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Abstract. We introduce a logical approach to formalizing statistical
properties of machine learning. Specifically, we propose a formal model
for statistical classification based on a Kripke model, and formalize vari-
ous notions of classification performance, robustness, and fairness of clas-
sifiers by using epistemic logic. Then we show some relationships among
properties of classifiers and those between classification performance and
robustness, which suggests robustness-related properties that have not
been formalized in the literature as far as we know. To formalize fair-
ness properties, we define a notion of counterfactual knowledge and show
techniques to formalize conditional indistinguishability by using counter-
factual epistemic operators. As far as we know, this is the first work that
uses logical formulas to express statistical properties of machine learning,
and that provides epistemic (resp. counterfactually epistemic) views on
robustness (resp. fairness) of classifiers.
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1 Introduction

With the increasing use of machine learning in real-life applications, the safety
and security of learning-based systems have been of great interest. In particular,
many recent studies [36, 8] have found vulnerabilities on the robustness of deep
neural networks (DNNs) to malicious inputs, which can lead to disasters in se-
curity critical systems, such as self-driving cars. To find out these vulnerabilities
in advance, there have been researches on the formal verification and testing
methods for the robustness of DNNs in recent years [22, 25, 33, 37]. However,
relatively little attention has been paid to the formal specification of machine
learning [34].

To describe the formal specification of security properties, logical approaches
have been shown useful to classify desired properties and to develop theories
to compare those properties. For example, security policies in temporal systems
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have been formalized as trace properties [1] or hyperproperties [9], which char-
acterize the relationships among various security policies. For another example,
epistemic logic [39] has been widely used as formal policy languages (e.g., for the
authentication [5] and the anonymity [35, 20] of security protocols, and for the
privacy of social network [32]). As far as we know, however, no prior work has
employed logical formulas to rigorously describe various statistical properties of
machine learning, although there are some papers that (often informally) list
various desirable properties of machine learning [34].

In this paper, we present a first logical formalization of statistical properties
of machine learning. To describe the statistical properties in a simple and ab-
stract way, we employ statistical epistemic logic (StatEL) [26], which is recently
proposed to describe statistical knowledge and is applied to formalize statistical
hypothesis testing and statistical privacy of databases.

A key idea in our modeling of statistical machine learning is that we formal-
ize logical properties in the syntax level by using logical formulas, and statisti-
cal distances in the semantics level by using accessibility relations of a Kripke
model [28]. In this model, we formalize statistical classifiers and some of their
desirable properties: classification performance, robustness, and fairness. More
specifically, classification performance and robustness are described as the dif-
ferences between the classifier’s recognition and the correct label (e.g., given by
the human), whereas fairness is formalized as the conditional indistinguishability
between two groups or individuals by using a notion of counterfactual knowledge.

Our contributions. The main contributions of this work are as follows:

– We show a logical approach to formalizing statistical properties of machine
learning in a simple and abstract way. In particular, we model logical prop-
erties in the syntax level, and statistical distances in the semantics level.

– We introduce a formal model for statistical classification. More specifically,
we show how probabilistic behaviors of classifiers and non-deterministic ad-
versarial inputs are formalized in a distributional Kripke model [26].

– We formalize the classification performance, robustness, and fairness of clas-
sifiers by using statistical epistemic logic (StatEL). As far as we know, this
is the first work that uses logical formulas to formalize various statistical
properties of machine learning, and that provides epistemic (resp. counter-
factually epistemic) views on robustness (resp. fairness) of classifiers.

– We show some relationships among properties of classifiers, e.g., different
strengths of robustness. We also present some relationships between classifi-
cation performance and robustness, which suggest robustness-related prop-
erties that have not been formalized in the literature as far as we know.

– To formalize fairness properties, we define a notion of certain counterfactual
knowledge and show techniques to formalize conditional indistinguishability
by using counterfactual epistemic operators in StatEL. This enables us to
express various fairness properties in a similar style of logical formulas.

Cautions and limitations. In this paper, we focus on formalizing properties of
classification problems and do not deal with the properties of learning algorithms
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(e.g., fairness through unawareness of sensitive attributes in data preparation),
quality of training data (e.g., sample bias), quality of testing (e.g., coverage cri-
teria), explainability, temporal properties, system level specification, or process
agility in system development. It should be noted that most of the properties
formalized in this paper have been known in literatures on machine learning,
and the novelty of this work lies in the logical formulation of those statistical
properties.

We also remark that this work does not provide methods for checking, guar-
anteeing, or improving the performance/robustness/fairness of machine learning.
As for the satisfiability of logical formulas, we leave the development of testing
and (statistical) model checking algorithms as future work, since the research
area on the testing and formal/statistical verification of machine learning is rela-
tively new and needs further techniques to improve the scalability. Moreover, in
some applications such as image recognition, some formulas (e.g., representing
whether an input image is panda or not) cannot be implemented mathemati-
cally, and require additional techniques based on experiments. Nevertheless, we
demonstrate that describing various properties using logical formulas is useful
to explore desirable properties and to discuss their relationships in a framework.

Finally, we emphasize that our work is the first attempt to use logical formu-
las to express statistical properties of machine learning, and would be a starting
point to develop theories of specification of machine learning in future research.

Paper organization. The rest of this paper is organized as follows. Section 2
presents background on statistical epistemic logic (StatEL) and notations used
in this paper. Section 3 defines counterfactual epistemic operators and shows
techniques to model conditional indistinguishability using StatEL. Section 4 in-
troduces a formal model for describing the behaviours of statistical classifiers
and non-deterministic adversarial inputs. Sections 5, 6, and 7 respectively for-
malize the classification performance, robustness, and fairness of classifiers by
using StatEL. Section 8 presents related work and Section 9 concludes.

2 Preliminaries

In this section we introduce some notations and recall the syntax and semantics
of the statistical epistemic logic (StatEL) introduced in [26].

