
Computationally Sound Formalization of
Rerandomizable RCCA Secure Encryption

Yusuke Kawamoto1 Hideki Sakurada2 Masami Hagiya1

1 Department of Computer Science, Graduate School of Information Science and Technology,
University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN
{ y k mw tt, hagiya } atis.s.u-tokyo.ac.jp

2 NTT Communication Science Laboratories, NTT Corporation
3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa 243-0198, JAPAN

sakuradaattheory.brl.ntt.co.jp

Abstract. Rerandomizing ciphertexts plays an important role in protecting pri-
vacy in security protocols such as mixnets. We investigate the relationship be-
tween formal and computational approaches to the analysis of the security pro-
tocols using a rerandomizable encryption scheme. We introduce a new method
of dealing with composed randomnesses in an Abadi-Rogaway-style pattern, for-
malize a rerandomizable RCCA secure encryption scheme, and prove its compu-
tational soundness.

1 Introduction

Formal and computational approaches have developed separately in research related to
the analysis of security protocols. In the formal approach, a cryptographic message is
abstracted into a symbol, called a Dolev-Yao term, and an adversary can only perform
several algebraic operations on Dolev-Yao terms [11]. The formal analysis of security
protocols is based on the assumption that cryptography is perfectly secure. On the other
hand, in the computational approach, a message is a bit string and an adversary is a
probabilistic polynomial-time (PPT) algorithm. The computational analysis of security
protocols deals with the probability of the adversary performing a successful attack
from a complexity-theory perspective.

These two approaches have advantages and disadvantages. Although the formal ap-
proach is simpler and amenable to automation, it is based on the unrealistically strong
assumption as regards cryptography. While the analysis in the computational approach
employs more realistic models, it is very difficult and prone to errors.

In recent years, many researches have related these two approaches [2,1,18]. They
define a function, called an encoding, that maps a Dolev-Yao term to a probability
distribution over bit strings, and prove the soundness theorem, which claims that the
formal equivalence of Dolev-Yao terms implies the computational indistinguishability
of the encodings of the terms. This theorem guarantees that the analysis of security
protocols in the formal approach is also valid from the viewpoint of the computational
approach.

Most of the previous studies related to soundness theorems have dealt with cryp-
tographic primitives with relatively strong computational security, such as IND-CCA2
public key encryption [18], EUF-CMA digital signature [10], and oracle hashing [12].
Although there has been a lot of work on the formal analysis of the security protocols
with more complex primitives such as homomorphic encryption [8], their soundness
theorems have not been proved.

As a first step to obtaining soundness results for more complex message algebras,
we deal with a rerandomizable encryption scheme, which is an encryption scheme with
a re-encryption operation that replaces the randomness used in a ciphertext with an-
other without decrypting the ciphertext. Although the randomness used in a probabilis-
tic encryption enables an adversary to observe the occurrences of the same ciphertext,
rerandomizing ciphertexts prevents the adversary from tracing them. For this reason, the
re-encryption operation plays an important role in protecting privacy in some security
protocols such as mixnet [13].

We propose a new formalization of a rerandomizable encryption scheme using
Abadi-Rogaway-style formal patterns [2,15], and prove its computational soundness
by using the IND-RCCA security [6] of the rerandomizable encryption scheme and the
randomness-preserving property of the randomness composition.

In the formalization, we introduce a new method of dealing with composed ran-
domnesses, because the re-encryption operation follows the composition of the ran-
domnesses used in probabilistic encryptions/re-encryptions. Although some studies ex-
plicitly represent the randomnesses of probabilistic encryptions in an Abadi-Rogaway-
style pattern [12,7,9], they do not deal with the composition of randomnesses. We ex-
tend Herzog’s formalization [15] to explicitly represent composed randomnesses by a
multiset of randomness symbols in an Abadi-Rogaway-style pattern. Due to this, pat-
terns are expressive enough to describe the indistinguishability of a ciphertext from its
rerandomization. In addition, we provide a new definition of a renaming of a multi-
set of randomness symbols that enables us to deal with composed randomnesses. To
obtain the soundness result, we deal only with acyclic terms satisfying the freshness
assumption, which restricts the usage of honest participants’ randomnesses.

In the soundness theorem, we claim that if patterns cannot be distinguished by the
Dolev-Yao adversary, then their computational encodings cannot be distinguished by
any PPT adversary with access to a decryption oracle. Here, the decryption oracle rep-
resents a certain aspect of an active and adaptive adversary. Since the computational in-
distinguishability introduced in this paper is an extension of Herzog’s Abadi-Rogaway
public-key indistinguishability [15] to IND-RCCA security, the PPT adversary in our
model is not fully active or adaptive. For example, the adversary’s nonces and random-
nesses are fixed in advance and not adaptive.

The organization of this paper is as follows. Section2 defines the formal model
employed to analyze the security protocols using rerandomizable encryption schemes.
Section3 introduces a computational rerandomizable encryption scheme, and its com-
putational security definitions. Section4 defines an encoding that maps patterns to dis-
tributions over bit strings. Section5 introduces Abadi-Rogaway RCCA indistinguisha-
bility, and proves the soundness theorem. The final section summarizes our work and
discusses areas for future research.

2 Formal Model

This section introduces the message algebra used to formalize and analyze the protocols
that employs rerandomizable encryption schemes.

2.1 Dolev-Yao Model

Our formal model is an extension of the Dolev-Yao model presented in [15]. A message
is abstracted into a term from an appropriate algebra, called a Dolev-Yao term [11],
and parties are restricted to performing only pairing, encryption, decryption, and re-
encryption operations. There are two kinds of parties: honest participants and an active
and adaptive adversary. The honest participants follow a protocol without deviation,
and can run multiple sessions of the protocol simultaneously.

The communications between parties are under the control of the adversary. In the
same way as in [15], we model the adversary as the communication channel, and assume
that the adversary can record, delete, replay, and reorder messages. Each execution of a
protocol is defined as an alternating finite sequence of the adversary’s messagesqi and
honest participants’ messagesr i : r0, q1, r1, q2, · · · , rn−1, qn, rn. We assume that the
adversary receives the initial knowledger0 before executing the protocol, and that each
adversary’s messageqi must be derivable fromr0, r1, · · · , r i−1, nonces, and random-
nesses. Although the analysis of a security protocol in this model must take account of
all non-deterministic choices of the adversary’s messages, we do not present an analysis
method in the model.

This Dolev-Yao model is explained in detail in [15], and here we concentrate on
providing a formalization of a rerandomizable encryption scheme.

2.2 Terms

We define the following sets of atomic symbols, which are mutually exclusive:

– a setConstof constants, denoting plaintexts of messages for example,
– a setKpub of public key symbols,
– a setKsecof secret key symbols,
– a setNonceof nonce symbols, and
– a setRandof randomness symbols, denoting the randomnesses used in encryption.

We denote the secret key corresponding to a public keykpub by kpub, and the public
key corresponding to a secret keyksecby ksec. LetKadv ⊆ Ksecbe a finite set of the secret
keys of subverted participants.

Let Nonceuni be a set of the nonce symbols of honest participants,Nonceadv be a set
of the nonce symbols of the adversary, andNonce= Nonceuni ∪ Nonceadv.

Let Randuni be a set of the randomness symbols denoting uniform randomnesses
used only in honest participants’ probabilistic encryptions,Randadv be a set of the
randomness symbols used in the adversary’s probabilistic encryptions, andRand =
Randuni ∪ Randadv. For a setX, let FMulti(X) be the set of all the non-empty finite
multisets ofX’s elements. LetX1⊎ X2 be the disjoint union of two multisetsX1 andX2.

Using these atomic symbols, atermis constructed from a pairing⟨ , ⟩, encryption
{| |} , and re-encryption (| |) operations as follows:

Term∋ m ::= c | kpub | ksec | n | R | ⟨m, m⟩ | {|m|}Rkpub
| (|m|)R

kpub
,

wherec ∈ Const, kpub ∈ Kpub, ksec ∈ Ksec, n ∈ Nonce, and a non-empty finite multiset
R ∈ FMulti(Rand). Here the multisetR denotes the randomness composed of all the
randomnesses inR. We assume that the value of the composition of the randomnesses
in R is uniquely determined.

