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Abstract. Rerandomizing ciphertexts plays an important role in protecting pri-
vacy in security protocols such as mixnets. We investigate the relationship be-
tween formal and computational approaches to the analysis of the security pro-
tocols using a rerandomizable encryption scheme. We introduce a new method
of dealing with composed randomnesses in an Abadi-Rogaway-style pattern, for-
malize a rerandomizable RCCA secure encryption scheme, and prove its compu-
tational soundness.

1 Introduction

Formal and computational approaches have developed separately in research related to
the analysis of security protocols. In the formal approach, a cryptographic message is
abstracted into a symbol, called a Dolev-Yao term, and an adversary can only perform
several algebraic operations on Dolev-Yao teriilf}.[The formal analysis of security
protocols is based on the assumption that cryptography is perfectly secure. On the other
hand, in the computational approach, a message is a bit string and an adversary is a
probabilistic polynomial-time (PPT) algorithm. The computational analysis of security
protocols deals with the probability of the adversary performing a successful attack
from a complexity-theory perspective.

These two approaches have advantages and disadvantages. Although the formal ap-
proach is simpler and amenable to automation, it is based on the unrealistically strong
assumption as regards cryptography. While the analysis in the computational approach
employs more realistic models, it is venfitiult and prone to errors.

In recent years, many researches have related these two apprd@@@[ie}. [They
define a function, called an encoding, that maps a Dolev-Yao term to a probability
distribution over bit strings, and prove the soundness theorem, which claims that the
formal equivalence of Dolev-Yao terms implies the computational indistinguishability
of the encodings of the terms. This theorem guarantees that the analysis of security
protocols in the formal approach is also valid from the viewpoint of the computational
approach.



Most of the previous studies related to soundness theorems have dealt with cryp-
tographic primitives with relatively strong computational security, such as IND-CCA2
public key encryption18], EUF-CMA digital signature10Q], and oracle hashindLP].
Although there has been a lot of work on the formal analysis of the security protocols
with more complex primitives such as homomorphic encrypt@jn their soundness
theorems have not been proved.

As a first step to obtaining soundness results for more complex message algebras,
we deal with a rerandomizable encryption scheme, which is an encryption scheme with
a re-encryption operation that replaces the randomness used in a ciphertext with an-
other without decrypting the ciphertext. Although the randomness used in a probabilis-
tic encryption enables an adversary to observe the occurrences of the same ciphertext,
rerandomizing ciphertexts prevents the adversary from tracing them. For this reason, the
re-encryption operation plays an important role in protecting privacy in some security
protocols such as mixnet §].

We propose a new formalization of a rerandomizable encryption scheme using
Abadi-Rogaway-style formal pattern2/15], and prove its computational soundness
by using the IND-RCCA securityg] of the rerandomizable encryption scheme and the
randomness-preserving property of the randomness composition.

In the formalization, we introduce a new method of dealing with composed ran-
domnesses, because the re-encryption operation follows the composition of the ran-
domnesses used in probabilistic encryptiomencryptions. Although some studies ex-
plicitly represent the randomnesses of probabilistic encryptions in an Abadi-Rogaway-
style pattern[12/7]9], they do not deal with the composition of randomnesses. We ex-
tend Herzog's formalizationd5] to explicitly represent composed randomnesses by a
multiset of randomness symbols in an Abadi-Rogaway-style pattern. Due to this, pat-
terns are expressive enough to describe the indistinguishability of a ciphertext from its
rerandomization. In addition, we provide a new definition of a renaming of a multi-
set of randomness symbols that enables us to deal with composed randomnesses. To
obtain the soundness result, we deal only with acyclic terms satisfying the freshness
assumption, which restricts the usage of honest participants’ randomnesses.

In the soundness theorem, we claim that if patterns cannot be distinguished by the
Dolev-Yao adversary, then their computational encodings cannot be distinguished by
any PPT adversary with access to a decryption oracle. Here, the decryption oracle rep-
resents a certain aspect of an active and adaptive adversary. Since the computational in-
distinguishability introduced in this paper is an extension of Herzog’s Abadi-Rogaway
public-key indistinguishabilityl15] to IND-RCCA security, the PPT adversary in our
model is not fully active or adaptive. For example, the adversary’s nonces and random-
nesses are fixed in advance and not adaptive.

The organization of this paper is as follows. Secfibdefines the formal model
employed to analyze the security protocols using rerandomizable encryption schemes.
Sectiordintroduces a computational rerandomizable encryption scheme, and its com-
putational security definitions. Sectididefines an encoding that maps patterns to dis-
tributions over bit strings. Sectidintroduces Abadi-Rogaway RCCA indistinguisha-
bility, and proves the soundness theorem. The final section summarizes our work and
discusses areas for future research.



2 Formal Model

This section introduces the message algebra used to formalize and analyze the protocols
that employs rerandomizable encryption schemes.

2.1 Dolev-Yao Model

Our formal model is an extension of the Dolev-Yao model presentétbinA message

is abstracted into a term from an appropriate algebra, called a Dolev-Yao[idim [

and parties are restricted to performing only pairing, encryption, decryption, and re-
encryption operations. There are two kinds of parties: honest participants and an active
and adaptive adversary. The honest participants follow a protocol without deviation,
and can run multiple sessions of the protocol simultaneously.

The communications between parties are under the control of the adversary. In the
same way as inll5], we model the adversary as the communication channel, and assume
that the adversary can record, delete, replay, and reorder messages. Each execution of a
protocol is defined as an alternating finite sequence of the adversary’s megsages
honest participants’ messagesro, Qi, r1, Go, -+, h-1, On, rn. We assume that the
adversary receives the initial knowledggbefore executing the protocol, and that each
adversary’s messagg must be derivable fromg, rq, - - -, ri_1, nonces, and random-
nesses. Although the analysis of a security protocol in this model must take account of
all non-deterministic choices of the adversary’s messages, we do not present an analysis
method in the model.

This Dolev-Yao model is explained in detail id], and here we concentrate on
providing a formalization of a rerandomizable encryption scheme.

2.2 Terms

We define the following sets of atomic symbols, which are mutually exclusive:

a setConstof constantsdenoting plaintexts of messages for example,

a setKpyp of public key symbols

— a setKgecof secret key symbaqls

a setNonceof nonce symboJsand

a setRandof randomness symboldenoting the randomnesses used in encryption.