2.1 Notations

Let R≥0 be the set of non-negative real numbers, and [0, 1] be the set of non-
negative real numbers not greater than 1. We denote by DO the set of all prob-
ability distributions over a set O. Given a finite set O and a probability distri-
bution µ ∈ DO, the probability of sampling a value y from µ is denoted by µ[y].
For a subset R ⊆ O we define µ[R] by: µ[R] =

∑
y∈R µ[y]. For a distribution µ

over a finite set O, its support is defined by supp(µ) = {v ∈ O : µ[v] > 0}.
The total variation distance of two distributions µ, µ′ ∈ DO is defined by:

Dtv(µ ‖ µ′)
def
= supR⊆O |µ(R)− µ′(R)| .
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2.2 Syntax of StatEL

We recall the syntax of the statistical epistemic logic (StatEL) [26], which has
two levels of formulas: static and epistemic formulas. Intuitively, a static formula
describes a proposition satisfied at a deterministic state, while an epistemic
formula describes a proposition satisfied at a probability distribution of states.
In this paper, the former is used only to define the latter.

Formally, let Mes be a set of symbols called measurement variables, and Γ be a
set of atomic formulas of the form γ(x1, x2, . . . , xn) for a predicate symbol γ, n ≥
0, and x1, x2, . . . , xn ∈ Mes. Let I ⊆ [0, 1] be a finite union of disjoint intervals,
and A be a finite set of indices (e.g., associated with statistical divergences).
Then the formulas are defined by:

Static formulas: ψ ::= γ(x1, x2, . . . , xn) | ¬ψ | ψ ∧ ψ
Epistemic formulas: ϕ ::= PI ψ | ¬ϕ | ϕ ∧ ϕ | ψ ⊃ ϕ | Ka ϕ

where a ∈ A. We denote by F the set of all epistemic formulas. Note that we have
no quantifiers over measurement variables. (See Section 2.4 for more details.)

The probability quantification PI ψ represents that a static formula ψ is sat-
isfied with a probability belonging to a set I. For instance, P(0.95,1] ψ represents
that ψ holds with a probability greater than 0.95. By ψ ⊃ PI ψ′ we represent
that the conditional probability of ψ′ given ψ is included in a set I. The epistemic
knowledge Ka ϕ expresses that we knows ϕ with a confidence specified by a.

As syntax sugar, we use disjunction ∨, classical implication →, and epistemic
possibility Pa, defined as usual by: ϕ0∨ϕ1 ::=¬(¬ϕ0∧¬ϕ1), ϕ0 → ϕ1 ::=¬ϕ0∨ϕ1,
and Pa ϕ ::= ¬Ka ¬ϕ. When I is a singleton {i}, we abbreviate PI as Pi.

2.3 Distributional Kripke Model

Next we recall the notion of a distributional Kripke model [26], where each
possible world is a probability distribution over a set S of states and each world
w is associated with a stochastic assignment σw to measurement variables.

Definition 1 (Distributional Kripke model). Let A be a finite set of indices
(typically associated with statistical tests and their thresholds), S be a finite set
of states, and O be a finite set of data. A distributional Kripke model is a tuple
M = (W, (Ra)a∈A, (Vs)s∈S) consisting of:

– a non-empty set W of probability distributions over a finite set S of states;
– for each a ∈ A, an accessibility relation Ra ⊆ W ×W;
– for each s ∈ S, a valuation Vs that maps each k-ary predicate γ to a set
Vs(γ) ⊆ Ok.

The set W is called a universe, and its elements are called possible worlds. All
measurement variables range over the same set O in every world.

We assume that each w ∈ W is associated with a function ρw : Mes×S → O
that maps each measurement variable x to its value ρw(x, s) observed at a state s.
We also assume that each state s in a world w is associated with the assignment
σs : Mes→ O defined by σs(x) = ρw(x, s).
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Since each world w is a distribution of states, we denote by w[s] the probabil-
ity that a state s is sampled from w. Then the probability that a measurement
variable x has a value v is given by σw(x)[v] =

∑
s∈supp(w),σs(x)=v w[s]. This

implies that, when a state s is drawn from w, an input σs(x) is sampled from
the distribution σw(x).

2.4 Stochastic Semantics of StatEL

Now we recall the stochastic semantics [26] for the StatEL formulas over a dis-
tributional Kripke model M = (W, (Ra)a∈A, (Vs)s∈S) with W = DS.

The interpretation of static formulas ψ at a state s is given by:

s |= γ(x1, x2, . . . , xk) iff (σs(x1), σs(x2), . . . , σs(xk)) ∈ Vs(γ)

s |= ¬ψ iff s 6|= ψ

s |= ψ ∧ ψ′ iff s |= ψ and s |= ψ′.

The restriction w|ψ of a world w to a static formula ψ is defined by w|ψ[s] =
w[s]∑

s′:s′|=ψ w[s′] if s |= ψ, and w|ψ[s] = 0 otherwise. Note that w|ψ is undefined if

there is no state s that satisfies ψ and has a non-zero probability in w.
Then the interpretation of epistemic formulas in a world w is defined by:

M, w |= PI ψ iff Pr
[
s

$← w : s |= ψ
]
∈ I

M, w |= ¬ϕ iff M, w 6|= ϕ

M, w |= ϕ ∧ ϕ′ iff M, w |= ϕ and M, w |= ϕ′

M, w |= ψ ⊃ ϕ iff w|ψ is defined and M, w|ψ |= ϕ

M, w |= Ka ϕ iff for every w′ s.t. (w,w′) ∈ Ra, M, w′ |= ϕ,

where s
$← w represents that a state s is sampled from the distribution w.

Then M, w |= ψ0 ⊃ PI ψ1 represents that the conditional probability of
satisfying a static formula ψ1 given another ψ0 is included in a set I at a world w.