A term of the form⟨m1, m2⟩ denotes the pair of two messagesm1 andm2. A term
of the form{|m|}Rkpub

denotes the encryption of a messagem by a public keykpub and a

composed randomnessR. For example,{|m|}R⊎R′
kpub

denotes the encryption of a message
m by a public keykpub and the randomness composed ofR andR′. A term of the form
(|m|)R

kpub
denotes the re-encryption of a ciphertextmby a public keykpub and a composed

randomnessR. We sometimes abbreviate{|m|}{ r }kpub
and (|m|){ r }kpub

as{|m|}rkpub
and (|m|)r

kpub
,

respectively. We can derive a termm from {|m|}Rkpub
by decrypting{|m|}Rkpub

using the

corresponding secret keykpub.

2.3 Patterns

This section defines a patternpattern(m, T) for a termm and a setT ⊆ Ksec. The
intuitive meaning of a patternpattern(m, T) is the bit string distribution associated with
m from the viewpoint of the formal adversary with access to the secret keysT.

First, we introduce thetype treesof terms [17,15]. We abuse the notation and
use a type symbol as an atomic symbol of the same type. The type treetype(m) of
a term m is defined as follows:type(c) = Const if c ∈ Const, type(kpub) = Kpub

if kpub ∈ Kpub, type(ksec) = Ksec if ksec ∈ Ksec, type(n) = Nonce if n ∈ Nonce,
type(R) = FMulti(Rand) if R ∈ FMulti(Rand), type(⟨m1, m2 ⟩) = ⟨ type(m1), type(m2) ⟩,
type({|m|}Rkpub

) = {| type(m) |}FMulti(Rand)
Kpub

, andtype((|m|)R
kpub

) = (| type(m) |)FMulti(Rand)
Kpub

. For ex-

ample,type(⟨ c, {|n |}Rkpub
⟩) = ⟨Const, {|Nonce|}FMulti(Rand)

Kpub
⟩ holds.

Next, we define theundecryptable ciphertext symbol�
{| type(m) |}Rkpub for each cipher-

text {|m|}Rkpub
to introduce the pattern representing the distribution of the ciphertext that

the adversary cannot decrypt. Intuitively,�
{| type(m) |}Rkpub denotes a random message from

which the adversary cannot distinguish the ciphertext{|m|}Rkpub
whenR∩ Randuni , ∅

holds. The notation�
{| type(m) |}Rkpub implies that the encryption{|m|}Rkpub

reveals the public

keykpub and the length of the plaintextm. The setRof randomness symbols in�
{| type(m) |}Rkpub

is used to analyze the relations between probability distributions.
Finally, we define the pattern associated with a term.

Definition 1. A setPatternof patterns is defined by:

Pattern∋ m ::= c | kpub | ksec | n | R | ⟨m, m⟩ | {|m|}Rkpub
| (|m|)R

kpub
| �{| type(m) |}Rkpub,

wherec ∈ Const, kpub ∈ Kpub, ksec ∈ Ksec, n ∈ Nonce, and a non-empty finite multiset
R ∈ FMulti(Rand).

Definition 2. For kpub ∈ Kpub, let Reenckpub be the minimum set of terms recursively
defined by:

– {|m|}Rkpub
∈ Reenckpub holds for anym ∈ Termand anyR ∈ FMulti(Rand).

– If mre ∈ Reenckpub holds, then (|mre |)R
kpub
∈ Reenckpub holds for anyR ∈ FMulti(Rand).

Note that eachm ∈ Reenckpub is generated by repeated encryption/re-encryption opera-
tions using the same public keykpub.

Definition 3. For a setT ⊆ Ksec, let T be the set{ ksec | ksec ∈ T }. For m ∈ Termand
T ⊆ Ksec, we define the setsF(m, T) andGi(m, T) of all the secret keys that the formal
adversary can learn fromm using the secret keys inT andGi−1(m, T), respectively.

– F(m, T) = T (if m ∈ Const∪ Kpub∪ Nonce∪ FMulti(Rand))
– F(ksec, T) = { ksec} ∪ T
– F(⟨m1, m2⟩, T) = F(m1, T) ∪ F(m2, T)

– F({|m|}Rkpub
, T) =

{
F(m, T) (if kpub ∈ T or R ∈ FMulti(Randadv))
T (otherwise)

– F((|m|)R
kpub
, T) =



F({|m′ |}R⊎R′
kpub
, T) (if R ∈ FMulti(Rand) \ FMulti(Randadv),

andm= {|m′ |}R′kpub
holds form′ ∈ Term

andR′ ∈ FMulti(Rand))
F((|m′ |)R⊎R′

kpub
, T) (if R ∈ FMulti(Rand) \ FMulti(Randadv),

andm= (|m′ |)R′
kpub

holds form′ ∈ Reenckpub

andR′ ∈ FMulti(Rand))
F(m, T) (otherwise)

– G0(m, T) = T
– Gi(m, T) = F(m, Gi−1(m, T))

We define the functionrecoverable: Term×P(Ksec)→ P(Ksec) that maps a termmand
a setT ⊆ Ksec to the set of all the secret key symbols recoverable frommby usingT.

– recoverable(m, T) = G|m|(m, T)

We define the functionpat: Term× P(Ksec) → Pattern that maps a termt and a set
T ⊆ Ksec to t’s pattern with respect toT.

– pat(m, T) = m (if m ∈ Const∪ Kpub∪ Ksec∪ Nonce∪ FMulti(Rand))
– pat(⟨m1, m2⟩, T) = ⟨pat(m1, T), pat(m2, T)⟩

– pat({|m|}Rkpub
, T) =

 {| pat(m, T) |}Rkpub
(if kpub ∈ T or R ∈ FMulti(Randadv))

�
{| type(m) |}Rkpub (otherwise)

– pat((|m|)R
kpub
, T) =



pat({|m′ |}R⊎R′
kpub
, T) (if R ∈ FMulti(Rand) \ FMulti(Randadv),

andm= {|m′ |}R′kpub
holds form′ ∈ Term

andR′ ∈ FMulti(Rand))
pat((|m′ |)R⊎R′

kpub
, T) (if R ∈ FMulti(Rand) \ FMulti(Randadv),

andm= (|m′ |)R′
kpub

holds form′ ∈ Reenckpub

andR′ ∈ FMulti(Rand))
(| pat(m, T) |)R

kpub
(otherwise)

Let pattern: Term× P(Ksec)→ Patternbe the function defined by:
pattern(m, T) = pat(m, recoverable(m, T)).

In the above definition,pattern(m, T) represents the information that the formal
adversary can obtain from the messagem using the decryption keys inT. We assume
that the formal adversary can see any messages encrypted using a non-uniform ran-
domness. We also assume that he can see the messagec in a re-encryption (| c |)R

kpub
if

c is not a valid encryption usingkpub. In addition, the above definition reflects that the
re-encryption of a ciphertext{|m|}R′kpub

by the same public keykpub and a randomnessR

produces the ciphertext{|m|}R⊎R′
kpub

using the randomness composed ofR andR′.

2.4 Acyclicity and Freshness Assumption

First, we introduce a subterm relation. Given a termm, the setSubTerm of all the
subterms ofm is recursively defined as follows:SubTerm(m) = {m} if m ∈ Const∪
Kpub ∪ Ksec∪ Nonce∪ Rand, SubTerm(m) = {m} ∪ SubTerm(m1) ∪ SubTerm(m2) if
m= ⟨m1, m2⟩, andSubTerm(m) = {m}∪SubTerm(m′) if m= {|m′ |}Rkpub

or m= (|m′ |)R
kpub

.
For two termmandm′, we writem′ ⊑ m if m′ ∈ SubTerm(m).

Next, we define the acyclicity of terms in a similar way to that in [2,12].