We denote the secret key corresponding to a publickkgyby % and the public
key corresponding to a secret Heg\écby@ LetKagy € Ksecbe a finite set of the secret
keys of subverted participants.

Let Nonce be a set of the nonce symbols of honest participatasiceq, be a set
of the nonce symbols of the adversary, &fmhce= Noncgn U Nonceg.

Let Rand,; be a set of the randomness symbols denoting uniform randomnesses
used only in honest participants’ probabilistic encryptioRandg, be a set of the
randomness symbols used in the adversary’s probabilistic encryptiondkardi=
Rand U Randg,. For a setX, let FMulti(X) be the set of all the non-empty finite
multisets ofX's elements. LeK; w X, be the disjoint union of two multiset§; andX;.



Using these atomic symbolstermis constructed from a pairing., _), encryption
{_}-, and re-encryption ()- operations as follows:

Terms m:i=c | Kouo | Ksec| NI RI(M m) [{mIR (M),

wherec € Const Koub € Kpun: Ksec € Kseo N € Nonce and a non-empty finite multiset
R € FMulti(Rangd. Here the multiseR denotes the randomness composed of all the
randomnesses iR. We assume that the value of the composition of the randomnesses
in Ris uniquely determined.

A term of the form{(m,, nm,) denotes the pair of two messagesandm,. A term

of the form{ ml}Epub denotes the encryption of a messagéy a public keykpu, and a

composed randomne8s For example] ml}fpff denotes the encryption of a message

m by a public keykpup and the randomness composedRa@ndR . A term of the form
( m[)Epub denotes the re-encryption of a ciphertaxby a public keykpy, and a composed

randomnesf. We sometimes abbreviaﬁenﬂi(;u’b and Km[)f(;u’b as{miy_, and (m);_ .
respectively. We can derive a term from {|m|},‘fpub by decrypting{ ml}Epub using the
corresponding secret kéyp.

2.3 Patterns

This section defines a pattepatter(m, T) for a termm and a sefl C K The
intuitive meaning of a pattenpatternim, T) is the bit string distribution associated with
m from the viewpoint of the formal adversary with access to the secretkeys

First, we introduce thdype treesof terms [L7/15]. We abuse the notation and
use a type symbol as an atomic symbol of the same type. The typ¢yp€e) of
a termm is defined as followstypgc) = Constif ¢ € Const typgkpu) = Kpub
if Koub € Kpub, typEKsed = Ksec if Ksec € Kseo typgn) = Nonceif n € Nonce
type(R) = FMulti(Rand if R € FMulti(Rand), type((mi, m2)) = ( typdm). type(m) ),
type(dmig ) = (typem) b "9, andtype((m)E ) = (typem) )i, For ex-
ample type((c, {n[§ , )) = (Const { Nonca}ﬁt’l‘:'“(Ran" Y holds.

Next, we define theindecryptable ciphertext symhalYP4™ . for each cipher-
text{ ml}Epub to introduce the pattern representing the distribution of the ciphertext that

the adversary cannot decrypt. Intuitivety,YP<™ lew denotes a random message from
which the adversary cannot distinguish the cipherﬂemufpub whenR N Rangpi # 0

holds. The notatiorm"type(m)"spun implies that the encryptio(hmh,‘fpub reveals the public

keykpupand the length of the plainteri The seRof randomness symbols'ﬂwpe‘m) oo
is used to analyze the relations between probability distributions.
Finally, we define the pattern associated with a term.

Definition 1. A setPatternof patterns is defined by:
{type(m) }

R
Patterns m::=c | Kpup | Ksec| NI RI(m. m) [ {mES 1 (m)¢ 1O o,
wherec € Const Kpup € Kpub, Ksec € Kseo N € Nonce and a non-empty finite multiset

R € FMulti(Rangd.



Definition 2. For kpup € Kpup, let Reeng,, be the minimum set of terms recursively
defined by:

—{ mﬂfpub € Reeng,, holds for anym € Termand anyR € FMulti(Rang.
— If me € Reeng,, holds, then (e [)kRpub € Reeng,, holds for anyR € FMulti(Rang.

Note that eaclm € Reeng, , is generated by repeated encrypfierencryption opera-
tions using the same public ké&yyp.

Definition 3. For a sefl C Kgeo let T be the setksec | ksec € T }. Form € Termand
T C Kgeo We define the sets(m, T) andG;(m, T) of all the secret keys that the formal
adversary can learn from using the secret keys ih andG;_;(m, T), respectively.
- FmT)=T (if me Constu K,,, U Nonceu FMulti(Rand)
F(kseo T) ={Ksec)UT
F(my, mp), T) = F(m, T) U F(rl?z, T)T Re FMUIi(Randu)
F(m T if e T orRe FMulti(Ran

FAMIG,, T) = {T(m : Eothpeur?/vise) ™

Fn hgor, T) - (if Re FMulti(Rang \ FMulti(Randiay),
andm = {m |},;"Vpub holds form € Term
andR’ € FMulti(Rang)

F(( mpfpub, T)={F((n" ])E:f, T) (if Re FMulti(Rang \ FMulti(Randg,),
andm = (n )§ ~holds form' € Reeng,,
andR’ € FMulti(Rang)

F(m T) (otherwise)

- Gy(mT)=T

- Gi(m, T) = F(m, Gj_1(m, T))
We define the functiorecoverable Termx P(Ksed — P(Kseo that maps a terrmand
a setT C Ksecto the set of all the secret key symbols recoverable froby usingT.

— recoverablém, T) = Gy(m, T)
We define the functiorpat: Termx P(Ksed — Patternthat maps a termand a set
T C Kgecto t's pattern with respect td.

— patm, T) =m  (if me Constu Kpup U KsecU Nonceu FMulti(Rang)

— pat((my, mp), T) = (pat(my, T),Rpat(mz, ™
{ pat(m, T) b, (if kpup € T or R € FMulti(Randgy))
= paimi 1) =1 jpaqmpz . - )
O pub (otherwise)

pat(f ' I, T)  (if R e FMulti(Rand \ FMulti(Randuy),
andm = {nt I}Eiub holds form' € Term
andR € FMulti(Rand)

— pat(( mDEpub, T) = { pat((nt [)Epwf, T) (if Re FMulti(Rand \ FMulti(Ranggy),
andm= (m' )¢ holds fornf € Reeng,,
andR’ € FMulti(Rang)

( pat(m, T) [)ffp .  (otherwise)

Let pattern: Termx P(Ksed — Patternbe the function defined by:
patternm, T) = pat(m, recoverablé¢m, T)).