In each world w, measurement variables can be interpreted using σw. This
allows us to assign different values to different occurrences of a variable in a
formula; E.g., in ϕ(x)→ Ka ϕ

′(x), x occurring in ϕ(x) is interpreted by σw in a
world w, while x in ϕ′(x) is interpreted by σw′ in another w′ s.t. (w,w′) ∈ Ra.

Finally, the interpretation of an epistemic formula ϕ in M is given by:

M |= ϕ iff for every world w in M, M, w |= ϕ.

3 Techniques for Conditional Indistinguishability

In this section we introduce some modal operators to define a notion of “coun-
terfactual knowledge” using StatEL, and show how to employ them to formalize
conditional indistinguishability properties. The techniques presented here are
used to formalize some fairness properties of machine learning in Section 7.
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3.1 Counterfactual Epistemic Operators

Let us consider an accessibility relation Rε based on a statistical divergence
D(· ‖ ·) : DO × DO → R≥0 and a threshold ε ∈ R≥0 defined by:

Rε
def
= {(w,w′) ∈ W ×W | D(σw(y) ‖ σw′(y)) ≤ ε} ,

where y is the measurement variable observable in each world in W. Intuitively,
(w,w′) ∈ Rε represents that the probability distribution σw(y) of the data y
observed in a world w is indistinguishable from that in another world w′ in
terms of D.

Now we define the complement relation of Rε by Rε
def
= (W×W)\Rε, namely,

Rε = {(w,w′) ∈ W ×W | D(σw(y) ‖ σw′(y)) > ε} .

Then (w,w′) ∈ Rε represents that the distribution σw(y) observed in w can be
distinguished from that in w′. Then the corresponding epistemic operator Kε,
which we call a counterfactual epistemic operator, is interpreted as:

M, w |= Kεϕ iff for every w′ s.t. (w,w′) ∈ Rε, we have M, w′ |= ϕ (1)

iff for every w′ s.t. M, w′ |= ¬ϕ, we have (w,w′) ∈ Rε. (2)

Intuitively, (1) represents that if we were located in a possible world w′ that
looked distinguished from the real world w, then ϕ would always hold. This
means a counterfactual knowledge1 in the sense that, if we had an observation
different from the real world, then we would know ϕ. This is logically equiva-
lent to (2), representing that all possible worlds w′ that do not satisfy ϕ look
indistinguishable from the real world w in terms of D.

We remark that the dual operator Pε is interpreted as:

M, w |= Pεϕ iff there exists a w′ s.t. (w,w′) /∈ Rε and M, w′ |= ϕ. (3)

This means a counterfactual possibility in the sense that it might be the case
where we had an observation different from the real world and thought ϕ possible.

3.2 Conditional Indistinguishability via Counterfactual Knowledge

As shown in Section 7, some fairness notions in machine learning are based on
conditional indistinguishability of the form (2), hence can be expressed using
counterfactual epistemic operators.

Specifically, we use the following proposition, stating that given that two
static formulas ψ and ψ′ are respectively satisfied in worlds w and w′ with
probability 1, then the indistinguishability between w and w′ can be expressed
as w |= ψ ⊃ ¬Pa P1 ψ

′. Note that this formula means that there is no possible
world where we have an observation different from the real world w (satisfying
ψ) but we think ψ′ possible; i.e., the formula means that if ψ′ is satisfied then
we have an observation indistinguishable from that in the real world w.

1 Our definition of counterfactual knowledge is limited to the condition of having an
observation different from the actual one. More general notions of counterfactual
knowledge can be found in previous work (e.g., [38]).
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Proposition 1 (Conditional indistinguishability) Let M = (W, (Ra)a∈A,
(Vs)s∈S) be a distributional Kripke model with the universe W = DS. Let ψ and
ψ′ be static formulas, and a ∈ A.

(i) M |= ψ ⊃ ¬Pa P1 ψ
′ iff for any w,w′ ∈ W, M, w |= P1 ψ and M, w′ |= P1 ψ

′

imply (w,w′) ∈ Ra.
(ii) If Ra is symmetric, then M |= ψ ⊃ ¬Pa P1 ψ

′ iff M |= ψ′ ⊃ ¬Pa P1 ψ.

See Appendix A for the proof.

4 Formal Model for Statistical Classification

In this section we introduce a formal model for statistical classification by us-
ing distributional Kripke models (Definition 1). In particular, we formalize a
probabilistic behaviour of a classifier C and a non-deterministic input x from an
adversary in a distributional Kripke model.

4.1 Statistical Classification Problems

Multiclass classification is the problem of classifying a given input into one of
multiple classes. Let L be a finite set of class labels, and D be a finite set of
input data (called feature vectors) that we want to classify. Then a classifier
is a function C : D → L that receives an input datum and predicts which
class (among L) the input belongs to. Here we do not model how classifiers are
constructed from a set of training data, but deal with a situation where some
classifier C has already been obtained and its properties should be evaluated.

Let f : D×L→ R be a scoring function that gives a score f(v, `) of predicting
the class of an input datum (feature vector) v as a label `. Then for each input
v ∈ D, we denote by H(v) = ` to represent that a label ` maximizes f(v, `). For
example, when the input v is an image of an animal and ` is the animal’s name,
H(v) = ` may represent that an oracle (or “human”) classifies the image v as `.

4.2 Modeling the Behaviours of Classifiers

Classifiers are formalized on a distributional Kripke model M = (W, (Ra)a∈A,
(Vs)s∈S) withW = DS and a real world wreal ∈ W. Recall that each world w ∈ W
is a probability distribution over the set S of states and has a stochastic assign-
ment σw : Mes → DO that is consistent with the deterministic assignments σs
for all s ∈ S (as explained in Section 2.3).