Definition 4. A secret key symbolk encryptsa secret key symbolk′ in a termm if
{|m′ |}R

k
⊑ m andk′ ⊑ m′ hold for someR ∈ FMulti(Rand). A term isacyclic if there is

no sequencek1, k2, · · · , kn, kn+1 = k1 of secret key symbols such thatki encryptski+1

in m for each 1≤ i ≤ n.

The acyclicity of terms is necessary for us to obtain the soundness theorem.
Then, we define the independence of a uniform randomness symbol.

Definition 5. A uniform randomness symbolr ∈ Randuni is independentin a setS of
terms if there exist a unique multisetR ∈ FMulti(Rand) such that

– r ∈ R holds,
– R occurs in somem ∈ S, and
– r < R′ holds for everyR′ ∈ FMulti(Rand) occurring in somem′ ∈ S with R′ , R.

r ∈ Randuni is independentin a termm if it is independent in{m}.

Intuitively, if an independent randomnessr ∈ Randuni is used in an honest partici-
pant’s probabilistic encryption/re-encryption, then it is not used in another encryption/
re-encryption. For example, letS be the set{ {| c1 |}r1

k , {| c1 |}{ r1, r2 }
k , {| c2 |}r3

k , (| {| c2 |}r3

k |)
r4

k } for
r1, r2, r3, r4 ∈ Randuni. While r2, r3, andr4 are independent inS, r1 is not independent.

Finally, we introduce the following freshness assumption.

Definition 6. A multisetR ∈ FMulti(Rand) encryptsa termm′ in a termm if {|m′ |}Rkpub
⊑

m holds for some public key symbolkpub. A multiset R ∈ FMulti(Rand) re-encrypts
a termm′ in a termm if (|m′ |)R

kpub
⊑ m holds for some public key symbolkpub. A

termm satisfies the freshness assumptionif it holds that for eachR ∈ FMulti(Rand) \
FMulti(Randadv) occurring inm, there exist

– a unique termm′ such that every occurrence ofRencrypts/re-encryptsm′ in m, and
– a uniform randomness symbolr ∈ R∩ Randuni independent inm.

Intuitively, the former condition represents the fact that

– no honest participant uses the same composed randomnessR to encrypt/re-encrypt
another message, and that

– no honest participant uses the randomnesses inRanduni except when employing
them as the randomnesses in probabilistic encryptions/re-encryptions, that is, no
uniform randomness symbols inRanduni are used as plaintexts or keys inm.

The latter condition represents the fact that

– every randomnessR used in an honest participant’s encryption/re-encryption is
composed of at least one independent and uniform randomnessr which he never
uses in another encryption/re-encryption.

For example, forc1, c2 ∈ Const, k ∈ Kpub, r1, r2 ∈ Randuni and radv ∈ Randadv,
the following four terms do not satisfy the freshness assumption:⟨{| c1 |}{ r1 }

k , {| c2 |}{ r1 }
k ⟩,

{| r1 |}{ r2 }
k , ⟨{| c1 |}{ r1 }

k , {| c1 |}{ r1, r2 }
k ⟩, and ⟨{| c1 |}{ r1 }

k , {| c1 |}{ r1, radv }
k ⟩. If two multisetsR, R′ ∈

FMulti(Rand) with R (R′ occur in a termm, thenm does not satisfy the freshness
assumption. Note that the freshness assumption allows honest participants to copy any
ciphertexts.

Hereafter, we deal only with acyclic terms that satisfy the freshness assumption.

2.5 Observational Equivalence

This section defines the renaming of patterns and the observational equivalence of
terms.

First, we introduce several notations and the renaming for atomic symbols.

Definition 7. Given T ⊆ Ksec, let AtomT = (Kpub \ T) ∪ (Ksec \ T) ∪ Nonceuni ∪
(FMulti(Rand) \ FMulti(Randadv)). GivenP ∈ Pattern, let AtomT(P) be the following set:
{P′ ∈ AtomT | P′ occurs inP }.

Definition 8. Given P ∈ Pattern and T ⊆ Ksec, a functionσ is a renaming for the
atomic symbols in P except for Tif it is a type-preserving injection fromAtomT(P) to
AtomT such thatσ(k) = k′ if and only if σ(k) = k′ for anyk, k′ ∈ Kpub \ T.

Next, we define the renaming of a pattern.

Definition 9. Given a patternP ∈ Patternand a renamingσ for the atomic symbols in
P except forT ⊆ Ksec, we writeσ̃P to represent the pattern obtained by replacing each
occurrence ofQ ∈ AtomT(P) in P with σ(Q).

Finally, we define the observational equivalence of terms.

Definition 10. Two termsm andm′ areobservationally equivalent, written asm� m′,
if there exists a renamingσ for the atomic symbols inpattern(m′, Kadv) except forKadv

such thatpattern(m, Kadv) = σ̃ pattern(m′, Kadv).

Example 1.Let k, k1, k2 ∈ Kpub \ Kadv andr1, r2 ∈ Randuni.
– {|m|}{ r1 }

k � {|m|}{ r1, r2 }
k � (| {|m|}r1

k |)
r2

k
This represents the fact that the re-encryption operation using the same public key
k and a uniform randomnessr2 does not change the probability distribution. Note
that we can prove this by employing a renamingσ satisfyingσ({ r1, r2 }) = { r1 }.

– {|m|}r1
k � {|m|}

r2
k but ⟨{|m|}r1

k , {|m|}
r1
k ⟩ � ⟨{|m|}

r1
k , {|m|}

r2
k ⟩

This represents the fact that the formal adversary can recognize the repetition of the
same ciphertext bit strings. Note that no renamingσ satisfies bothσ({ r1 }) = { r1 }
andσ({ r2 }) = { r1 }. In general, our observational equivalence of patterns can deal
with the relations of probability distributions unlike [2], because of our definition
of the renaming.

– {|m|}r1
k � {|m|}

{ radv, r1 }
k � (| {|m|}radv

k |)r1

k (radv ∈ Randadv)
This represents the fact that the re-encryption of the adversary’s ciphertext{|m|}radv

k
using a uniform randomnessr1 produces a uniformly random ciphertext. Note that
there exists a renamingσ satisfyingσ({ radv, r1 }) = { r1 }.

– ⟨{|m|}r1
k , {|m|}

r2
k ⟩ � ⟨{|m|}

r1
k , (| {|m|}

r1
k |)

radv

k ⟩ (radv ∈ Randadv)
This represents the fact that the adversary can recognize the re-encryption using the
adversary’s randomnessradv because he has performed the re-encryption. Note that
we havepattern(⟨{|m|}r1

k , {|m|}
r2
k ⟩, ∅) = ⟨�{| type(m) |}r1k , �{| type(m) |}r2k ⟩ but pattern(⟨{|m|}r1

k ,

(| {|m|}r1
k |)

radv

k ⟩, ∅) = ⟨�
{| type(m) |}r1k , (|�{| type(m) |}r1k |)radv

k ⟩.
– ⟨{|m|}r1

k1
, {|m|}r2

k1
⟩ � ⟨{|m|}r1

k1
, {|m|}r2

k2
⟩

This represents the fact that the formal rerandomizable encryption schemes in this
paper do not satisfy receiver anonymity [19], i.e., the key-privacy [4] or which-key
concealing [2] of rerandomizable encryption schemes.

3 Computational Model

This section introduces the notion of computational indistinguishability, a computa-
tional rerandomizable encryption scheme, and its security definitions.

3.1 Preliminaries

In a computational setting, messages are bit strings and adversaries are probabilistic
polynomial-time (PPT) algorithms that input and output bit strings. We denote the set
of all bit strings byString, and the length of a bit stringx by |x|. The computational
security of cryptographic schemes is defined in terms of the notion of aprobability
ensembleover bit strings, which is a sequence{Dη}η of probability distributionsDη
over bit strings indexed by a security parameterη.