In the above definitionpatternm, T) represents the information that the formal
adversary can obtain from the messageasing the decryption keys ifi. We assume
that the formal adversary can see any messages encrypted using a non-uniform ran-
domness. We also assume that he can see the mesgagere-encryption| (:[)I'fpub if
cis not a valid encryption usingrgub. In addition, the above definition reflects that the
re-encryption of a cipherte>ﬂtm|}kpub by the same public kek,, and a randomne$?

produces the cipherte*tnl}ﬁf using the randomness composediaindR'.

2.4 Acyclicity and Freshness Assumption

First, we introduce a subterm relation. Given a tammthe setSubTerm of all the
subterms ofm is recursively defined as followSubTerm(m) = {m} if m € Constu
Kpub U Ksec U Nonceu Rand SubTerm(m) = {m} U SubTerm(my) U SubTerm(my) if
m = (my, my), andSubTerm(m) = {mjuSubTerm(m') if m= {nmv |§ orm= (n ) .
For two termm andnY, we writem? T mif m’ € SubTerm(m).

Next, we define the acyclicity of terms in a similar way to tha{2iip].

Definition 4. A secret key symbok encryptsa secret key symbdt’ in a termm if
it I}E C mandk’ C n' hold for someR € FMulti(Rand. A term isacyclicif there is
no sequencey, ks, --- , kn, kny1 = kg Of secret key symbols such thigtencryptsk;,1
in mforeach 1< i < n.

The acyclicity of terms is necessary for us to obtain the soundness theorem.
Then, we define the independence of a uniform randomness symbol.

Definition 5. A uniform randomness symbole Rand,; is independenin a setS of
terms if there exist a unique multisete FMulti(Rang such that

— r € Rholds,
— Roccursinsomene S, and
— r ¢ R holds for everyR’ € FMulti(Rand occurring in somen € SwithR # R,

r € Randy, is independenin a termmif it is independent irf m}.

Intuitively, if an independent randomnesse Rand,; is used in an honest partici-

pant’s probabilistic encryptigre-encryption, then it is not used in another encryption

re-encryption. For example, I8tbe the set{c; |, {¢1 |}L“’ 2l e, B (el L“ } for

ri, ro, rs, r4 € Randy. Whiler,, r3, andr4 are independent i§, ry is not independent.
Finally, we introduce the following freshness assumption.

Definition 6. A multisetR € FMulti(Rand encryptsa termm in a termmif { nf ﬂfpub c
m holds for some public key symbél,;,. A multisetR € FMulti(Rang re-encrypts
a termnt in a termm if (m [)Epub C m holds for some public key symbdd, . A
termm satisfies the freshness assumptfanholds that for eaclR € FMulti(Rang \
FMulti(Randg,) occurring inm, there exist

— aunique termm’ such that every occurrence Rfencryptgre-encrypts in m, and
— a uniform randomness symhok RN Rand,, independent im.

Intuitively, the former condition represents the fact that



— no honest participant uses the same composed randoRtesncryptre-encrypt
another message, and that

— no honest participant uses the randomnessdgaing,,; except when employing
them as the randomnesses in probabilistic encryptierencryptions, that is, no
uniform randomness symbols Rand,,; are used as plaintexts or keysim

The latter condition represents the fact that

— every randomnesR used in an honest participant’'s encrypfirerencryption is
composed of at least one independent and uniform randomnekih he never
uses in another encryptige-encryption.

For example, forcy, c; € Const k € Ky, 1, 2 € Randpni andragy € Randgy,
the following four terms do not satisfy the freshness assumptiandi’, {c 3",
frob®, denh™ e ™Y, and(qec b, fe b)), If two multisetsR R e
FMulti(Rand with R ¢ R occur in a termm, thenm does not satisfy the freshness
assumption. Note that the freshness assumption allows honest participants to copy any
ciphertexts.

Hereafter, we deal only with acyclic terms that satisfy the freshness assumption.

2.5 Observational Equivalence

This section defines the renaming of patterns and the observational equivalence of
terms.
First, we introduce several notations and the renaming for atomic symbols.

Definition 7. Given T C Kgeo let Atomyr = (Kpup \ T) U (Ksec\ T) U Noncgni U
(FMulti(Rang \ FMulti(Randg,)). GivenP ¢ Pattern let Atom;(P) be the following set:
{ P’ € Atom; | P’ occurs inP}.

Definition 8. Given P € PatternandT C Kgeo a functiono is arenaming for the
atomic symbols in P except foriTit is a type-preserving injection fromtomy (P) to
Atomy such thabr(k) = k' if and only if o(k) = k' for anyk, k" € Kpup \ T.

Next, we define the renaming of a pattern.

Definition 9. Given a patter® € Patternand a renaming- for the atomic symbols in
P except forT C Ksee We writed P to represent the pattern obtained by replacing each
occurrence of € Atomy(P) in P with o(Q).

Finally, we define the observational equivalence of terms.

Definition 10. Two termsmandm’ areobservationally equivalentritten asm = nY,
if there exists a renaming for the atomic symbols ipatternnY, Kaq,) except forkqy
such thapatternim, Kyq,) = & patternint, Kyqy)-

Example 1.Letk, ki, kp € Koup \ Kagyandri, r, € Randpi.
= M= qmi = (mig | - .
This represents the fact that the re-encryption operation using the same public key
k and a uniform randomness does not change the probability distribution. Note
that we can prove this by employing a renamingatisfyingo-({r1, r2}) = {r1}.



— {mp = {mp2 butmpt, {mp) = qmp, {m}?)
This represents the fact that the formal adversary can recognize the repetition of the
same ciphertext bit strings. Note that no renaminggatisfies botlr({ri}) = {ry}
ando({r2}) = {r1}. In general, our observational equivalence of patterns can deal
with the relations of probability distributions unlik@][ because of our definition
of the renaming.

— Imp = gmp " = (M) (e € Randa)
This represents the fact that the re-encryption of the adversary’s ciphﬂamh@éetv
using a uniform randomness produces a uniformly random ciphertext. Note that
there exists a renaming satisfyingo({ ragw, r1}) = {r1}.