We present an overview of our formalization in Fig. 1. We denote by x ∈ Mes

an input datum given to the classifier C (and to the oracle H), by y ∈ Mes a
correct label given by the oracle H, and by ŷ ∈ Mes a label predicted by C. We
assume that the input variable x (resp. the output variables y, ŷ) ranges over the
set D of input data (resp. the set L of labels); i.e., the deterministic assignment
σs at each state s ∈ S has the range O = D ∪ L and satisfies σs(x) ∈ D and
σs(y), σs(ŷ) ∈ L.
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�
�

�
�

input

σs0 (x) -
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σs0 (ŷ)-Classifier
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σs1 (ŷ)-Classifier

C

··
·

··
·

World w

Fig. 1: A world w is chosen non-deterministically. With probability w[si], the
world w is in a deterministic state si where the classifier C receives the input
value σsi(x) and returns the output value σsi(ŷ).

A key idea in our modeling is that we formalize logical properties in the
syntax level by using logical formulas, and statistical distances in the semantics
level by using accessibility relations Ra. In this way, we can formalize various
statistical properties of classifiers in a simple and abstract way.

To formalize a classifier C, we introduce a static formula ψ(x, ŷ) to represent
that C classifies a given input x as a class ŷ. We also introduce a static formula
h(x, y) to represent that y is the actual class of an input x. As an abbreviation,
we write ψ`(x) (resp. h`(x)) to denote ψ(x, `) (resp. h(x, `)). Formally, these
static formulas are interpreted at each state s ∈ S as follows:

s |= ψ(x, ŷ) iff C(σs(x)) = σs(ŷ).

s |= h(x, y) iff H(σs(x)) = σs(y).

4.3 Modeling the Non-deterministic Inputs from Adversaries

As explained in Section 2.3, when a state s is drawn from a distribution w ∈ W,
an input value σs(x) is sampled from the distribution σw(x), and assigned to
the measurement variable x. Since x denotes the input to the classifier C, the
input distribution σw(x) over D can be regarded as the test dataset. This means
that each world w corresponds to a test dataset σw(x). For instance, σwreal

(x)
in the real world wreal represents the actual test dataset. The set of all possible

test datasets (i.e., possible distributions of inputs to C) is represented by Λ
def
=

{σw(x) | w ∈ W}. Note that Λ can be an infinite set.
For example, let us consider testing the classifier C with the actual test

dataset σwreal
(x). When C assigns a label ` to an input x with probability 0.2,

i.e., Pr
[
v

$← σwreal
(x) : C(v) = `

]
= 0.2, then this can be expressed by:

M,wreal |= P0.2 ψ`(x).
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We can also formalize a non-deterministic input x from an adversary in this
model as follows. Although each state s in a possible world w is assigned the
probability w[s], each possible world w itself is not assigned a probability. Thus,
each input distribution σw(x) ∈ Λ itself is also not assigned a probability, hence
our model assumes no probability distribution over Λ. In other words, we as-
sume that a world w and thus an adversary’s input distribution σw(x) are non-
deterministically chosen. This is useful to model an adversary’s malicious inputs
in the definitions of security properties, because we usually do not have a prior
knowledge of the distribution of malicious inputs from adversaries, and need to
reason about the worst cases caused by the attack. In Section 6, this formaliza-
tion of non-deterministic inputs is used to express the robustness of classifiers.

Finally, it should be noted that we cannot enumerate all possible adversarial
inputs, hence cannot constructW by collecting their corresponding worlds. Since
W can be an infinite set and is unspecified, we do not aim at checking whether
or not a formula is satisfied in all possible worlds of W. Nevertheless, as shown
in later sections, describing various properties using StatEL is useful to explore
desirable properties and to discuss relationships among them.

5 Formalizing the Classification Performance

In this section we show a formalization of classification performance using StatEL
(See Fig. 2 for basic ideas). In classification problems, the terms positive/negative
represent the result of the classifier’s prediction, and the terms true/false rep-
resent whether the classifier predicts correctly or not. Then the following termi-
nologies are commonly used:

(tp) true positive means both the prediction and actual class are positive;
(tn) true negative means both the prediction and actual class are negative;
(fp) false positive means the prediction is positive but the actual class is negative;
(fn) false negative means the prediction is negative but the actual class is positive.

These terminologies can be formalized using StatEL as shown in Table 1. For
example, when an input x shows true positive at a state s, this can be expressed
as s |= ψ`(x) ∧ h`(x). True negative, false positive (Type I error), and false
negative (Type II error) are respectively expressed as s |= ¬ψ`(x) ∧ ¬h`(x),
s |= ψ`(x) ∧ ¬h`(x), and s |= ¬ψ`(x) ∧ h`(x).

Then precision (positive predictive value) is defined as the conditional prob-
ability that the prediction is correct given that the prediction is positive; i.e.,
precision = tp

tp+fp . Since the test dataset distribution in the real world wreal is

expressed as σwreal
(x) (as explained in Section 4.3), the precision being within an

interval I is given by:

Pr
[
v

$← σwreal
(x) : H(v) = `

∣∣∣ C(v) = `
]
∈ I,

which can be written as:

Pr
[
s

$← wreal : s |= h`(x)
∣∣∣ s |= ψ`(x)

]
∈ I.
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Table 1: Logical description of the table of confusion
Actual class

positive negative Prevalence`,I(x)
def
= Accuracy`,I(x)

def
=

h`(x) ¬h`(x) PI(h`(x)) PI(ψ`(x)↔ h`(x))