We use the following indistinguishability of probability ensembles as a security
definition in the computational setting. We writed ← Dη to indicate thatd is sampled
from a probability distributionDη, and write Pr[d ← Dη : E] for the probability of an
eventE whend is sampled fromDη. We abuse the notation and writed← X to indicate
thatd is sampled from the uniform distribution on a setX. A function f from integers
to real numbers isnegligiblein a security parameterη if for every c > 0 there exists an
integerηc such thatf (η) ≤ η−c holds for anyη ≥ ηc.

Definition 11. Two probability ensembles{Dη}η and{D′η}η arecomputationally indis-
tinguishablewith respect to an oracleO, written Dη ≈O D′η if for every PPT adver-
saryA,

Pr[d← Dη : AO(·)(d, η) = 1] − Pr[d′ ← D′η : AO(·)(d′, η) = 1]

is negligible inη.

In the above definition, we assume that the PPT adversaryA can send a polynomial
number of queries to the oracleO.

3.2 Rerandomizable Encryption Scheme

We consider a rerandomizable encryption scheme where everyone can re-encrypt a ci-
phertext using a public key and a randomness. It is left to our future work to deal with
more complex rerandomizable encryption schemes using re-encryption keys generated
from secret keys, such as the proxy re-encryption scheme proposed in [5].

Let Parambe a set of security parameters,PubKeybe a set of computational pub-
lic keys,SecKeybe a set of computational secret keys,Plaintextbe a set of computa-
tional plaintexts, andRandombe a set of random bit strings used in encryptions and
re-encryptions. Let⊥ be the special bit string representing the failures of encryptions,
decryptions, and re-encryptions. We denote the secret key corresponding to a public key
pk by pk, and the public key corresponding to a secret keyskby sk.

Definition 12. A computationalrerandomizable encryption schemeis a quintuple (G,
E, D, R, CMP) consisting of the following five algorithms:

– a key generation algorithmG : Param×Random→ PubKey×SecKeythat outputs,
given a security parameterη and a randomnessr, a public key and secret key pair
(pk, sk).

– an encryption algorithmE : PubKey×String×Random→ Cipher∪{⊥} that outputs,
given a public keypk, a bit stringx, and a randomnessr, the encryption ofx using
pk andr, or the failure message⊥.

– a decryption algorithmD : SecKey× String→ Plaintext∪ {⊥} that outputs, given
a secret keysk and a bit stringx, the decryption ofx usingsk, or the failure mes-
sage⊥.

– a re-encryption algorithmR : PubKey× String× Random→ Cipher∪ {⊥} that
outputs, given a public keypk, a bit stringx, and a randomnessr, the re-encryption
of x usingr, or the failure message⊥.

– a randomness-composition algorithmCMP : FMulti(Random) → Randomthat
outputs the composition of a given finite multiset of randomnesses. We assume
that the bit string representing the composition of a multiset of randomnesses is
uniquely determined if the multiset is fixed.

We assume that the lengths of the outputs from these algorithms depend only on those
of the inputs. These algorithms satisfy the following properties for anypk ∈ PubKey,
sk= pk, anyr, r ′ ∈ Random, anyR1, R2, R3 ∈ FMulti(Random), and anyx ∈ String.

– D(sk, E(pk, x, r)) =

{
x (if x ∈ Plaintext)
⊥ (otherwise)

– R(pk, E(pk, x, r), r ′) = E(pk, x, CMP({ r, r ′ }))
– CMP(CMP(R1 ⊎ R2) ⊎ R3) = CMP(R1 ⊎ CMP(R2 ⊎ R3))

To obtain soundness results for the schemes such that the composition of a multiset of
randomnesses is not uniquely determined, it is sufficient to use sequences of random-
ness symbols instead of multisets of randomness symbols.

3.3 Security Definitions of Rerandomizable Encryption Schemes

We define the IND-RCCA security of the rerandomizable encryption scheme.

Definition 13. Let η be a security parameter andRE = (G, E, D, R, CMP) be a reran-
domizable encryption scheme. For a PPT adversaryA, we define the advantageAdvRCCA

RE,A
as follows:

AdvRCCA
RE,A (η) = Pr [(pk, sk)← G(η);

(m0,m1)← AD1(·)(pk);
(m0 , m1 and|m0| = |m1|)

r ← Random;
b← { 0, 1 };
c :=E(pk, mb, r);
b′ ← AD2(·)(c) :
b′ = b] − 1

2 ,

where
D1(x) =D(sk, x) and D2(x) =

{
D(sk, x) (D(sk, x) , m0, m1)
test (otherwise)

A rerandomizable encryption schemeRE is IND-RCCA secureif the advantageAdvRCCA
RE,A

is negligible inη for every PPT adversaryA.

The notion “RCCA”, or Replayable CCA, was proposed by Canetti et al. [6] as a
relaxation of CCA2 security. Although this security is strictly weaker than CCA2, it is
believed to be a necessary and sufficient formalization of “secure encryption” from the
applicational point of view [3]. Groth [14] first proposed a rerandomizable encryption
scheme satisfying a weaker form of RCCA security, and another scheme satisfying
RCCA security in the generic groups model. Prabhakaran and Rosulek [19] improved
this rerandomizable scheme to achieve RCCA security in a standard model, and Xue
and Feng [21] proposed a more efficient scheme that also achieves receiver anonymity.
There are notions similar to IND-RCCA: “benign malleability” [20], “loose ciphertext-
unforgeability” [16], and “generalized CCA security” [3].

Finally, we define the notion ofrandomness-preservingcomposition, because IND-
RCCA security cannot describe the security property whereby the re-encryption algo-
rithmR fully rerandomizes input ciphertexts.

Definition 14. Let η be a security parameter andRE = (G, E, D, R, CMP) be a
rerandomizable encryption scheme. The randomness composition algorithmCMP is
randomness-preservingif it holds for everyr, r0, r1 ∈ Randomthat

1. Pr[x0← Random: CMP({ x0, r }) = r1] = Pr[x0 ← Random: x0 = r1]
2. Pr[x0← Random: x0 = r0 ∧ CMP({ x0, r }) = r1]

= Pr[x0← Random: x0 = r0] · Pr[x0 ← Random: CMP({ x0, r }) = r1].

By Lemma 1 of [21], if CMP is randomness-preserving, thenRE is perfectly reran-
domizable [19], which is a security notion of the re-encryption operationR.

4 Encoding

This section introduces an encoding that maps patterns to distributions over bit strings.
The definition of the encoding is standard [2,12], but we take the composed randomness
into account.

First, we define the set of the symbols that should be encoded using random bit
strings.

Definition 15. For a term/patternm, let RS(m) be the set of atomic symbols:

RS(m) = {m′ ∈ Kpub∪ Nonce| m′ occurs inm} ∪ { ksec | ksec∈ Ksec, ksecoccurs inm}
∪ { r ∈ R | R ∈ FMulti(Rand), R occurs inm}.

For a setS of terms/patterns, letRS(S) be the set
⋃

m∈S RS(m).

Next, we define the setCoinsℓ of functions each of which encodes the randomness
used to encode key/nonce/random symbols.

Definition 16. For a setX of atomic symbols, letCoinsℓ(X) be the set:{ t : X→ {0, 1 }ℓ }.
Each functiont ∈ Coinsℓ(RS(m)) maps each key/nonce/randomness symbolx in m to a
random bit string used to encodex. For example, for a public key symbolkpub occurring
in m, t(kpub) is the random bit string that is used to generate the public key bit string
denoted bykpub. Hereafter we sometimes omit the lengthℓ from the notation whenℓ is
a polynomial in the security parameterη such thatt ∈ Coinsℓ(X) is sufficient to encode
all the key/nonce/randomness symbols inX.

Then, we define the algorithms used in the encoding of terms/patterns. LetRE =
(G, E, D, R, CMP) be a rerandomizable encryption scheme. We useG to encode pub-
lic and secret key symbols,E to encode encryptions,R to encode re-encryptions, and
CMP to encode a set of randomness symbols. We also use the following algorithms.

Definition 17. – A constant encoderC is a deterministic algorithm that outputs a
fixed bit string corresponding to a given constantc in Const.

