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Abstract. We propose a formal language for describing and explaining
statistical causality. Concretely, we define Statistical Causality Language
(StaCL) for expressing causal effects and specifying the requirements for
causal inference. StaCL incorporates modal operators for interventions
to express causal properties between probability distributions in different
possible worlds in a Kripke model. We formalize axioms for probability
distributions, interventions, and causal predicates using StaCL formulas.
These axioms are expressive enough to derive the rules of Pearl’s do-
calculus. Finally, we demonstrate by examples that StaCL can be used
to specify and explain the correctness of statistical causal inference.

1 Introduction

Statistical causality has been gaining significant importance in a variety of re-
search fields. In particular, in life sciences, more and more researchers have been
using statistical techniques to discover causal relationships from experiments
and observations. However, these statistical methods can easily be misused or
misinterpreted. In fact, it is reported that many research articles have serious
errors in the applications and interpretations of statistical methods [8, 26].

A common mistake is to misinterpret statistical correlation as statistical
causality. Notably, when we analyze observational data without experimental
interventions, we may overlook some requirements for causal inference and make
wrong calculations, leading to incorrect conclusions about the causality.

For this reason, the scientific community has developed guidelines on many
requirements for statistical analyses [36, 28]. However, since there is no formal
language to describe the entire procedures and their requirements, we refer to
guidelines manually and cannot formally guarantee the correctness of analyses.

To address these problems, we propose a logic-based approach to formal-
izing and explaining the correctness of statistical causal inference. Specifically,
we introduce a formal language called statistical causality language (StaCL) to
formally describe and check the requirements for statistical causal inference. We
consider this work as the first step to building a framework for formally guaran-
teeing and explaining the reliability of scientific research.
Contributions. Our main contributions are as follows:
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– We propose statistical causality language (StaCL) for formalizing and ex-
plaining statistical causality by using modal operators for interventions.

– We define a Kripke model for statistical causality. To formalize not only
statistical correlation but also statistical causality, we introduce a data gen-
erator in a possible world to model a causal diagram in a Kripke model.

– We introduce the notion of causal predicates to express statistical causality
and interpret them using a data generator instead of a valuation in a Kripke
model. In contrast, (classical) predicates are interpreted using a valuation in
a Kripke model to express only statistical correlations.

– We introduce a sound deductive system AXCP for StaCL with axioms for
probability distributions, interventions, and causal predicates. These axioms
are expressive enough to reason about all causal effects identifiable by Pearl’s
do-calculus [29]. We show that AXCP can reason about the correctness of
causal inference methods (e.g., backdoor adjustment). Unlike prior work,
AXCP does not aim to conduct causal inference about a specific causal
diagram; rather, it concerns the correctness of the inference methods for any
diagram. To the best of our knowledge, ours appears to be the first modal
logic that can specify and reason about the requirements for causal inference.

Related Work. Many studies on causal reasoning rely on causal diagrams [30].
Whereas they aim to reason about a specific diagram, our logic-based approach
aims to specify and reason about the requirements for causal inference methods.

Logic-based approaches for formalizing causal reasoning have been proposed.
To name a few, Halpern and Pearl provide logic-based definitions of actual causes
where logical formulas with events formalize counterfactuals [12, 13, 11]. Proba-
bilistic logical languages [19] are proposed to axiomatize causal reasoning with
observation, intervention, and counterfactual inference. Unlike our logic, how-
ever, their framework does not aim to syntactically derive the correctness of
statistical causal inference. The causal calculus [27] is used to provide a logical
representation [4, 3] of Pearl [30]’s structural causal model. The counterfactual-
observational language [1] can reason about interventionist counterfactuals and
has an axiomatization that is complete w.r.t. a causal team semantics. A modal
logic in [2] integrates causal and epistemic reasoning. While these works deal
with deterministic cases only, our StaCL can reason about statistical causality
in probabilistic settings.

There have been studies on incorporating probabilities into team seman-
tics [15]. For example, team semantics is used to deal with the dependence and
independence among random variables [6, 5]. A probabilistic team semantics is
provided for a first-order logic that can deal with conditional independence [7]. A
team semantics is also introduced for logic with exact/approximate dependence
and independence atoms [14]. Unlike our StaCL, however, these works do not
allow for deriving the do-calculus or the correctness of causal inference methods.