Positive
prediction tp(x)

def
= fp(x)

def
= Precision`,I(x)

def
= FDR`,I(x)

def
=

ψ`(x) ψ`(x) ∧ h`(x) ψ`(x) ∧ ¬h`(x) ψ`(x) ⊃ PI h`(x) ψ`(x) ⊃ PI ¬h`(x)
Negative
prediction fn(x)

def
= tn(x)

def
= FOR`,I(x)

def
= NPV`,I(x)

def
=

¬ψ`(x) ¬ψ`(x) ∧ h`(x) ¬ψ`(x) ∧ ¬h`(x) ¬ψ`(x) ⊃ PI h`(x) ¬ψ`(x) ⊃ PI ¬h`(x)

Recall`,I(x)
def
= FallOut`,I(x)

def
=

h`(x) ⊃ PI ψ`(x) ¬h`(x) ⊃ PI ψ`(x)

MissRate`,I(x)
def
= Specificity`,I(x)

def
=

h`(x) ⊃ PI ¬ψ`(x) ¬h`(x) ⊃ PI ¬ψ`(x)

By using StatEL, this can be formalized as:

M,wreal |= Precision`,I(x) where Precision`,I(x)
def
= ψ`(x) ⊃ PI h`(x). (4)

Note that the precision depends on the test data sampled from the distribu-
tion σwreal

(x), hence on the real world wreal in which we are located. Hence the
measurement variable x in Precision`,I(x) is interpreted using the stochastic as-
signment σwreal

in the world wreal.
Symmetrically, recall (true positive rate) is defined as the conditional prob-

ability that the prediction is correct given that the actual class is positive; i.e.,
recall = tp

tp+fn . Then the recall being within I is formalized as:

Recall`,I(x)
def
= h`(x) ⊃ PI ψ`(x). (5)

In Table 1 we show the formalization of other notions of classification perfor-
mance using StatEL.

6 Formalizing the Robustness of Classifiers

Many studies have found attacks on the robustness of statistical machine learn-
ing [8]. An input data that violates the robustness of classifiers is called an
adversarial example [36]. It is designed to make a classifier fail to predict the
actual class `, but is recognized to belong to ` from human eyes. For example, in
computer vision, Goodfellow et al. [18] create an image by adding undetectable
noise to a panda’s photo so that humans can still recognize the perturbed image
as a panda, but a classifier misclassifies it as a gibbon.

In this section we formalize robustness notions for classifiers by using epis-
temic operators in StatEL (See Fig. 2 for an overview of the formalization).
In addition, we present some relationships between classification performance
and robustness, which suggest robustness-related properties that have not been
formalized in the literature as far as we know.
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Real world wreal

Possible world w′

dataset

σwreal(x)

σw′(x)

Oracle
(human)

H
`input

output

sampling

σs(x)
Classifier

C `

sampling

σs′(x)
Classifier

C `

RD
ε Robustness

Performance

Fig. 2: The classification performance compares the conditional probability of
the human H’s output with that by the classifier C’s. On the other hand, the
robustness compares the conditional probability in the real world wreal with that
in a possible world w′ that is close to wreal in terms of RDε . Note that an adver-
sary’s choice of the test dataset σw′(x) is formalized by the non-deterministic
choice of the possible world w′.

6.1 Total Correctness of Classifiers

We first note that the total correctness of classifiers could be formalize as a
classification performance (e.g., precision, recall, or accuracy) in the presence of
all possible inputs from adversaries. For example, the total correctness could be
formalized as M |= Recall`,I(x), which represents that Recall`,I(x) is satisfies in
all possible worlds of M.

In practice, however, it is not possible or tractable to check whether the
classification performance is achieved for all possible dataset and for all possible
inputs, e.g., whenW is an infinite set. Hence we need a weaker form of correctness
notions, which may be tested in a certain way. In the following sections, we deal
with robustness notions that are weaker than total correctness.

6.2 Probabilistic Robustness against Targeted Attacks

When a robustness attack aims at misclassifying an input as a specific target
label, then it is called a targeted attack. For instance, in the above-mentioned
attack by [18], a gibbon is the target into which a panda’s photo is misclassified.

To formalize the robustness, let RDε ⊆ W ×W be an accessibility relation
that relates two worlds having closer inputs, i.e.,

RDε
def
= {(w,w′) ∈ W ×W | D(σw(x) ‖ σw′(x)) ≤ ε} ,

where D is some divergence or distance. Intuitively, (w,w′) ∈ RDε implies that
the two distributions σw(x) and σw′(x) of inputs to the classifier C represent
close datasets in terms of D (e.g., two test datasets consisting of slightly different
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images that look pandas from the human’ eyes). Then an epistemic formula KDε ϕ
represents that we are confident that ϕ is true as far as the classifier C classifies
the test data that are perturbed by noise of a level ε or smaller2.

Now we discuss how we formalize robustness using the epistemic operator
KDε as follows. A first definition of robustness against targeted attacks might be:

M,wreal |= hpanda(x) ⊃ KDε P0 ψgibbon(x),

which represents that a panda’s photo x will not be recognized as a gibbon at all
after the photo is perturbed by noise. However, this does not express probability
or cover the case where the human cannot recognize the perturbed image as a
panda, for example, when the image is perturbed by a transformation such as
linear displacement, rescaling and rotation [2]. Instead, for some δ ∈ [0, 1], we
formalize a notion of probabilistic robustness against targeted attacks by:

TargetRobustpanda,δ(x, gibbon)
def
= KDε

(
hpanda(x) ⊃ P[0,δ] ψgibbon(x)

)
.

Since Lp-norms are often regarded as reasonable approximations of human
perceptual distances [6], they are used as distance constraints on the perturba-
tion in many researches on targeted attacks (e.g. [36, 18, 6]). To represent the
robustness against these attacks in our model, we should take the metric D as
the ∞-Wasserstein distance Wd ( in terms of the Lp metric d) between the two
distributions σw(x) and σw′(x) 3.

6.3 Probabilistic Robustness against Non-Targeted Attacks

Next we formalize non-targeted attacks [31, 30] in which adversaries try to mis-
classify inputs as some arbitrary incorrect labels (i.e., not as a specific label like a
gibbon). Compared to targeted attacks, this kind of attacks are easier to mount,
but harder to defend.