– A nonce encoderN is an algorithm that outputs, given a randomnesst(n) for some
n ∈ Nonce, a bit string uniformly and randomly selected from{0, 1 }poly(η), where
poly(η) is a fixed polynomial inη.

– A type encoderT is an algorithm that outputs a fixed bit string of the same length
as the encoding of the termm for an inputtype(m), such as an all-zero string of the
same length.

– A nonce distribution Dnonce is an algorithm that outputs, given a random bit string,
a bit string used as the adversary’s nonce.

– A randomness distribution Drand is an algorithm that outputs, given a random bit
string, a bit string used as the adversary’s randomness for probabilistic encryptions
and re-encryptions.

We assume that each of these algorithms outputs bit strings of the same length for inputs
of the same length. LetI = ⟨RE, C, N , T , Dnonce, Drand⟩.

Finally, we define the encoding of terms/patterns. We abuse the notations and use
⟨ ·, · ⟩ to represent the concatenation of bit strings. Letfstandsndbe the two algorithms
that map a concatenation of bit strings to the first and second component, respectively.

Definition 18. Let ebe a function from some setdom(e) of terms/patterns to bit strings,
η be a security parameter, andt ∈ Coins(RS(m) \ dom(e)). Theencoding[[m]]e, t

η,I of a
term/patternm is recursively defined as follows:

if m ∈ Dom(e),

then [[m]]e, t
η,I = e(m)

else [[c]]e, t
η,I = ⟨C(c), “Const”⟩

[[kpub]]e, t
η,I = ⟨fst(G(η, t(kpub))), “PubKey”⟩

[[ksec]]
e, t
η,I = ⟨snd(G(η, t(ksec))), “SecKey”⟩

[[n]]e, t
η,I =

{
⟨Dnonce(N(η, t(n))), “Nonce”⟩ (if n ∈ Nonceadv)
⟨N(η, t(n)), “Nonce”⟩ (otherwise)

[[{ r }]]e, t
η,I =

{
⟨Drand(t(r)), “Rand”⟩ (if r ∈ Randadv)
⟨t(r), “Rand”⟩ (otherwise)

[[R]]e, t
η,I = ⟨CMP({ fst([[{ r }]]e, t

η,I) | r ∈ R}), “Rand”⟩
[[⟨m1, m2⟩]]e, t

η,I = ⟨⟨[[m1]]e, t
η,I, [[m2]]e, t

η,I⟩, “pair” ⟩
[[{|m|}Rk]]e, t

η,I = ⟨E(fst([[k]]e, t
η,I), [[m]]e, t

η,I, fst([[R]]e, t
η,I)), fst([[k]]e, t

η,I), “enc”⟩
[[(|m|)R

k]]e, t
η,I = ⟨R(fst([[k]]e, t

η,I), fst([[m]]e, t
η,I), fst([[R]]e, t

η,I)), fst([[k]]e, t
η,I), “enc”⟩

[[�{| type(m) |}Rk]]e, t
η,I = ⟨E(fst([[k]]e, t

η,I), T (type(m)), fst([[R]]e, t
η,I)), fst([[k]]e, t

η,I), “enc”⟩

wherec ∈ Const, kpub ∈ Kpub, ksec∈ Ksec, n ∈ Nonce, andr ∈ Rand, R ∈ FMulti(Rand).
For any patternmand any security parameterη, the encoding [[m]]e

η,I is the probability

distribution { t ← Coins(RS(m) \ dom(e)) : [[m]]e, t
η,I }. We omit e whendom(e) = ∅.

WhenDom(e) = { x1, x2, · · · , xn } andyi = e(xi) for each 1≤ i ≤ n, we sometimes
write [x1 7→ y1, x2 7→ y2, · · · , xn 7→ yn] instead ofe. Hereafter we omitI from the
notations, and abbreviate [[{ r }]]e, t

η,I as [[r]]e, t
η .

In the above definition, each encoding is followed by a type tag representing one of the
bit string types “Const”, “PubKey”, “SecKey”, “Nonce”, or “Random” and the bit string
operation types “pair” and “enc”. The algorithmfst is used to remove type tags, and we
omit fst for readability hereafter. A ciphertext bit string contains the public key used to
generate the ciphertext. We introduce the algorithmPK that outputs the public keypk
from a given encryption usingpk. PK satisfies the equation:PK(⟨E([[k]]e, t

η , [[m]]e, t
η ,

[[R]]e, t
η), [[k]]e, t

η , “enc”⟩) = [[k]]e, t
η .

Note that [[m]]e, t
η is a unique bit string, becauset ∈ Coins(RS(m) \ dom(e)) deter-

mines all the randomnesses inm.

5 Soundness

5.1 Abadi-Rogaway Indistinguishability

First, we define a functionundecτ that maps a bit string to a set of undecryptable bit
strings. Intuitively, given an encodingµ of a termM and a setτ of encodings of a set

T ⊆ Ksec, x ∈ undecτ(µ) is an encoding of an undecryptable message inpattern(M, T).

Definition 19. Let µ be a bit string, andτ be a set of computational secret keys. Let
undecτ be the algorithm defined in Fig.1.

algorithm undecτ(µ)
SetB, B′ :={ µ };
do

B := B′;
B′ := ∅;
for eachb ∈ B

if b = ⟨b1, b2, “pair” ⟩
then B′ := B′ ∪ { b1, b2 };

if b = ⟨c, PK(c), “enc”⟩ and ⟨PK(c), “PubKey”⟩ ∈ τ
then B′ := B′ ∪ {D(PK(c), c) };

if b = ⟨c, PK(c), “enc”⟩ and ⟨PK(c), “SecKey”⟩ ∈ τ
then B′ := B′ ∪ {D(PK(c), c) };

otherwise
B′ := B′ ∪ { b };

while B′ , B;
return B′;

Fig. 1.Algorithm undecτ.

Roughly speaking,undecτ(µ) is the set of all the challenge ciphertexts, and is used to
specify the ciphertexts that cannot be decrypted by the decryption oracle in Defini-
tion 21.

Next, we define the setforbidη, t(M, T) of bit strings that is used in the oracle of
Definition21.

Definition 20. Let M ∈ TermandT ⊆ Ksec. Let forbidη, t(M, T) be the set:{
⟨pk, D(pk, y)⟩, ⟨pk, Type(D(pk, y))⟩

∣∣∣∣∣ y ∈ undec[[T]] t
η
([[M]] t

η),
pk= PK(y)

}
,

whereTypeis the algorithm defined byType([[m]] t
η) = T (type(m)) for everym ∈ Term.

Finally, we define a computational indistinguishability between the two probability
distributions each encoding a term. This indistinguishability is defined in the presence
of an active and adaptive PPT adversaryA, and is almost the same as that in [15] except
for the definition of the oracleOM,M′,T

η, t .

Definition 21. Let η be any security parameter,T be any finite set of secret key sym-
bols, andM andM′ be any two acyclic terms satisfying the freshness assumption and
M � M′. A rerandomizable encryption schemeRE providesAbadi-Rogaway RCCA
indistinguishabilityif for every PPT adversaryA, it holds that

[[M]] η ≈OM,M′ ,T
η, t

[[M′]] η,

that is, the advantageAdvAR−RCCA
RE,A defined below is negligible inη.

AdvAR−RCCA
RE,A (η) = Pr[t ← Coins(M), d← [[M]] t

η : AOM,M′ ,T
η, t (·, ·)(d, η) = 1]

−Pr[t ← Coins(M′), d← [[M′]] t
η : AOM,M′ ,T

η, t (·, ·)(d, η) = 1]

OM,M′ ,T
η, t (pk, x) =



D(pk, x) (if either
(i) pk ∈ [[K]] t

η for someK ∈ T, or
(ii) (a) pk ∈ [[K]] t

η for someK ∈ Kpub \ T,
(b) ⟨pk, D(pk, x)⟩ < forbidη,t(M, T),
and
(c) ⟨pk, D(pk, x)⟩ < forbidη,t(M

′, T))
⊥ (if pk < [[K]] t

η for anyK ∈ Kpub)
test (otherwise)

In this definition, the adversaryA can learn some relations between plaintexts and
their encryptions by having access to the oracleOM,M′,T

η, t . As opposed to the access to
D1 andD2 in Definition13, the adversaryA needs to send a public keypk to the oracle
OM,M′,T
η, t to specify the corresponding secret keypk used for the decryption, because

two messagesM, M′, and their patterns can be thought of as many possible different
challenge ciphertexts under many possible different keys.