Concerning the axiomatic characterization of causality, Galles and Pearl [9]
prove that the axioms of composition, effectiveness, and reversibility are sound
and complete with respect to the structural causal models. They also show that
the reversibility axiom can be derived from the composition axiom if the causal
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diagram is acyclic (i.e., has no feedback loop). Halpern [10] provides axiomatiza-
tions for more general classes of causal models with feedback and with equations
that may have no solutions. In contrast, our deductive system AXCP has axioms
for causal predicates and two forms of interventions that can derive the rules of
Pearl’s do-calculus [29], while being equipped with axioms corresponding to the
composition and effectiveness axioms mentioned above only for acyclic diagrams.

For the efficient computation of causal reasoning, constraint solving is applied
[17, 18, 34]. Probabilistic logic programming is used to encode and reason about
a specific causal diagram [31]. These are orthogonal to the goal of our work.

Finally, a few studies propose modal logic for statistical methods. Statistical
epistemic logic [20–22] specifies various properties of machine learning. Belief
Hoare logic [24, 25] can reason about statistical hypothesis testing programs.
However, unlike our StaCL, these cannot reason about statistical causality.

2 Illustrating Example

We first present a simple example to explain our framework.

Example 1 (Drug’s efficacy). We attempt to check a drug’s efficacy for a disease
by observing a situation where some patients take a drug and the others do not.

Table 1 shows the recovery rates and the numbers of patients treated with/
without the drug. For both males and females, more patients recover by taking
the drug. However, for the combined population, the recovery rate with the drug
(0.73) is less than that without it (0.80). This inconsistency is called Simpson’s
paradox [33], showing the difficulty of identifying causality from observed data.

To model this, we define three variables: a treatment x (1 for drug, 0 for
no-drug), an outcome y (1 for recovery, 0 for non-recovery), and a gender z.
Fig. 1a depicts their causal dependency; the arrow xAy denotes that y depends
on x. The causal effect p(y|do(x= c)) of a treatment x= c on an outcome y [30]
is defined as the distribution of y in case y were generated from x = c (Fig. 1b).

However, since the gender z influences the choice of the treatment x in reality
(Fig. 1a), the causal effect p(y|do(x= c)) depends on the common cause z of x
and y and differs from the correlation p(y|x= c). Indeed, in Table 1, 80 % of
females chose to take the drug (x = 1) while only 20 % of males did so; this
dependency of x on the gender z leads to Simpson’s paradox in Table 1. Thus,
calculating the causal effect requires an “adjustment” for z, as explained below.

Overview of the Framework. We describe reasoning about the causal effect
in Example 1 using logical formulas in our formal language StaCL (Section 5).

We define φRCT
def
= ⌈c/x⌉(c0 = y) to express a randomized controlled trial

(RCT), where we randomly divide the patients into two groups: one taking the
drug (x = 1) and the other not (x = 0). This random choice of the treatment x is
expressed by the intervention ⌈c/x⌉ for c = 0, 1 in the diagram G⌈c/x⌉ (Fig. 1b).
Since x is independent of z in G⌈c/x⌉, the causal effect p(y|do(x= c)) of x on the
outcome y is given as y’s distribution c0 observed in the experiment in G⌈c/x⌉.
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Table 1: Recovery rates of patients
with/without taking a drug.

Drug No-drug
x = 1 x = 0

Male 0.90 0.85
(18/20) (68/80)

Female 0.69 0.60
(55/80) (12/20)

Total 0.73 0.80
(73/100) (80/100)

-
��	 @@R

x y

z

(a) The actual diagram G with a gender (con-
founder) z, a treatment x, and an outcome y.

-? @@R
x y

zc

(b) The diagram G⌈c/x⌉ with an intervention to x.

Fig. 1: Causal diagrams in Example 1.

In contrast, φBDA
def
= (f = y|z,x=c ∧ c1 = z ∧ c0 = f(c1) ↓y) describes

the inference about the causal effect from observation without intervention to
x (Fig. 1a). This saves the cost of the experiment and avoids ethical issues in
random treatments. Instead, to avoid Simpson’s paradox, the inference φBDA
conducts a backdoor adjustment (Section 7) to cope with the confounder z.

Concretely, the backdoor adjustment φBDA computes x’s causal effect on y
as follows. We first obtain the conditional distribution f def

= y|z,x=c and the prior
c1

def
= z. Then we conduct the adjustment by calculating the joint distribution

f(c1) from f and c1 and then taking the marginal distribution c0
def
= f(c1) ↓y.

The resulting c0 is the same as the c0 in the RCT experiment φRCT; that is, the
backdoor adjustment φBDA can compute the causal effect obtained by φRCT.

For this adjustment, we need to check the requirement pa(z, x) ∧ pos(x :: z),
that is, z is x’s parent in the diagram G and the joint distribution x :: z satisfies
the positivity (i.e., it takes each value with a non-zero probability).