A notion of probabilistic robustness against non-targeted attacks can be for-
malized for some I = [1− δ, 1] by:

TotalRobust`,I(x)
def
= KDε

(
h`(x) ⊃ PI ψ`(x)

)
= KDε Recall`,I(x). (6)

Then we derive that TotalRobustpanda,I(x) implies TargetRobustpanda,δ(x, gibbon),
namely, robustness against non-targeted attacks is not weaker than robustness
against targeted attacks.

Next we note that by (6), robustness can be regarded as recall in the pres-
ence of perturbed noise. This implies that for each property ϕ in Table 1, we
could consider KDε ϕ as a property related to robustness although these have
not been formalized in the literature of robustness of machine learning as far as

2 This usage of modality relies on the fact that the value of the measurement variable
x can be different in different possible worlds.

3 A coupling that achieves Wd(σw(x), σw′(x)) ≤ ε provides a transformation of an
image in supp(σw(x)) to another in supp(σw′(x)) perturbed by a level ε of noise.
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we recognize. For example, KDε Precision`,i(x) represents that in the presence of
perturbed noise, the prediction is correct with a probability i given that it is
positive. For another example, KDε Accuracy`,i(x) represents that in the presence
of perturbed noise, the prediction is correct (whether it is positive or negative)
with a probability i.

Finally, note that by the reflexivity of RDε , M,wreal |= KDε Recall`,I(x) implies
M,wreal |= Recall`,I(x), i.e., robustness implies recall without perturbation noise.

7 Formalizing the Fairness of Classifiers

There have been researches on various notions of fairness in machine learning. In
this section, we formalize a few notions of fairness of classifiers by using StatEL.
Here we focus on the fairness that should be maintained in the impact, i.e., the
results of classification, rather than the treatment4.

To formalize fairness notions, we use a distributional Kripke model M =
(W, (Ra)a∈A, (Vs)s∈S) where W includes a possible world wd having a dataset
d from which an input to the classifier C is drawn. Recall that x, y, and ŷ are
measurement variables denoting the input to the classifier C, the actual class
label, and the predicted label by C, respectively. In each world w, σw(x) is
the distribution of C’s input over D, (i.e., the test data distribution), σw(y) is
the distribution of the actual label over L, and σw(ŷ) is the distribution of C’s
output over L. For each group G ⊆ D of inputs, we introduce a static formula
ηG(x) representing that an input x belongs to G. We also introduce a formula ξd
representing that all data are drawn from some subset of the dataset d. Formally,
these are interpreted by:

– For each state s ∈ S, s |= ηG(x) iff σs(x) ∈ G;
– For each world w ∈ W, w |= ξd iff there exists a S ′ ⊆ S s.t. w[s] =

wd[s]∑
s′∈S′ wd[s′] if s ∈ S ′, and w[s] = 0 otherwise.

For two worlds w and w′, we write w |= Qw′ ψ to denote that w |= P1 ψ and
s 6|= ψ for all s ∈ supp(w′) \ supp(w).

Then we obtain the following proposition on conditional indistinguishability.

Proposition 2 (Conditional indistinguishability in a world wd) Let M =
(W, (Ra)a∈A, (Vs)s∈S) be a distributional Kripke model with the universe W =
DS. Let wd be a world with a dataset d, ψ and ψ′ be static formulas, and a ∈ A.

(i) M, wd |= ψ ⊃ ¬Pa
(
ξd ∧ Qwd ψ′

)
iff for any w,w′ ∈ W, M, w |= ξd ∧ Qwd ψ

and M, w′ |= ξd ∧Qwd ψ′ imply (w,w′) ∈ Ra.
(ii) If Ra is symmetric, then M, wd |= ψ ⊃ ¬PaQwd ψ′ iff M, wd |= ψ′ ⊃
¬PaQwd ψ.

4 For instance, fairness through unawareness requires that protected attributes (e.g.,
race, religion, or gender) are not explicitly used in the prediction process. However,
StatEL may not be suited to formalizing such a property in treatment.
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See Appendix A for the proof.
Now we formalize three popular notions of fairness of classifiers by using

counterfactual epistemic operators (introduced in Section 3) as follows.

7.1 Group Fairness (Statistical Parity)

The group fairness formulated as statistical parity [13] is the property that the
output distributions of the classifier are identical for different groups. Formally,
for each b = 0, 1 and a group Gb ⊆ D, let µGb be the distribution of the output
(over L) of the classifier C when the input is sampled from a dataset d and
belongs to Gb. Then the statistical parity up to bias ε is formalized using the
total variation Dtv by Dtv(µG0‖µG1) ≤ ε.

To express this using StatEL, we define an accessibility relation Rtv
ε in M by:

Rtv
ε

def
= {(w,w′) ∈ W ×W | Dtv(σw(ŷ)‖σw′(ŷ)) ≤ ε} . (7)

Intuitively, (w,w′) ∈ Rtv
ε represents that the two probability distributions σw(ŷ)

and σw′(ŷ) of the outputs by the classifier C respectively in w and in w′ are close
in terms of Dtv. Note that σw(ŷ) and σw′(ŷ) respectively represent µG0 and µG1 .

Then the statistical parity w.r.t. groups G0, G1 means that in terms of Rtv
ε ,

we cannot distinguish a world having a dataset d and satisfying ηG0
(x)∧ψ(x, ŷ)

from another satisfying ηG1
(x) ∧ ψ(x, ŷ). By Proposition 2, this is expressed as:

M, wd |= GrpFair(x, ŷ)

where GrpFair(x, ŷ)
def
=
(
ηG0

(x) ∧ ψ(x, ŷ)
)
⊃ ¬Ptv

ε

(
ξd ∧Qwd(ηG1(x) ∧ ψ(x, ŷ))

)
.