The oracleOM,M′,T
η, t is similar to that in [15] except that the two setsforbidη, t(M, T)

andforbidη, t(M
′, T) are used to determine whether or notOM,M′,T

η, t returns the decryp-

tion of x to the adversaryA. The challenge ciphertexts that the oracleOM,M′,T
η, t should not

decrypt are those encryptions that the decryption oracleD2 is not allowed to decrypt in
the IND-RCCA game. They are either undecryptable ciphertextsE(pk, m, r) derivable
from [[M]] t

η or [[M′]] t
η, or the corresponding encryptionsE(pk, Type(m), r). Therefore,

forbidη, t(M, T) ∪ forbidη, t(M
′, T) specifies the set of all the challenge ciphertexts that

OM,M′,T
η, t should not decrypt.

5.2 Soundness of Formal Rerandomizable Encryption

We obtain the following soundness theorem.

Theorem 1. LetRE be an IND-RCCA secure rerandomizable encryption scheme with
a randomness-preserving compositionCMP. For any two acyclic termsM and M′

satisfying the freshness assumption,M � M′ implies [[M]] η ≈O
M,M′ ,Kadv
η, t

[[M′]] η.

Proof. By Lemmas1 and2 presented below, we have the following equation for some
renamingσ for the atomic symbols inpattern(M′, Kadv) except forKadv.

[[M]] η ≈O
M,M′ ,Kadv
η, t

[[pattern(M, Kadv)]] η = [[σ̃pattern(M′, Kadv)]] η

= [[pattern(M′, Kadv)]] η ≈O
M,M′ ,Kadv
η, t

[[M′]] η.

�

Lemma 1. Let M andM′ be any two acyclic terms satisfying the freshness assumption,
andT be any finite set of secret key symbols. LetRE = (G, E, D, R, CMP) be an
IND-RCCA secure rerandomizable encryption scheme whereCMP is randomness-
preserving. Then we have [[M]] η ≈OM,M′ ,T

η, t
[[pattern(M, T)]] η.

Proof. Suppose that there exists a PPT adversaryA with access toOM,M′,T
η, t who can

distinguish between samples from [[M]] η and [[pattern(M, T)]] η. Then we derive a
contradiction by using a hybrid argument similar to [2,15]. Between the two rowsM
andpattern(M, T), we create a new row for each encryption/re-encryption, so that two
consecutive rows differ only in one of the following cases:

(1) a single re-encryption (| (|P |)R′
K |)

R
K being replaced with (|P |)R⊎R′

K for P ∈ ReencK ,
R ∈ FMulti(Rand) \ FMulti(Randadv), andR′ ∈ FMulti(Rand),

(2) a single re-encryption (| {|P |}R′K |)
R
K being replaced with{|P |}R⊎R′

K for R ∈ FMulti(Rand)\
FMulti(Randadv) andR′ ∈ FMulti(Rand),

(3) a single encryption{|P |}RK being replaced with�{| type(P) |}RK for R ∈ FMulti(Rand) \
FMulti(Randadv) andK ∈ Kpub \ T.

Because of the definition of patterns, we obtain a sequence of rows:M = M0, M1, · · · ,
Mi , Mi+1, · · · , Mn = pattern(M, T) where for each 0≤ i < n, Mi andMi+1 are identical
except for one of the above cases. Unlike [2,15], it is necessary to consider cases(1)
and(2) that deal with re-encryption patterns. Furthermore, in case(3) we take account
of the condition with the randomnesses of probabilistic encryptions.

Example 2.For example, letM be the following sequence of terms, andT be the fol-
lowing set forc ∈ Const, k1, k2, k3, k4 ∈ Kpub, andR1, R2, R3, R4, R5, R6 ∈ Randuni.

M = {| c |}R2
k2
, {| {| c |}R2

k2
, {| c |}R6

k3
, k3 |}

R1

k1
, (| (| {| c |}R5

k4
|)R4

k4
|)
R3

k4

T = { k1 }

Here we have omitted parentheses for readability. We obtain the secret key symbols:

recoverable(M, T) = { k1, k3 }.

We obtain the sequence of rowsM = M0, M1, M2, M3, M4, M5 = pattern(M, T).

M0 = {| c |}R2
k2
, {| {| c |}R2

k2
, {| c |}R6

k3
, k3 |}

R1

k1
, (| (| {| c |}R5

k4
|)R4

k4
|)
R3

k4 (3) k2

M1 = �
{|Const|}R2

k2 , {| {| c |}R2
k2
, {| c |}R6

k3
, k3 |}

R1

k1
, (| (| {| c |}R5

k4
|)R4

k4
|)
R3

k4 (3) k2

M2 = �
{|Const|}R2

k2 , {|�{|Const|}R2
k2 , {| c |}R6

k3
, k3 |}

R1

k1
, (| (| {| c |}R5

k4
|)R4

k4
|)
R3

k4 (1) k4

M3 = �
{|Const|}R2

k2 , {|�{|Const|}R2
k2 , {| c |}R6

k3
, k3 |}

R1

k1
, (| {| c |}R5

k4
|)R3⊎R4

k4
(2) k4

M4 = �
{|Const|}R2

k2 , {|�{|Const|}R2
k2 , {| c |}R6

k3
, k3 |}

R1

k1
, {| c |}R3⊎R4⊎R5

k4
(3) k4

M5 = �
{|Const|}R2

k2 , {|�{|Const|}R2
k2 , {| c |}R6

k3
, k3 |}

R1

k1
, �{|Const|}R3⊎R4⊎R5

k4

SinceA can distinguish between [[M0]] η and [[Mn]] η, there exist two consecutive
rows Mi and Mi+1 such thatA can distinguish between [[Mi]] η and [[Mi+1]] η. Fix Mi

and Mi+1. Then the two rowsMi and Mi+1 are the same except for one of the above
three cases(1) - (3). In each case, we derive a contradiction.

(1) Consider the first case:Mi and Mi+1 are the same except that a re-encryption

(| (|P |)R′
K |)

R
K in Mi is replaced with (|P |)R⊎R′

K in Mi+1 for P ∈ ReencK . SinceP ∈ ReencK
holds, we obtain the following equation for everyt ∈ Coins(RS(Mi)):

R([[K]] t
η, R([[K]] t

η, [[P]] t
η, [[R′]] t

η), [[R]] t
η) = R([[K]] t

η, [[P]] t
η, CMP([[R]] t

η ⊎ [[R′]] t
η)

Therefore, we have [[Mi]] η = [[Mi+1]] η, which contradicts the assumption thatA can
distinguish [[Mi]] η and [[Mi+1]] η.

(2) Consider the second case:Mi and Mi+1 are the same except that a re-encryption

(| {|P |}R′K |)
R
K in Mi is replaced with{|P |}R⊎R′

K in Mi+1. We have the following equation for
everyt ∈ Coins(RS(Mi)):

R([[K]] t
η, E([[K]] t

η, [[P]] t
η, [[R′]] t

η), [[R]] t
η) = E([[K]] t

η, [[P]] t
η, CMP([[R]] t

η ⊎ [[R′]] t
η)

Therefore, we obtain [[Mi]] η = [[Mi+1]] η, which contradicts the assumption thatA can
distinguish [[Mi]] η and [[Mi+1]] η.

(3) Consider the third case:Mi andMi+1 are the same except that an encrypted message
{|P |}RK in Mi is replaced with�{| type(P) |}RK in Mi+1 for R ∈ FMulti(Rand) \FMulti(Randadv)
andK ∈ Kpub \ T.