Now we formalize the correctness of this causal inference method (for any
diagram G) as the judgment expressing that under the above requirements, the
backdoor adjustment computes the same causal effect as the RCT experiment:

pa(z, x) ∧ pos(x :: z) ⊢g φRCT ↔ φBDA. (1)

By deriving this judgment in a deductive system called AXCP (Section 6), we
show the correctness of this causal inference method for any diagram (Section 7).
We show all proofs of the technical results in Appendix.

3 Language for Data Generation

In this section, we introduce a language for describing data generation.
Constants and Causal Variables. We introduce a set Const of constants
to denote probability distributions of data values and a set dConst ⊆ Const
of deterministic constants, each denoting a single data value (strictly speaking,
denoting a distribution having a single data value with probability 1).

We introduce a finite set CVar of causal variables. A tuple ⟨x1, . . . , xk⟩ of
causal variables represents the joint distribution of k variables x1, . . . , xk. We



Formalizing Statistical Causality via Modal Logic 5

denote the set of all non-empty (resp. possibly empty) tuples of variables by
CVar+ (resp. CVar∗). We use the bold font for a tuple; e.g., x = ⟨x1, . . . , xk⟩. We
write size(x) for the dimension k of a tuple x. We assume that the variables in
a tuple x are sorted lexicographically.

For disjoint tuples x and y, x :: y denotes the joint distribution of x and y.
Formally, ‘::’ is not a function symbol, but a meta-operator on CVar∗; x ::y is the
tuple obtained by merging x and y and sorting the variables lexicographically.

We use conditional causal variables y|z,x=c to denote the conditional distri-
bution of y given z and x = c. We write FVar for the set of all conditional causal
variables. For a conditional distribution y|x and a prior distribution x, we write
y|x(x) for the joint distribution x :: y.
Terms. We define terms to express how data are generated. Let Fsym be a
set of function symbols denoting algorithms. We define the set CTerm of causal
terms as the terms of depth at most 1; i.e., u ::= c | f(v, . . . , v) where c ∈ Const,
f ∈ Fsym, and v ∈ CVar ∪ Const. For example, f(c) denotes a data generated
by an algorithm f with input c. We denote the set of variables (resp. the set of
constants) occurring in a term u by fv(u) (resp. fc(u)).

We also define the set Term of terms by the BNF: u ::= x | c | f(u, . . . , u),
where x ∈ CVar+, c ∈ Const, and f ∈ Fsym∪FVar. Unlike CTerm, terms in Term
may repeatedly apply functions to describe multiple steps of data generation.

We introduce the special function symbol ↓x for marginalization. y ↓x de-
notes the marginal distribution of x given a joint distribution y; e.g., for a joint
distribution x = ⟨x0, x1⟩, x↓x0 expresses the marginal distribution x0. We also
introduce the special constant ⊥ for undefined values.
Data Generators. To describe how data are generated, we introduce the notion
of a data generator as a function g : CVar → CTerm ∪ {⊥} that maps a causal
variable x to a causal term representing how the data assigned to x is generated.
If g(y) = u for u ∈ CTerm and y ∈ CVar, we write uAg y. For instance, the
data generator g in Fig. 2 models the situation in Example 1. To express that
a variable x’s value is generated by an algorithm f1 with an input z, the data
generator g maps x to f1(z), i.e., f1(z)Ag x. Since the causal term f1(z)’s depth
is at most 1, z represents the direct cause of x. We denote the set of all variables
x satisfying g(x) ̸= ⊥ by dom(g), and the range of g by range(g).

Data generator g
Causal diagram
G given from g

dom(g)= {x, y, z}
f1(z)Ag x

f2(z, x)Ag y
-

��	 @@R
x y

z

Fig. 2: The data generator and
causal diagram for Example 1.

We assume the following at-most-once
condition: Each function symbol and con-
stant can be used at most once in a single
data generator. This ensures that different
sampling uses different randomness and is
denoted by different symbols.

We say that a data generator g is finite
if dom(g) is a finite set. We say that a data
generator g is closed if no undefined variable

occurs in the terms that g assigns to variables, namely, fv(range(g)) ⊆ dom(g).
We write x≺g y iff y’s value depends on x’s, i.e., there are variables z1, . . . , zi

(i ≥ 2) such that z1 = x, zi = y, and zj ∈ fv(g(zj+1)) for 1 ≤ j ≤ i− 1. A data
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generator g is acyclic if ≺g is a strict partial order over dom(g). Then we can
avoid the cyclic definitions of g . E.g., the data generator g1 defined by f(z)Ag1 x
and f(c)Ag1 z is acyclic, whereas g2 by f(z)Ag2 x and f(x)Ag2 z is cyclic.