=AM AME?) = AmBL (B D) (rao € Randia)
This represents the fact that the adversary can recognize the re-encryption using the
adversary’s randomnesg;, because he has performed the re-encryption. Note that
we havepattern(({ mj;’, {]m!}[j), 0) = (uﬂ:yper(m)l*rkl, otYPEm Ky but pattern((| mj?,
(J{Iml}[(l DrkadV>, 0) = (glyPeami’  (gltypdm i’ Dkad">'

= (I ImE) = dAmig, (mE)
This represents the fact that the formal rerandomizable encryption schemes in this
paper do not satisfy receiver anonymif\d], i.e., the key-privacyd] or which-key
concealingl?] of rerandomizable encryption schemes.

3 Computational Model

This section introduces the notion of computational indistinguishability, a computa-
tional rerandomizable encryption scheme, and its security definitions.

3.1 Preliminaries

In a computational setting, messages are bit strings and adversaries are probabilistic
polynomial-time (PPT) algorithms that input and output bit strings. We denote the set
of all bit strings byString and the length of a bit string by |x|. The computational
security of cryptographic schemes is defined in terms of the notionprblability
ensembleover bit strings, which is a sequen{®,},, of probability distributionsD,,
over bit strings indexed by a security parameter

We use the following indistinguishability of probability ensembles as a security
definition in the computational setting. We wrile— D,, to indicate thatl is sampled
from a probability distributiorD,,, and write Prfl < D, : E] for the probability of an
eventE whend is sampled fronD,,. We abuse the notation and write— X to indicate
thatd is sampled from the uniform distribution on a 3€tA function f from integers
to real numbers isegligiblein a security parameterif for every c > 0 there exists an
integern. such thatf (17) < 7~ holds for anyy > .

Definition 11. Two probability ensemblei®,}, and{D’,},, arecomputationally indis-
tinguishablewith respect to an oracl®, written D, ~o D’,, if for every PPT adver-
saryA,

Pr[d « D,: A°(d, n) = 1] - Pr[d’ « D’,,: A°O(d’, n) = 1]
is negligible inn.



In the above definition, we assume that the PPT adverAargn send a polynomial
number of queries to the oradle

3.2 Rerandomizable Encryption Scheme

We consider a rerandomizable encryption scheme where everyone can re-encrypt a ci-
phertext using a public key and a randomness. It is left to our future work to deal with
more complex rerandomizable encryption schemes using re-encryption keys generated
from secret keys, such as the proxy re-encryption scheme propogld in [

Let Parambe a set of security parametePsjbKeybe a set of computational pub-
lic keys, SecKeybe a set of computational secret kelp$aintextbe a set of computa-
tional plaintexts, andRandombe a set of random bit strings used in encryptions and
re-encryptions. Let be the special bit string representing the failures of encryptions,
decryptions, and re-encryptions. We denote the secret key corresponding to a public key
pk by pk, and the public key corresponding to a secret by sk

Definition 12. A computationakerandomizable encryption scherlisea quintuple G,
&, D, R, CMP) consisting of the following five algorithms:

— a key generation algorithi&: Paramx Random— PubKeyx SecKeythat outputs,
given a security parametgrand a randomness a public key and secret key pair
(pk, sK).

— an encryption algorithr&: PubKey Stringx Random— Cipheru{_L} that outputs,
given a public keypk, a bit stringx, and a randomnessthe encryption ok using
pkandr, or the failure message.

— a decryption algorithnD: SecKeyx String — Plaintextu {_L} that outputs, given
a secret keyskand a bit stringk, the decryption ok using sk, or the failure mes-
sagel.

— a re-encryption algorithnR: PubKeyx String x Random— Cipheru {1} that
outputs, given a public kegk, a bit stringx, and a randomnessthe re-encryption
of x usingr, or the failure message.

— a randomness-composition algorithtM#: FMulti(Random) — Randomthat
outputs the composition of a given finite multiset of randomnesses. We assume
that the bit string representing the composition of a multiset of randomnesses is
uniquely determined if the multiset is fixed.

We assume that the lengths of the outputs from these algorithms depend only on those
of the inputs. These algorithms satisfy the following properties for iy PubKey
sk= pk, anyr, r' € RandomanyR;, R,, Rz € FMulti(Randon), and anyx € String
_ [ x (if x € Plaintex)

— D(sk &(pk x, 1) = {J_ (otherwise)

— R(pk &(pK x, 1), 1') = E(pK, X, CMP({r, ' }))

- CMP(CMP(R]_ (V] Rz) U] Rg) = CMP(R;[ (V] CMP(RZ U] Rg))
To obtain soundness results for the schemes such that the composition of a multiset of
randomnesses is not uniquely determined, it igent to use sequences of random-
ness symbols instead of multisets of randomness symbols.



3.3 Security Definitions of Rerandomizable Encryption Schemes

We define the IND-RCCA security of the rerandomizable encryption scheme.

Definition 13. Letn be a security parameter aRd = (G, &, D, R, CMP) be areran-
domizable encryption scheme. For a PPT adver8awe define the advantade:cSA

RE, A
as follows:
ADVESCA() = Pr [ (pk s — G(n);
(mo, my)  AP:O(pK);
(Mo # my and|mo| = |my )
r — Random
b« {0 1}
c:=8(pk my, r);
b’ «— AP20)(c) :
b=b ]1-3
where
D19 = D(sk ) and Dz(9 = {2059 (DK 7t )
A rerandomizable encryption scherR€ is IND-RCCA securé the advantagdig
is negligible inp for every PPT adversar.

The notion “RCCA, or Replayable CCA, was proposed by Canetti eibhla a
relaxation of CCA2 security. Although this security is strictly weaker than CCA2, it is
believed to be a necessary andhsient formalization of “secure encryption” from the
applicational point of viewd]. Groth [14] first proposed a rerandomizable encryption
scheme satisfying a weaker form of RCCA security, and another scheme satisfying
RCCA security in the generic groups model. Prabhakaran and Ro&i@ekrproved
this rerandomizable scheme to achieve RCCA security in a standard model, and Xue
and Fengl21] proposed a morefgcient scheme that also achieves receiver anonymity.
There are notions similar to IND-RCCA: “benign malleabilit?(], “loose ciphertext-
unforgeability” [16], and “generalized CCA security3].

