.

Next we show (K) distribution axiom as follows. Let w be a possible world
in M. Assume that M, w |= Ka(ϕ0 → ϕ1), and that M, w |= Ka ϕ0. Let w′

be any world such that (w,w′) ∈ Ra,ε. Then we have M, w′ |= ϕ0 → ϕ1 and
M, w′ |= ϕ0, hence M, w′ |= ϕ1. Thus we have M, w |= Ka ϕ1. Therefore we
obtain M |= Ka(ϕ0 → ϕ1)→ (Ka ϕ0 → Ka ϕ1). ut

Proposition 3 (Properties with divergence-based accessibility) Let a ∈
A and ε ≥ ε′ ≥ 0. For any distributional Kripke model M with a divergence-based
accessibility relation Ra,ε and any ϕ ∈ F , we have:

(T) reflexivity: M |= Ka,ε ϕ→ ϕ
(≥) comparison of observability: M |= Ka,εϕ→ Ka,ε′ϕ.

If Ra,ε is symmetric (e.g., based on the Jensen-Shannon divergence [33]) then:

(B) symmetry: M |= ϕ→ Ka,ε Pa,ε ϕ.

Proof. Let w be a possible world in M.
We first show (T) reflexivity as follows. Assume that M, w |= Ka,0 ϕ. By

(w,w) ∈ Ra,0, we have M, w |= ϕ. Therefore, we obtain M |= Ka,ε ϕ→ ϕ.
Next we show (≥) comparison of observability as follows. Assume that M, w |=

Ka,ε ϕ. Let w′ be any world such that (w,w′) ∈ Ra,ε. Then M, w′ |= ϕ. By ε′ ≤ ε
and the definition of Ra,ε, we have Ra,ε′ ⊆ Ra,ε, hence (w,w′) ∈ Ra,ε′ . Then
M, w |= Ka,ε′ϕ. Therefore we obtain M |= Ka,εϕ→ Ka,ε′ϕ.

Finally, we show (B) symmetry whenRa,ε is symmetric. Assume that M, w |=
ϕ. Let w′ be any world such that (w,w′) ∈ Ra,ε. Since Ra,ε is symmetric,
we have (w′, w) ∈ Ra,ε. By M, w |= ϕ, we obtain M, w′ |= Pa,ε ϕ. Hence
M, w |= Ka,ε Pa,ε ϕ. Therefore we obtain M |= ϕ→ Ka,ε Pa,ε ϕ. ut

Proposition 4 (Properties with metric-based accessibility) Let a ∈ A
and ε, ε′ ≥ 0. For any distributional Kripke model M with a metric-based acces-
sibility relation Ra,ε and any ϕ ∈ F , we have (T)reflexivity, (B)symmetry, and:

(4q) quantitative transitivity: M |= Ka,ε+ε′ϕ→ Ka,ε Ka,ε′ϕ
(5q) relaxed Euclidean: M |= Pa,εϕ→ Ka,ε′Pa,ε+ε′ϕ.
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If the agent has an unlimited capability of observation (i.e., ε = ε′ = 0), then:

(4) transitivity: M |= Ka,0 ϕ→ Ka,0 Ka,0 ϕ
(5) Euclidean: M |= Pa,0 ϕ→ Ka,0 Pa,0 ϕ.

Proof. Since a metric satisfies the definition of a divergence (in Section 2), a
metric-based accessibility relation is also a divergence-based accessibility rela-
tion. Therefore we obtain (T) reflexivity and (B) symmetry from Proposition 3.

Next we show (4q) quantitative transitivity as follows. Let w be a possible
world in M. Assume that M, w |= Ka,ε+ε′ϕ. Let w′ be any world such that
(w,w′) ∈ Ra,ε, and w′′ be any world such that (w′, w′′) ∈ Ra,ε′ . By defini-
tion, we have D(σw(x) ‖ σw′(x)) ≤ ε and D(σw′(x) ‖ σw′′(x)) ≤ ε′. By the
subadditivity of the divergence D, we have D(σw(x) ‖ σw′′(x)) ≤ D(σw(x) ‖
σw′(x)) + D(σw′(x) ‖ σw′′(x)) ≤ ε+ ε′, hence (w,w′′) ∈ Ra,ε+ε′ . Then it follows
from M, w |= Ka,ε+ε′ϕ that M, w′′ |= ϕ. By the definition of w′′, we obtain
M, w |= Ka,ε Ka,ε′ϕ. Therefore we have M |= Ka,ε+ε′ϕ→ Ka,ε Ka,ε′ϕ.

We next show (5q) relaxed Euclidean as follows. Let w be a possible world in
M. Assume that M, w |= Pa,εϕ. Then there exists a world w′ such that M, w′ |=
ϕ and (w,w′) ∈ Ra,ε. Let w′′ be any world such that (w,w′′) ∈ Ra,ε′ . Since
Ra,ε′ is a metric-based accessibility relation, it is symmetric, hence (w′′, w) ∈
Ra,ε′ . Then by (w,w′) ∈ Ra,ε, we obtain (w′′, w′) ∈ Ra,ε+ε′ . Hence M, w |=
Ka,ε′Pa,ε+ε′ϕ. Therefore we obtain M |= Pa,εϕ→ Ka,ε′Pa,ε+ε′ϕ.

Finally, for ε = ε′ = 0, (4) transitivity and (5) Euclidean respectively follow
from (4q) quantitative transitivity and (5q) relaxed Euclidean. ut