7.2 Individual Fairness (as Lipschitz Property)

The individual fairness formulated as a Lipschitz property [13] is the property
that the classifier outputs similar labels given similar inputs. Formally, for v, v′ ∈
D, let µv and µv′ be the distributions of the outputs (over L) of the classifier
C when the inputs are v and v′, respectively. Then the individual fairness is
formalized using a divergence D : DL × DL → R≥0, a metric r : D × D → R≥0,
and a threshold ε ∈ R≥0 by D(µv ‖ µv′) ≤ ε · r(v, v′).

To express this using StatEL, we define an accessibility relation Rr,Dε in M
for the metric r and the divergence D as follows:

Rr,Dε
def
=

{
(w,w′) ∈ W ×W

∣∣∣ v ∈ supp(σw(x)), v′ ∈ supp(σw′(x)),
D(σw(ŷ)‖σw′(ŷ)) ≤ ε · r(v, v′)

}
. (8)

Intuitively, (w,w′) ∈ Rr,Dε represents that, when inputs are closer in terms of
the metric r, the classifier C outputs closer labels in terms of the divergence D.

Then the individual fairness w.r.t. r and D means that in terms of Rr,Dε , we
cannot distinguish between the two worlds w and w′ where ψ(x, ŷ) is satisfied
(i.e., C outputs ŷ given an input x). By Proposition 2, this is expressed as:

M, wd |= IndFair(x, ŷ)
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where IndFair(x, ŷ)
def
= ψ(x, ŷ) ⊃ ¬Pr,Dε

(
ξd ∧Qwd ψ(x, ŷ)

)
.

This represents that by observing the classifier’s output ŷ, we can less dis-
tinguish two worlds w and w′ when their inputs σw(x) and σw′(x) are closer.

7.3 Equal Opportunity

Equal opportunity [21, 40] is the property that the recall (true positive rate) is
the same for all the groups. Formally, given an advantage class ` ∈ L (e.g., not
defaulting on a loan) and a group G ⊆ D of inputs with a protected attribute
(e.g., race), a classifier C is said to satisfy equal opportunity of ` w.r.t. G if it

holds for each ˆ̀∈ L that:

Pr[C(x) = ˆ̀ | x ∈ G, H(x) = `] = Pr[C(x) = ˆ̀ | x ∈ D \G, H(x) = `]. (9)

If we allow the logic to use the universal quantification over the probability
value i, then the case of ˆ̀= ` in (9) could be expressed as:

∀i ∈ [0, 1].
(
ξd ∧ ηG(x) ⊃ Recall`,i(x)

)
↔
(
ξd ∧ ¬ηG(x) ⊃ Recall`,i(x)

)
.

However, instead of allowing for this universal quantification, we can use the
modal operators Ptv

ε (defined by (7)) with ε = 0, and represent equal opportunity
as the fact that we cannot distinguish a world having a dataset d and satisfying
ηG(x)∧ψ(x, ŷ)∧h`(x) from another satisfying ¬ηG(x)∧ψ(x, ŷ)∧h`(x) as follows:

EqOpp(x, ŷ)
def
=
(
ηG(x)∧ψ(x, ŷ)∧h`(x)

)
⊃ ¬Ptv

0

(
ξd∧Qwd(¬ηG(x)∧ψ(x, ŷ)∧h`(x))

)
.

8 Related Work

In this section, we provide a brief overview of related work on the specification of
statistical machine learning and on epistemic logic for describing specification.

Desirable properties of statistical machine learning. There have been a large
number of papers on attacks and defences for deep neural networks [36, 8]. Com-
pared to them, however, not much work has been done to explore the formal
specification of various properties of machine learning. Seshia et al. [34] present
a list of desirable properties of DNNs (deep neural networks) although most of
the properties are presented informally without mathematical formulas. As for
robustness, Dreossi et al. [11] propose a unifying formalization of adversarial
input generation in a rigorous and organized manner, although they formalize
and classify attacks (as optimization problems) rather than define the robustness
notions themselves. Concerning the fairness notions, Gajane [16] surveys the for-
malization of fairness notions for machine learning and present some justification
based on social science literature.
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Epistemic logic for describing specification. Epistemic logic [39] has been studied
to represent and reason about knowledge [14, 19, 20], and has been applied to
describe various properties of systems.

The BAN logic [5], proposed by Burrows, Abadi and Needham, is a notable
example of epistemic logic used to model and verify the authentication in cryp-
tographic protocols. To improve the formalization of protocols’ behaviours, some
epistemic approaches integrate process calculi [23, 10, 7].

Epistemic logic has also been used to formalize and reason about privacy
properties, including anonymity [35, 20, 17, 27], receipt-freeness of electronic vot-
ing protocols [24], and privacy policy for social network services [32]. Temporal
epistemic logic is used to express information flow security policies [3].

Concerning the formalization of fairness notions, previous work in formal
methods has modeled different kinds of fairness involving timing by using tem-
poral logic rather than epistemic logic. As far as we know, no previous work has
formalized fairness notions of machine learning using counterfactual epistemic
operators.

Formalization of statistical properties. In studies of philosophical logic, Lewis [29]
shows the idea that when a random value has various possible probability dis-
tributions, then those distributions should be represented on distinct possible
worlds. Bana [4] puts Lewis’s idea in a mathematically rigorous setting. Re-
cently, a modal logic called statistical epistemic logic [26] is proposed and is
used to formalize statistical hypothesis testing and the notion of differential pri-
vacy [12]. Independently of that work, French et al. [15] propose a probability
model for a dynamic epistemic logic in which each world is associated with a
subjective probability distribution over the universe, without dealing with non-
deterministic inputs or statistical divergence.