Finally, we define the notion shndomness-preservirgpmposition, because IND-
RCCA security cannot describe the security property whereby the re-encryption algo-
rithm R fully rerandomizes input ciphertexts.

Definition 14. Let n be a security parameter aiRE = (G, &, D, R, CMP) be a
rerandomizable encryption scheme. The randomness composition algorittifis
randomness-preservinfit holds for everyr, ro, r; € Randonthat

1. Pr[Xo « Random CMP({ Xo, r}) = r1] = Pr[Xo « Random Xg = r1]
2. Pr[xy « Randont X = rg A CMP({ %o, I'}) = 1]
= Pr[xo < Randont X = ro] - Pr[Xo < Random CM®P({ xo, r }) = r4].

By Lemma 1 of [2]], if CM® is randomness-preserving, th&& is perfectly reran-
domizable[L9], which is a security notion of the re-encryption operatiin



4 Encoding

This section introduces an encoding that maps patterns to distributions over bit strings.
The definition of the encoding is standdBll7], but we take the composed randomness
into account.

First, we define the set of the symbols that should be encoded using random bit
strings.

Definition 15. For a terrndpatternm, let RS(m) be the set of atomic symbols:

RS(mM) = {n7 € Kpup U Nonce| m' occurs inm} U {Ksec| Ksec € Kseo KsecOCCUS inM}
U {r € R| Re FMulti(Rand, R occurs inm}.

For a setS of termgpatterns, IeRS(S) be the set J,.s RS(M).

Next, we define the s&oing of functions each of which encodes the randomness
used to encode k@yoncgrandom symbols.

Definition 16. For a seiX of atomic symbols, le€oing(X) be the setft: X — {0, 1}°}.

Each functiort € Coing(RS(m)) maps each kggoncgrandomness symbalin mto a
random bit string used to encosleFor example, for a public key symbigl,, occurring
in m, t(koup) is the random bit string that is used to generate the public key bit string
denoted byky,p. Hereafter we sometimes omit the lengtfrom the notation whe# is
a polynomial in the security parametgsuch that € Coing(X) is suficient to encode
all the keynoncgrandomness symbols X.

Then, we define the algorithms used in the encoding of tgaterns. LeiRE =
(G, & D, R, CMP) be arerandomizable encryption scheme. Wegiseencode pub-
lic and secret key symbol§, to encode encryption® to encode re-encryptions, and
CM®P to encode a set of randomness symbols. We also use the following algorithms.

Definition 17. — A constant encode€ is a deterministic algorithm that outputs a
fixed bit string corresponding to a given constaimt Const

— A nonce encodeN is an algorithm that outputs, given a randomnéssfor some
n € Nonce a bit string uniformly and randomly selected frdif, 1}P°Y?) where
poly(n) is a fixed polynomial in;.

— A type encodef is an algorithm that outputs a fixed bit string of the same length
as the encoding of the termfor an inputtypgm), such as an all-zero string of the
same length.

— A nonce distribution [Rynceis an algorithm that outputs, given a random bit string,
a bit string used as the adversary’s nonce.

— A randomness distribution g is an algorithm that outputs, given a random bit
string, a bit string used as the adversary’s randomness for probabilistic encryptions
and re-encryptions.

We assume that each of these algorithms outputs bit strings of the same length for inputs
of the same length. Leff = (RE, C, N, 7", Dnonce Drand)-

Finally, we define the encoding of terfpatterns. We abuse the notations and use
(-, - ) to represent the concatenation of bit strings.fseandsndbe the two algorithms
that map a concatenation of bit strings to the first and second component, respectively.



Definition 18. Letebe a function from some sdbm(e) of termgpatterns to bit strings,
n be a security parameter, ahéd CoingRS(m) \ dom(e)). Theencoding[ m]IZ“tI of a
termypatternmis recursively defined as follows:

if me Dom(e),
then |[m]|;jtj = e(m)
else |[c]|2:} =(C(c), “Const™
[ kpuol} ' = (fSUG(, t(kopun))), “PubKey”)
[ ksecl} ' = (SNdG(n, t(ksed)), “SecKey”)
[n]et = {(Dnonce(N(n, t(n))), “Nonce”) (if n € Noncag,)

L7 | {N(n, t(n)), “Nonce”) (otherwise)
|[{r } et _ {(Drand(t(r))’ “Rand”> (if re R_an(ildv)
0.z {t(r), “Rand”) (otherwise)

[RI}, =CMP(ifst {r}]})) | T €R)), “Rand”)
[, )15 =« mds s [med ), “pair)
LImiT; = @@sUTkD ). [mlPY. iULRDSY). fs(L K7 ). “enc’)
LOmIETSY = RASKT KIS, fsUI mIZY), T RIZ). T KI2Y), “enc”)
[o!YPeEmiget = (s k]S, T (typem), fst[ RIY)), fs([k1S,), “enc”)

wherec € Const kpub € Kpub, Ksec € Kseo N € Nonce andr € Rand R € FMulti(Rand.
For any pattermand any security parametgrthe encoding n]?  is the probability
distribution{t « CoindRS(m) \ donm(e)): I[m]lf]:tf}. We omite whendom(e) = 0.
WhenDom(e) = { X, X, ---, X, } andy; = g(X) for each 1< i < n, we sometimes
write [X; — Y1, Xo B Vo, --+, X > Yy] instead ofe. Hereafter we omiff from the
notations, and abbreviatg [}]IZ"} as [r ]IS‘.

In the above definition, each encoding is followed by a type tag representing one of the
bit string types “Const”, “PubKey”, “SecKey”, “Nonce”, or “Random” and the bit string
operation types “pair” and “enc”. The algorithist is used to remove type tags, and we
omit fstfor readability hereafter. A ciphertext bit string contains the public key used to
generate the ciphertext. We introduce the algorif#a that outputs the public kegk
from a given encryption usingk PK satisfies the equatio®K((E([ k]l,?t, [m]et,
[RIZY. KIS “enc™) = [KIS".

Note that |[m]|,‘;°t is a unique bit string, because= CoindRS(m) \ done)) deter-
mines all the randomnessesim

5 Soundness

5.1 Abadi-Rogaway Indistinguishability

First, we define a functionndeg that maps a bit string to a set of undecryptable bit
strings. Intuitively, given an encodingof a termM and a set of encodings of a set



T C Kseo X € Undeg(u) is an encoding of an undecryptable messagegsittern(M, T).