4 Kripke Model for Statistical Causality

In this section, we introduce a Kripke model for statistical causality.
We write O for the set of all data values we deal with, such as the Boolean

values, integers, real numbers, and lists of data values. We write ⊥ for the unde-
fined value. For a set S, we denote the set of all probability distributions over S
by DS. For a probability distribution m ∈ DS, we write supp(m) for the set of
m’s non-zero probability elements.
Causal Diagrams. To model causal relations corresponding to a given data
generator g, we consider a causal diagram G = (U, V,E) [30] where U ∪V is the
set of all nodes and E is the set of all edges such that:

– U
def
= fc(range(g)) ⊆ Const is a set of symbols called exogenous variables that

denote distributions of data;
– V

def
=dom(g) ⊆ CVar is a set of symbols called endogenous variables that may

depend on other variables;
– E

def
= {x→ y ∈V ×V |x∈ fv(g(y))} ∪ {c→ y ∈U ×V | c∈ fc(g(y))} is the set

of all structural equations, i.e., directed edges (arrows) denoting the direct
causal relations between variables defined by the data generator g.

For instance, in Fig. 2, Example 1 is modeled as the causal diagram G.
Since a causal term’s depth is at most 1, g specifies all information for defining

G. By g’s acyclicity, G is a directed acyclic graph (DAG) (See Proposition 4 in
Appendix A.2 for details).
Pre-/Post-Intervention Distributions. For a causal diagram G = (U, V,E)
and a tuple y ⊆ V , we write PG(y) for the joint distribution of y over Osize(y)

generated according to G. As shown in the standard textbooks (e.g., [30]), PG(V )
is factorized into conditional distributions according to G as follows:

PG(V )
def
=

∏
yi∈V PG(yi | paG(yi)), (2)

where paG(yi) is the set of parent variables of yi in G. For example, in Fig. 2,
for V = {x, y, z}, PG(V ) = PG(y |x, z)PG(x | z)PG(z).

For tuples x ⊆ V and o ⊆ O with size(x) = size(o), the post-intervention
distribution PG(V | do(x=o)) is the joint distribution of V after x is assigned o
and all the variables dependent on x in G are updated by x := o as follows:

PG(V | do(x=o))
def
=


∏

yi∈V \x PG(yi | paG(yi))

for values of V consistent with x = o

0 otherwise.

For instance, in Fig. 2, PG(y, z|do(x = o)) = PG(y|x = o, z)PG(z) for any o∈O.
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Possible Worlds. We introduce the notion of a possible world to define the
probability distribution of causal variables from a data generator. Formally, a
possible world is a tuple (g , ξ,m) of (i) a finite and acyclic data generator g :
CVar → CTerm ∪ {⊥}, (ii) an interpretation ξ that maps a function symbol in
Fsym with arity k ≥ 0 to a function from Ok to DO, and (iii) a memory m
that maps a tuple of variables to a joint distribution of data values, which is
determined by g and ξ. We denote these components of a world w by gw, ξw,
and mw, and the set of all defined variables in w by Var(w) = dom(mw).

The interpretation ξ can be constructed using a probability distribution I
over an index set I and a family {ξr}r∈I of interpretations each mapping a
function symbol f with arity k ≥ 0 to a deterministic function ξr(f) from Ok to
O. Then ξ(f) maps data values o to the probability distribution over O obtained
by randomly drawing an index r from I and then computing ξr(f)(o).

If k = 0, f is a constant and ξr(f) ∈ O, hence ξ(f) ∈ DO is a distribution of
data values. For the undefined constant, we assume ξr(⊥) = ⊥.
Interpretation of Terms. Terms are interpreted in a possible world w =
(ξ, g,m) as follows. First, for each index r ∈ I, we define the interpretation
[[_]]rξ,g that maps a tuple of k terms to k data values in O or ⊥ by:

[[x]]rξ,g = [[g(x)]]rξ,g [[⟨u1, . . . , uk⟩]]rξ,g = ([[u1]]
r
ξ,g , . . . , [[uk]]

r
ξ,g)

[[c]]rξ,g = ξr(c) [[f(u1, . . . , uk)]]
r
ξ,g = ξr(f)([[⟨u1, . . . , uk⟩]]rξ,g).

For instance, in Fig. 2, we have [[x]]rξ,g = [[g(x)]]rξ,g = [[f1(z)]]
r
ξ,g = ξr(f1)([[z]]

r
ξ,g),

where the interpretation of z does not depend on that of x due to g’s acyclicity.
We define the probability distribution [[u]]w over O by randomly drawing r and
then computing [[u]]rξ,g . Similarly, we define [[⟨u1, . . . , uk⟩]]w via [[⟨u1, . . . , uk⟩]]rξ,g .