Now we construct an adversaryA0 that breaks the IND-RCCA security of the reran-
domizable encryption schemeRE. The definition ofA0 is presented in Figs.2 and3.

Let (pk, sk) be a pair consisting of a public key and a secret key generated using
the key generation algorithmG. Because of the freshness assumption in Definition6,
we can take a randomness symbolr0 ∈ R∩ Randuni such thatr0 < R′ holds for every
R′ ∈ FMulti(Rand) occurring inMi with R′ , R. Note thatr0 does not occur inP.
Assume thatx0 ← Random. We treatpk and x0 as the encoding of the public key
symbolK and the randomness symbolr0, respectively.

AD1(·)
0 (pk)

t ← Coins(RS(Mi) \ {K, r0 });
m0 :=[[P]] [K 7→⟨pk, “PubKey′′⟩], t

η ;
m1 :=T (type(P));
return (m0, m1);

Fig. 2.The behavior ofA0 on inputpk.

AD2(·)
0 (c)

s:=[[Mi]]e, t
η ;

b′ ← A
̂

O
Mi ,Mi+1,T
η, t (pk, ·)(s, η);

return b′;

Fig. 3.The behavior ofA0 on inputc.

In Fig. 2, A0 receives the public keypk and generates two bit stringsm0 andm1 of
the same length.D1 is the decryption oracle defined in Definition13.

Then assume thatb ← { 0, 1 }, x :=CMP({ x0 } ⊎ { [[r ′]] t
η | r ′ ∈ R \ { r0 } }), and

c :=E(pk, mb, x). SinceCMP is randomness-preserving andx0 is selected indepen-
dently and uniformly,x is also independent and uniform. Therefore, we can usex as the
randomness of the probabilistic encryption generating the challenge ciphertextc in the
IND-RCCA game.

In Fig. 3, A0 receives the ciphertextc and guessesb by invoking the adversaryA
as a subroutine. Lete be the function [{|P |}RK 7→ ⟨c, pk, “enc”⟩, K 7→ ⟨pk, “PubKey”⟩],
andsbe the bit string [[Mi]]e, t

η . The adversaryA receivess from A0, and answers which
of the two distributions [[Mi]] η and [[Mi+1]] η s is sampled from. Note that we have the

equations: { t ← Coins(RS(Mi) \ {K, r0 }), b :=0,
pk← fst(G(η)), x0 ← Random

: [[Mi]]e, t
η

}
= [[Mi]] η{ t ← Coins(RS(Mi) \ {K, r0 }), b :=1,

pk← fst(G(η)), x0 ← Random
: [[Mi]]e, t

η

}
= [[Mi+1]] η

Here, e depends on the bitb, which was used to produce the challenge ciphertext
c :=E(pk, mb, x). SinceA can distinguish between [[Mi]] η and [[Mi+1]] η with non-
negligible probability,A0 can guess the bitb with non-negligible probability by re-
ceivingb′ from A. Hence,A0 breaks the IND-RCCA security. This contradicts the as-
sumption.

There remains a problem with the oracleOM,M′,T
η, t . Recall thatA uses the ora-

cleOM,M′,T
η, t defined in Definition21. Since the definition of IND-RCCA security allows

A0 to use only the decryption oraclesD1 and D2, we consider an algorithm̂OM,M′,T
η, t

that uses onlyD2 and simulates the oracleOM,M′,T
η, t . We assume that the adversaryA

uses the algorithm ̂OM,M′,T
η, t presented in Fig.4, instead of the oracleOM,M′,T

η, t . Note
thatA can efficiently decide⟨pk, D2(x)⟩ ∈ forbidη, t(M, T) ∪ forbidη, t(M

′, T) by com-
putingforbidden1D2(·)([[M]] t

η, [[M′]] t
η, D2(x), [[T]] t

η) in Fig. 5, and⟨pk′, D(sk′, x)⟩ ∈
forbidη, t(M, T)∪forbidη, t(M

′, T) by computingforbidden2([[M]] t
η, [[M′]] t

η, D(sk′, x),
[[T]] t

η, sk′) in Fig. 6. �

algorithm ̂OM,M′ ,T
η, t

D2(·)
(pk, x)

if pk, [[kpub0]] t
η

for any kpub0 ∈ Kpub

then return ⊥;
else ifkpub0 = K

then if ⟨pk, D2(x)⟩ ∈ forbidη,t(M, T)
or ⟨pk, D2(x)⟩ ∈ forbidη,t(M

′, T)
then return test;
else return D2(x);

else(pk′, sk′) :=G(η, t(kpub0));
if kpub0 ∈ T
then return D(sk′, x);
else if⟨pk′, D(sk′, x)⟩ ∈ forbidη,t(M, T)

or ⟨pk′, D(sk′, x)⟩ ∈ forbidη,t(M
′, T)

then return test;
else returnD(sk′, x);

Fig. 4.Algorithm ̂OM,M′,T
η, t

D2(·)
.

algorithm forbidden1D2(·)(s1, s2, µ, τ)
SetF := ∅
for eachy ∈ undecτ(s1) ∪ undecτ(s2)

F := F ∪ {D2(y) };
if µ ∈ F
then return “yes”;
else return “no”;

Fig. 5.Algorithm forbidden1D2(·).

algorithm forbidden2(s1, s2, µ, τ, sk′)
SetF := ∅
for eachy ∈ undecτ(s1) ∪ undecτ(s2)

F := F ∪ {D(sk′, y) };
if µ ∈ F
then return “yes”;
else return “no”;

Fig. 6.Algorithm forbidden2.

Lemma 2. Let RE = (G, E, D, R, CMP) be an IND-RCCA secure rerandomizable
encryption scheme whereCMP is randomness-preserving. LetM be any acyclic term
satisfying the freshness assumption, andT be any set of secret key symbols. Letσ be a
renaming for the atomic symbols inpattern(M,T) except forT such that ˜σ pattern(M,T)

= pattern(M′, T) for some acyclic termM′ satisfying the freshness assumption. Then
we have [[σ̃pattern(M, T)]] η = [[pattern(M, T)]] η.

Proof. Given a term/patternQ, let X(Q) = {R ∈ FMulti(Rand) \ FMulti(Randadv) |
R occurs inQ }. Let P = pattern(M, T). Letσ|X(P) be the renaming for the atomic sym-
bols in P such thatσ|X(P)(R) = σ(R) if R ∈ X(P) andσ|X(P)(Q) = Q otherwise. Let
σ|AtomT (P)\X(P) be the renaming for the atomic symbols inP such thatσ|AtomT (P)\X(P)(R)
= R if R ∈ X(P) andσ|AtomT (P)\X(P)(Q) = σ(Q) otherwise. Clearly, we have [[˜σP]] η =
[[σ̃|AtomT (P)\X(P) σ̃|X(P) P]] η and [[σ̃|AtomT (P)\X(P) σ̃|X(P) P]] η = [[σ̃|X(P) P]] η. Hence, it is
sufficient to prove [[σ̃|X(P) P]] η = [[P]] η.

Let t ∈ Coins(RS({M } ∪ T)). SinceM satisfies the freshness assumption, for each
R̃ ∈ X(M), there exists a uniform randomness symbol ˜r ∈ R̃∩Randuni that is independent
in M. Therefore, [[˜r]] t

η is a random bit string independently and uniformly selected from
Random. SinceCMP is randomness-preserving, for eachR̃ ∈ X(M), the randomness
[[R̃]] t

η composed of [[˜r]] t
η is also independent and uniform.