Definition 19. Let u be a bit string, and be a set of computational secret keys. Let
undeg be the algorithm defined in Fifdl

algorithm undec(u)

SetB, B :={u};
do

B:=B;

B :=0;

for eachbe B
if b= (by, by, “pair”)
then B :=B U {by, by };
if b = (c, PK(c), “enc”y and (PK(c), “PubKey” € T
then B :=B U {D(PK(c), €) };
if b = (c, PK(c), “enc”y and (PK(c), “SecKey” € t
then B :=B U {D(PK(c), ¢) };
otherwise
B :=B uU{b};
while B" # B;
return B;

Fig. 1. Algorithm undeg.

Roughly speakingundeg(u) is the set of all the challenge ciphertexts, and is used to
specify the ciphertexts that cannot be decrypted by the decryption oracle in Defini-
tion21l

Next, we define the sdbrbid, (M, T) of bit strings that is used in the oracle of
Definition21

Definition 20. Let M € TermandT C Kgeo Letforbid",t(M, T) be the set:

y € undegry ([ M1}), }

{<pk, DIk, y)). <Pk TypdD(Pk YD) | 1y — picry)

whereTypeis the algorithm defined byypd][ m]lg) = 7 (typgm)) for everym e Term

Finally, we define a computational indistinguishability between the two probability
distributions each encoding a term. This indistinguishability is defined in the presence
of an active and adaptive PPT adversAnand is almost the same as that1][except
for the definition of the oracl®) ;™" T.

Definition 21. Letn be any security parametdr,be any finite set of secret key sym-
bols, andM andM’ be any two acyclic terms satisfying the freshness assumption and
M = M’. A rerandomizable encryption scherR& providesAbadi-Rogaway RCCA
indistinguishabilityif for every PPT adversarg, it holds that

|[ M ]Iﬂ %OII;/'I,[M’,T |[ M’]I,,,



that is, the advantagdv;s R°“* defined below is negligible in.

AQVARRECA(y) = Prft — CoingM), d [ M]%: A% ¢(d, 7 = 1]
—Prlt — CoingM), d — [ M']%: A% 76(d, ) = 1]

D(pk x) (if either
() pke [ K] for someK € T, or
(i) @) pke [ K]}, for someK € Koo \ T,
OMM'T (pk ) = () (pk, D(pk, X)) ¢ forbid, (M. T),
.t and
© (pk D(pk X)) ¢ forbid, (M, T))
1 (if pk¢ [ KT, for anyK € Kpup)
test (otherwise)

In this definition, the adversar can learn some relations between plaintexts and
their encryptions by having access to the or&@}§""". As opposed to the access to
D; andD; in Definition[I3 the adversanA needs to send a public kgk to the oracle
OM"MT to specify the corresponding secret kgly used for the decryption, because
two messageM, M’, and their patterns can be thought of as many possilfilereint
challenge ciphertexts under many possibléedent keys.

The oracled);""" " is similar to that in[[5] except that the two sefsrbid, (M, T)

andforbid, (M, T) are used to determine whether or @}f;"""" returns the decryp-

tion of xto the adversanj. The challenge ciphertexts that the ora0j¢ MT should not
decrypt are those encryptions that the decryption orfaglis not allowed to decrypt in
the IND-RCCA game. They are either undecryptable cipher@, m, r) derivable
from_ [M ]|}7 or [ M’ ]}7_, orthe correspo_n_dlng encryptio&¢pk, Typdm), r). Therefore,
forbid, ;(M, T) U forbid, (M’, T) specifies the set of all the challenge ciphertexts that

OM™T should not decrypt.

5.2 Soundness of Formal Rerandomizable Encryption
We obtain the following soundness theorem.

Theorem 1. Let RE be an IND-RCCA secure rerandomizable encryption scheme with
a randomness-preserving composit@M®P. For any two acyclic term# and M’
satisfying the freshness assumptibh= M’ implies [M ], R QMW Kady [™M],.

.t

Proof. By Lemmad]l andZ presented below, we have the following equation for some
renamingo for the atomic symbols ipatter{M’, K,q,) except forkKygy.

l[ M ]In zoM-‘M/-KadVII pattern(M, Kagy) ]I'] = |[ o patterr(M’, Kaav) ]In

=[ pattern(M’, Kaa\) 1, %OM}M/<Kadv|]: M1,
' i
Lemma 1. Let M andM’ be any two acyclic terms satisfying the freshness assumption,
andT be any finite set of secret key symboals. [RE = (G, &, D, R, CMP) be an
IND-RCCA secure rerandomizable encryption scheme wiis¥é¢P is randomness-
preserving. Then we haveN ], R T [ patterr(M, T)],,.



Proof. Suppose that there exists a PPT advergawyith access ta);"" " who can
distinguish between samples fronM[],, and [pattern(M, T)1,,. Then we derive a
contradiction by using a hybrid argument similar Rj15]. Between the two row$1
andpattern(M, T), we create a new row for each encryptfi@iencryption, so that two
consecutive rows tlier only in one of the following cases:

(1) a single re-encryptior} (P)R ])E being replaced with P)R°F for P € Reeng,
R € FMulti(Rang \ FMulti(Rand,), andR’ € FMulti(Rand,

(2) asingle re-encryptioni(P }¥ [)E being replaced with P }R°F for R € FMulti(Rang\
FMulti(Rand,4,) andR’ € FMulti(Rand,

(3) a single encryptio P} being replaced witm!¥P<PIX for R € FMulti(Rand \
FMulti(Randgy) andK € Kpyp\ T.

Because of the definition of patterns, we obtain a sequence of MwsMg, My, -- -,
Mi, Miy1, -+, My = patternM, T) where for each & i < n, M; andM;,; are identical
except for one of the above cases. UnliRELE], it is necessary to consider cadd$
and(2) that deal with re-encryption patterns. Furthermore, in ¢@8y@/e take account
of the condition with the randomnesses of probabilistic encryptions.

Example 2.For example, leM be the following sequence of terms, afnde the fol-
lowing set forc € Const ky, ko, k3, ka € Kpup, @andRy, Ry, Rs, Ry, Rs, Rs € Rand.