9 Conclusion

We have shown a logical approach to formalizing statistical classifiers and their
desirable properties in a simple and abstract way. Specifically, we have introduced
a formal model for probabilistic behaviours of classifiers and non-deterministic
adversarial inputs using a distributional Kripke model. Then we have formalized
the classification performance, robustness, and fairness of classifiers by using
StatEL. Moreover, we have also clarified some relationships among properties
of classifiers, and relevance between classification performance and robustness.
To formalize fairness notions, we have introduced a notion of counterfactual
knowledge and shown some techniques to express conditional indistinguishabil-
ity. As far as we know, this is the first work that uses logical formulas to express
statistical properties of machine learning, and that provides epistemic (resp.
counterfactually epistemic) views on robustness (resp. fairness) of classifiers.

In future work, we are planning to include temporal operators in the specifica-
tion language and to formally reason about system-level properties of learning-
based systems. We are also interested in developing a general framework for
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the formal specification of machine learning associated with testing methods
and possibly extended with Bayesian networks. Our future work also includes
an extension of StatEL to formalize machine learning other than classification
problems. Another possible direction of future work would be to clarify the re-
lationships between our counterfactual epistemic operators and more general
notions of counterfactual knowledge in previous work such as [38].

A Proofs for Propositions 1 and 2

Proposition 1 (Conditional indistinguishability) Let M = (W, (Ra)a∈A,
(Vs)s∈S) be a distributional Kripke model with the universe W = DS. Let ψ and
ψ′ be static formulas, and a ∈ A.

(i) M |= ψ ⊃ ¬Pa P1 ψ
′ iff for any w,w′ ∈ W, M, w |= P1 ψ and M, w′ |= P1 ψ

′

imply (w,w′) ∈ Ra.
(ii) If Ra is symmetric, then M |= ψ ⊃ ¬Pa P1 ψ

′ iff M |= ψ′ ⊃ ¬Pa P1 ψ.

Proof. We first prove the claim (i) as follows. We show the direction from left
to right. Assume that M |= ψ ⊃ ¬Pa P1 ψ

′. Let w,w′ ∈ W satisfy M, w |= P1 ψ
and M, w′ |= P1 ψ

′. Then w|ψ = w. By M, w |= ψ ⊃ ¬Pa P1 ψ
′, we obtain

M, w|ψ |= ¬Pa P1 ψ
′, which is logically equivalent to M, w|ψ |= Ka¬P1 ψ

′. By
the definition of Ka, for every w′′ ∈ W, M, w′′ |= P1 ψ

′ implies (w|ψ, w′′) ∈ Ra.
Then, since w|ψ = w and M, w′ |= P1 ψ

′, we obtain (w,w′) ∈ Ra.
Next we show the other direction as follows. Assume the right hand side.

Let w ∈ W such that M, w |= P1 ψ. Then for every w′ ∈ W, M, w′ |= P1 ψ
′

implies (w,w′) ∈ Ra. By the definition of Ka, we have M, w |= Ka¬P1 ψ
′, which

is equivalent to M, w |= ¬Pa P1 ψ
′. By M, w |= P1 ψ, we have w|ψ = w, hence

M, w|ψ |= ¬Pa P1 ψ
′. Therefore M, w |= ψ ⊃ ¬Pa P1 ψ

′.
Finally, the claim (ii) follows from the claim (i) immediately. ut

Proposition 2 (Conditional indistinguishability in a world wd) Let M =
(W, (Ra)a∈A, (Vs)s∈S) be a distributional Kripke model with the universe W =
DS. Let wd be a world with a dataset d, ψ and ψ′ be static formulas, and a ∈ A.

(i) M, wd |= ψ ⊃ ¬Pa
(
ξd ∧ Qwd ψ′

)
iff for any w,w′ ∈ W, M, w |= ξd ∧ Qwd ψ

and M, w′ |= ξd ∧Qwd ψ′ imply (w,w′) ∈ Ra.
(ii) If Ra is symmetric, then M, wd |= ψ ⊃ ¬PaQwd ψ′ iff M, wd |= ψ′ ⊃
¬PaQwd ψ.

Proof. We first prove the claim (i) as follows. We show the direction from left
to right. Assume that M, wd |= ψ ⊃ ¬Pa

(
ξd ∧ Qwd ψ′

)
. Let w,w′ ∈ W satisfy

M, w |= ξd∧Qwd ψ and M, w′ |= ξd∧Qwd ψ′. Then wd|ψ = w and wd|ψ′ = w′. By
M, wd |= ψ ⊃ ¬Pa

(
ξd ∧Qwd ψ′

)
, we obtain M, wd|ψ |= ¬Pa

(
ξd ∧Qwd ψ′

)
, which

is logically equivalent to M, wd|ψ |= Ka¬
(
ξd ∧ Qwd ψ′

)
. By the definition of Ka

and M, w′ |= ξd ∧Qwd ψ′, we have (wd|ψ, w′) ∈ Ra. Therefore, by w|ψ = w, we
obtain (w,w′) ∈ Ra.
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Next we show the other direction as follows. Assume the right hand side.
Let w ∈ W such that M, w |= ξd ∧ Qwd ψ. Then for every w′ ∈ W, M, w′ |=
ξd ∧ Qwd ψ′ implies (w,w′) ∈ Ra. By the definition of Ka, we have M, w |=
Ka¬

(
ξd ∧Qwd ψ′

)
, which is equivalent to M, w |= ¬Pa

(
ξd ∧Qwd ψ′

)
. By M, w |=

ξd ∧ Qwd ψ, we have wd|ψ = w, hence M, wd|ψ |= ¬Pa
(
ξd ∧ Qwd ψ′

)
. Therefore

M, wd |= ψ ⊃ ¬Pa
(
ξd ∧Qwd ψ′

)
.

Finally, the claim (ii) follows from the claim (i) immediately. ut
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