Let R1, R2, · · · , Rn be all the distinct finite multisets of randomness symbols in
X(P). It is immediate from Definition3 that for every 1≤ i ≤ n, there exist somẽRi1,
R̃i2, · · · , R̃ik ∈ FMulti(Rand) occurring inM for k ≥ 1 such thatRi = R̃i1⊎R̃i2⊎· · ·⊎R̃ik,

a term of the form (| · · · (| {|m|}R̃i1
k |)

R̃i2

k · · · |)
R̃ik

k
occurs inM, andR̃ik ∈ X(P). SinceCMP is

randomness-preserving and [[R̃ik]] t
η is independent and uniform, [[̃Ri]] t

η = CMP([[R̃i1⊎
R̃i2 ⊎ · · · ⊎ R̃ik−1]] t

η, [[R̃ik]] t
η) is also independent and uniform.

On the other hand, sinceσ|X(P) is injective,σ|X(P)(R1), σ|X(P)(R2), · · · , σ|X(P)(Rn)
are all the distinct multisets of randomness symbols inX(σ̃|X(P) P). Then, [[σ|X(P)(Ri)]] t

η

is independent and uniform, because ˜σ|X(P) P is also the pattern of some term satisfying
the freshness assumption.

Since both [[σ|X(P)(Ri)]] t
η and [[Ri]] t

η are independent bit strings uniformly dis-
tributed onRandomfor any 1≤ i ≤ n, we obtain [[σ̃|X(P) P]] η = [[P]] η. �

5.3 Example: Analysis of Simple Re-encryption Mixnet

We present an example of an analysis of a security protocol in our model.

Example 3.Consider a simple re-encryption mixnet protocol in which there are two
honest sendersX1 and X2, an honest mixnet serverY, and a formal adversaryA. We
assume that they all have a public keykpub ∈ Kpub, and that onlyY has the corresponding
secret keykpub.

First, eachXi encrypts a messageci ∈ Constusingkpub and a uniformly selected ran-
domnessr i ∈ Randuni. Next, eachXi sends the ciphertext{| ci |}r i

kpub
to the serverY. Then,

Y receives the two ciphertexts and re-encrypts them using the same public keykpub and
uniformly selected randomnessesr ′1, r ′2 ∈ Randuni. Finally, Y outputs (| {| c1 |}r1

kpub
|)r ′1

kpub

and (| {| c2 |}r2
kpub
|)r ′2

kpub

in a random order.

The sequence of the honest participants’ messages in this protocol is eitherM or M′.

M = {| c1 |}r1
kpub
, {| c2 |}r2

kpub
, (| {| ci |}r i

kpub
|)r ′ i

kpub

, (| {| c3−i |}r3−i

kpub
|)r ′3−i

kpub

M′ = {| c2 |}r2
kpub
, {| c1 |}r1

kpub
, (| {| c j |}r j

kpub
|)r ′ j

kpub

, (| {| c3− j |}r3− j

kpub
|)r ′3− j

kpub

Note thatM and M′ are acyclic and satisfy the freshness assumption. For these two
sequences of termsM andM′, we obtain the following two patterns.

pattern(M, ∅) = �{|Const|}r1kpub, �
{|Const|}r2kpub, �

{|Const|}{ ri , r
′
i }

kpub , �
{|Const|}{ r3−i , r

′
3−i }

kpub

pattern(M′, ∅) = �{|Const|}r2kpub, �
{|Const|}r1kpub, �

{|Const|}
{ r j , r

′
j }

kpub , �
{|Const|}

{ r3− j , r
′
3− j }

kpub

Since the uniform randomness symbolsr1, r2, r ′1, andr ′2 are independent inM′, there
exists a renamingσ such thatσ({ r j , r ′ j }) = { r i , r ′ i }, σ({ r3− j , r ′3− j }) = { r3−i , r ′3−i },
andσ({ r i }) = { r3−i } for i, j = 1, 2. Then we obtainpattern(M, ∅) = σ̃ pattern(M′, ∅),
that is,M � M′.

Assume that the rerandomizable encryption scheme used in this protocol satis-
fies IND-RCCA security and the randomness-preserving property. Letη be a secu-
rity parameter, and [[·]] η be the encoding that uses the scheme. SinceM and M′ are
acyclic and satisfy the freshness assumption, it follows from Theorem1 that we obtain
[[M]] η ≈OM,M′ , ∅

η, t
[[M′]] η. This implies that no active and adaptive PPT adversary can

identify the sender of each plaintextci . Hence, we obtain sender anonymity with this
simple re-encryption mixnet protocol in the computational sense.

6 Conclusion

We proposed a new formalization of a rerandomizable encryption scheme by using
Abadi-Rogaway-style formal patterns, and proved its computational soundness by using
IND-RCCA security and the randomness-preserving property. In the formalization, we
introduced a new method for dealing with composed randomnesses.

Our method of defining patterns using multisets is not limited to the formalization
of rerandomizable encryption schemes. We believe it is also useful in order to provide a
computationally sound formalization of other cryptographic primitives, such as thresh-
old cryptography and blind signature.

Acknowledgments

We thank Gergei Bana and the members of the Computing Theory Research Group at
NTT for their helpful suggestions. We also thank the reviewers for useful comments.

References

1. M. Abadi and J. J̈urjens. Formal eavesdropping and its computational interpretation. InTACS
’01: Proceedings of the 4th International Symposium on Theoretical Aspects of Computer
Software, pages 82–94, 2001.

2. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational
soundness of formal encryption).Journal of Cryptology, 15(2):103 – 127, 2002.

3. J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption. InTheory
and Application of Cryptographic Techniques, pages 83–107, 2002.

4. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key encryp-
tion. In ASIACRYPT ’01: Proceedings of the 7th International Conference on the Theory
and Application of Cryptology and Information Security, pages 566–582, 2001.

5. R. Canetti and S. Hohenberger. Chosen-ciphertext secure proxy re-encryption. InCCS ’07:
Proceedings of the 14th ACM Conference on Computer and Communications Security, pages
185–194. ACM, 2007.

6. R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing chosen-ciphertext security. In
CRYPTO, pages 565–582, 2003.

7. H. Comon-Lundh. Soundness of abstract cryptography lecture notes, 2007. Available at
http://www.lsv.ens-cachan.fr/˜comon/Soundness/.

8. V. Cortier, S. Delaune, and P. Lafourcade. A survey of algebraic properties used in crypto-
graphic protocols.JCS, 14(1):1–43, 2006.

9. V. Cortier, S. Kremer, R. K̈usters, and B. Warinschi. Computationally sound symbolic se-
crecy in the presence of hash functions. InFSTTCS, pages 176–187, 2006.

10. V. Cortier and B. Warinschi. Computationally sound, automated proofs for security proto-
cols. InESOP 2005, pages 157–171, 2005.

11. D. Dolev and A. Yao. On the security of public key protocols.IEEE Transactions on
Information Theory, 29(2):198–207, 1983.

12. F. D. Garcia and P. van Rossum. Sound computational interpretation of symbolic hashes
in the standard model. InAdvances in Information and Computer Security. International
Workshop on Security (IWSEC 2006), pages 33–47, 2006.

13. P. Golle, M. Jakobsson, A. Juels, and P. F. Syverson. Universal re-encryption for mixnets. In
CT-RSA, pages 163–178, 2004.

14. J. Groth. Rerandomizable and replayable adaptive chosen ciphertext attack secure cryptosys-
tems. InTCC, pages 152–170, 2004.

15. J. Herzog. A computational interpretation of Dolev-Yao adversaries.Theoretical Computer
Science, 340(1):57–81, 2005.

16. H. Krawczyk. The order of encryption and authentication for protecting communications
(or: How secure is SSL?). InCRYPTO, pages 310–331, 2001.

17. D. Micciancio and S. Panjwani. Adaptive security of symbolic encryption. InTCC 2005,
pages 169–187, 2005.

18. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active
adversaries. InTCC 2004, pages 133–151, 2004.

19. M. Prabhakaran and M. Rosulek. Rerandomizable RCCA encryption. InCRYPTO, pages
517–534, 2007.

20. V. Shoup. A proposal for an ISO standard for public key encryption. Input for Committee
ISO/IEC JTC 1/SC 27, 2001.

21. R. Xue and D. Feng. Toward practical anonymous rerandomizable RCCA secure encryp-
tions. InICICS, pages 239–253, 2007.