M={che, {lcke, fcke, ksl}k, ((che DkAD T = (ki)

Here we have omitted parentheses for readability. We obtain the secret key symbols:
recoverabléM, T) = {kq, ks }.
We obtain the sequence of rovs= Mg, M3, My, M3, My, Ms = pattern(M, T).

— R Rs
Mo= 1ChE. Hel. telf kb ((elE)yD,

. = R (3) ka
Mi= ol "%, q1ehe, 1eh. kb, ((Iehg D),
L @k
My = ol i, 1ol e Kol . ((1chY ), D
Ry Ry — [T} (1)k4
Mz = l:l{I(:onsu]Kz’ {IDﬂConsu}kz, {]C|}E:’ k3|} Mcl}m D% Ry
@k
M4: D{Iconsq]z’ {lDﬂconsu}EZZ’ {ICI}E:’ k3 Hk 2 {ICI}R'%UR‘tURs
Bk

_ {lConsq}fz ﬂConsﬂ}E2 Rs 1~ {]Consﬂ};SWFWRS
M5_D 2» {ID 2’ {ICI}&, k3ﬂkl7 O

SinceA can distinguish betweenNlo],, and [Mn],, there exist two consecutive
rows M; and M;,1 such thatA can distinguish betweenN; ], and [M;,1],. Fix M;
and M;j,;. Then the two rowsVl; and M;,; are the same except for one of the above
three caseél) - (3). In each case, we derive a contradiction.



(1) Consider the first casevl; and M;,; are the same except that a re-encryption

((P)R [)E in M; is replaced with| P)R*F in M;,; for P € Reeng. SinceP € Reeng
holds, we obtain the following equation for everg CoingRS(M;)):

R KT, RAKT, [P, [R1). [RI}) =RAKI,. [P1,, CMP(IR], ¥ [R1,)

Therefore, we have {4 ],, = [ Mi;1],, which contradicts the assumption thatan
distinguish [M; ], and [M;.1],,.

(2) Consider the second cadd; and M;,; are the same except that a re-encryption

(IPIE DE in M; is replaced with| P 5% in M;,;. We have the following equation for
everyt € CoindRS(M;)):

R KT, EMKT, [PL, [RT). [RD) = &I KT, [P1,, CMP(IR], ¥ [RT;)

n° n’
Therefore, we obtain [4; ],, = [ Mi+1],,, which contradicts the assumption thatan
distinguish [M; ], and [Mi;11,,.

(3) Consider the third cas®); andM;,; are the same except that an encrypted message
{PIR in M; is replaced withn! YP¥P)I in M;,; for R € FMulti(Rand \ FMulti(Randq,)
andK € Kpup \ T.

Now we construct an adversafy that breaks the IND-RCCA security of the reran-
domizable encryption schenE. The definition ofA, is presented in Fig&and3

Let (pk, sK be a pair consisting of a public key and a secret key generated using
the key generation algorithi@. Because of the freshness assumption in Definfion
we can take a randomness symhpk RN Rand,, such thatg ¢ R holds for every
R e FMulti(Rang occurring inM; with R # R. Note thatry does not occur irP.
Assume thatxg < Random We treatpk and xo as the encoding of the public key
symbolK and the randomness symlyg] respectively.

A0 (PR AZ(©)
t « CoindRS(Mi) \ { K, ro}); s:=[ M ]85
my [ PPk PUbKey L. ML
my =7 (type(P)); ’ b AT (s,
return (Mo, my): return b’;

Fig. 2. The behavior of, on inputpk. Fig. 3. The behavior ofA, on inputc.

In Fig.[2, Ao receives the public kepk and generates two bit strings andmy of
the same lengttD; is the decryption oracle defined in Definiti@d

Then assume thdt « {0, 1}, X:=CMP({ X} @ {|[r’]|}7 | r" € R\ {ro}}), and
c:=8(pk my,, X). SinceCM®P is randomness-preserving awgl is selected indepen-
dently and uniformlyx is also independent and uniform. Therefore, we carnxasethe
randomness of the probabilistic encryption generating the challenge cipheiretkie
IND-RCCA game.

In Fig.[8 Ap receives the ciphertextand guesseB by invoking the adversani
as a subroutine. Letbe the function{[P[}E — {c, pk, “enc”), K i (pk, “PubKey™],
andsbe the bit string [M; ]I,?t. The adversanA receivess from Ag, and answers which
of the two distributions [M; ],, and [Mi;1],, sis sampled from. Note that we have the



equations:  + _ coingRS(My) \ (K, ro}), b:=0,
{ pk « fst{(G(n)), Xo < Random

{t «— CoindRS(M) \ {K, ro}), b:=1,
pk « fst{(G(n)), Xo «— Random

SIS =IMmi,
| Mi]l,?t}=|[ Mis1 1,

Here, e depends on the bib, which was used to produce the challenge ciphertext
c:=&(pk my, X). SinceA can distinguish betweenNl; ], and [M;.1], with non-
negligible probability,A; can guess the bib with non-negligible probability by re-
ceivingb’ from A. Hence Ay breaks the IND-RCCA security. This contradicts the as-
sumption.

There remains a problem with the orac®’,"T. Recall thatA uses the ora-

cleO);M"T defined in DefinitiofZll Since the definition of IND-RCCA security allows

Ao to use only the decryption oracl&@ and D, we consider an algorithr@ ;"""
that uses onlyD, and simulates the orac@),""". We assume that the adversaky

uses the aIgonthn(D'VI ™-T presented in Fidd, instead of the oracl®);""". Note
thatA can dficiently demde( pk, D2(x)) € forbid, (M, T) U forbid, ((M’, T) by com-
putingforbidderi®( ([ MT%, [ M' ]}, D2(X). [ T1%) in Fig.[B, and(pk’, D(sk, X)) €
forbid, (M, T)uforbid, ,(M’, T) by computingorbidderﬂ(l[ MTL [TM ], D(sK, X),

[T1; sk)inFig.@ |
algorithm OW’TDZ(‘)(pK X) algorithm forbidderi®2(')(s,, s, p, 1)
if pk# [ Kouro 1), SetF:=0
for any Koum € Kou for eachy € undeg(s;) U undeg(s,)
then return L; ~ Fi=Fu{Day);
else ifkpuo = K if ek
then if (pk, D(X)) € forbid, (M, T) then return “yes”;
or (pk, D(x)) € forbid, ,(M’, T) else retumn“no’;
then return test Fig. 5. Algorithm forbidderiP=("),
else return D,(X);
else(pk’, sK) :=G(. t(Kpuro)); algorithm forbidder2(s,, s, u, 7, sK)
if Kouo € T SetF:=0
then return D(skK, x); for eachy € undeg(s;) U undeg(s,)
else if(pk’, D(sK, X)) € forbid, (M, T) F:=FU{D(sK,y)};
or {pK, D(sK, X)) € forbid, (M’", T) ifueF
then return test then return “yes”;
else return D(sK, x); else return“no”;
Fig. 4. Algorithm O@,TD2<'> _ Fig. 6. Algorithm forbidderp.

Lemma 2. Let RE = (G, &, D, R, CMP) be an IND-RCCA secure rerandomizable
encryption scheme whe@M® is randomness-preserving. Lt be any acyclic term
satisfying the freshness assumption, dnlge any set of secret key symbols. lebe a
renaming for the atomic symbolsfratterr(M, T) except fofT such that"pattern (M, T)



= pattern(M’, T) for some acyclic ternM’ satisfying the freshness assumption. Then
we have [ pattern(M, T) ], = [ patterr(M, T)],,.
Proof. Given a terrypatternQ, let X(Q) = {R € FMulti(Rangd \ FMulti(Randg,) |
Roccurs inQ}. Let P = pattern(M, T). Leto|xr) be the renaming for the atomic sym-
bols in P such thalo|xp)(R) = o(R) if R € X(P) ando|xr)(Q) = Q otherwise. Let
olawom eyxp) b€ the renaming for the atomic symbolsRrsuch thatr|awom (p)\x@)(R)
= Rif R e X(P) ando|atom (phx@)(Q) = o(Q) otherwise. Clearly, we havedfP], =
[ Tlaom eyx@ lx@ Py and [laom enxe dlxe Pl = [Tlx@ P1,. Hence, it is
sufficient to prove [ixp) P1, = [ P1,.

Lett € CoingdRS({ M } U T)). SinceM satisfies the freshness assumption, for each
R e X(M), there exists a uniform randomness symbelRNRand, that is independent
in M. Therefore, H}7 is a random bit string independently and uniformly selected from
Random SinceCM® is randomness-preserving, for eaRhe X(M), the randomness
[ ISE]IEI composed of [T}, is also independent and uniform.

Let R, Ry, -+, R, be all the distinct finite multisets of randomness symbols in
X(P) Itis |mmed|ate from Definitio that for every 1< i < n, there exist soma

R. > Fx’.k € FMulti(Rand occurrlng inM fork > 1 such thaR, = R| UR, - uR,k,
Ry

aterm of the forml(---(]{lml}k'l [)k -+, occursinM, andR, € X(P). SinceCMP is
randomness-preserving anézil[]lfl is independent and uniform f I, = cMP([ R, W
R,w--wR 1. [R,]!) is also independent and uniform.

On the other hand, sinae|xp) is injective, olxp)(Ry), olx@)(R2), - -+, olx@)(Rn)
are all the distinct multisets of randomness symbols(i|x P). Then, [olx@)(Ri) ]|§7
is independent and uniform, becausgp) P is also the pattern of some term satisfying
the freshness assumption.

Since both [rixe)(R) 1}, and [R ]}, are independent bit strings uniformly dis-
tributed onRandonfor any 1< i < n, we obtain [¢xre) P1, = [ P1,. |

5.3 Example: Analysis of Simple Re-encryption Mixnet
We present an example of an analysis of a security protocol in our model.

Example 3.Consider a simple re-encryption mixnet protocol in which there are two
honest senderX; and X, an honest mixnet servéf, and a formal adversam. We
assume that they all have a public key, € Ky, and that onlyy has the corresponding
secret keYKpup-

First, eachX; encrypts a messagee Constusingkpu, and a uniformly selected ran-
domness; € Rand,. Next, eachX; sends the cipherteft; |}’k‘pub to the servely. Then,
Y receives the two ciphertexts and re-encrypts them using the same publd&kayld

uniformly selected randomnessesg, r', € Randy,. Finally, Y outputs|( cll}k b[)k

and ({ c2|} [)rk2 in a random order.
The sequence of the honest participants’ messages in this protocol ish@itéu’.

= {I Cj_ I}kpub’ {I CZ I}kpub (] {I CI I}kpub Dk q {I C3 i I}rk:;_ub Drk3 I

M =feolie,, Toil, (Heihe, 0. es b, D”’



Note thatM and M’ are acyclic and satisfy the freshness assumption. For these two
sequences of termd andM’, we obtain the following two patterns.

n 2 (r, v , } {rair'a i)
patterr(l\/l, 0) _ Ij(l(:onsll)kpmj’ I:‘(IConsﬂ}kpub { Const, dConsq;k
ra ry (] J) (,3],3],
’ _ (IConstl)kple (IConstl)kpub QConst[;k b ﬂConsu)k ”
pattern(M’, 0) =0 , O o

Since the uniform randomness symbollsrg, r, andr’2 are independent iM’, there
exists a renaming such that-({rj, r’;}) = {ri, r'i }, o({ra-j, r'a=j}) = {ra-, 's=i },
ando({ri}) ={rs}fori, j =1, 2. Then we obtalrpatterr(M 0) = & pattern(M’, 0),
that is,M = M’.

Assume that the rerandomizable encryption scheme used in this protocol satis-
fies IND-RCCA security and the randomness-preserving propertyn et a secu-
rity parameter, and {J,, be the encoding that uses the scheme. SWMcand M’ are
acyclic and satisfy the freshness assumption, it follows from The@rtrat we obtain
[M], QU0 [ M"1,. This implies that no active and adaptive PPT adversary can

identify the sender of each plaintegt Hence, we obtain sender anonymity with this
simple re-encryption mixnet protocol in the computational sense.

6 Conclusion

We proposed a new formalization of a rerandomizable encryption scheme by using
Abadi-Rogaway-style formal patterns, and proved its computational soundness by using
IND-RCCA security and the randomness-preserving property. In the formalization, we
introduced a new method for dealing with composed randomnesses.

Our method of defining patterns using multisets is not limited to the formalization
of rerandomizable encryption schemes. We believe it is also useful in order to provide a
computationally sound formalization of other cryptographic primitives, such as thresh-
old cryptography and blind signature.
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