We remark that the interpretation [[_]]w defines the joint distribution PGw

of all variables in the causal diagram Gw; e.g., [[y|z]]w = PGw
(y | z) (See Propo-

sition 5 in Appendix A.2 for details). A function symbol f is interpreted as the
function ξ(f) that maps data values in O to the distribution over O. We define
the memory m by m(x) = [[x]]w for all x ∈ CVar+. Notice that [[_]]w is defined
using g and ξ without using m.

We expand the interpretation [[_]]w to a conditional causal variable y|z,x=c ∈
FVar to interpret it as a function that maps a value c′ of z to the distribution
[[(x :: y :: z)|z=c′,x=c]]w. We then have [[y|z,x=c(z|x=c)]]w = [[y|z,x=c]]w([[z|x=c]]w).

For the sake of reasoning in Section 6, for each data generator g , x ∈ CVar+,
and y|z,x=c ∈ FVar, we introduce a constant c(g,x) and a function symbol
f (g,y|z,x=c). For brevity, we often omit the superscripts of these symbols.
Eager/Lazy Interventions. We introduce two forms of interventions and
their corresponding intervened worlds. Intuitively, in a causal diagram, an eager
intervention ⌈c/x⌉ expresses the removal of all arrows pointing to a variable x by
replacing x’s value with c.

In contrast, a lazy intervention ⌊c/x⌋ expresses the removal of all arrows
emerging from x, which does not change the value of x itself but affects the
values of the variables dependent on x, computed using [[c]] (instead of [[x]]) as
the value of x.
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For instance, Fig. 3 shows how two interventions ⌈c/x⌉ and ⌊c/x⌋ change the
data generator and the causal diagram in a world w that models Example 1.

World Data generator Causal diagram

w
f1(z)A x;

f2(z, x)A y -
��	 @@R

x y

z

w⌈c/x⌉
cA x;

f2(z, x)A y -
? @@R
x y

zc

w⌊c/x⌋
f1(z)A x;

f2(z, c)A y -
��	 @@R

x y

z

c

Fig. 3: Eager/lazy interventions.

For a world w and a c ∈ dConst,
we define an eagerly intervened world
w⌈c/x⌉ as the world where [[c]]w is as-
signed to x and is used to compute the
other variables dependent on x. For-
mally, w⌈c/x⌉ is defined by ξw⌈c/x⌉ =
ξw, gw⌈c/x⌉(y) = c if y = x, and
gw⌈c/x⌉(y) = gw(y) if y ̸= x. For in-
stance, in Fig. 3, in the world w⌈c/x⌉, we
use the value of c to compute [[x]]w⌈c/x⌉ =
ξw(c) and [[y]]w⌈c/x⌉ = [[f2(z, x)]]w⌈c/x⌉ =
[[f2(z, c)]]w.

Then the interpretation [[_]]w⌈c/x⌉ defines the joint distribution of all variables
in the causal diagram Gw after the intervention x := [[c]]w; e.g., [[y|z]]w⌈c/x⌉ =
PGw

(y | do(x= [[c]]w), z) (See Proposition 5 in Appendix A.2 for details).
We next define a lazily intervened world w⌊c/x⌋ as the world where x’s value

is unchanged but the other variables dependent on x are computed using [[c]]w
instead of [[x]]w. Formally, w⌊c/x⌋ is defined by ξw⌊c/x⌋ = ξw, gw⌊c/x⌋(y) = x if y =
x, and gw⌊c/x⌋(y) = gw(y)[x 7→ c] if y ̸= x. E.g., in Fig. 3, [[x]]w⌊c/x⌋ = [[f1(z)]]w.

For x= ⟨x1, . . . , xk⟩ and c= ⟨c1, . . . , ck⟩, we define ⌈c/x⌉ from the simultane-
ous replacement gw⌈c1/x1,...,ck/xk⌉. We also define ⌊c/x⌋ analogously.
Kripke Model. Let Psym be a set of predicate symbols. For a variable tuple
x and a deterministic constant tuple c, we introduce an intervention relation
wR⌈c/x⌉w

′ that expresses a transition from a world w to another w′ by the
intervention ⌈c/x⌉; namely, R⌈c/x⌉ = {(w,w′) ∈ W ×W | w′ =w⌈c/x⌉}.

Then we define a Kripke model for statistical causality as a tuple M = (W,
(R⌈c/x⌉)x∈CVar+,c∈dConst+ ,V) consisting of: (1) a set W of all possible worlds over
the set CVar of causal variables; (2) for each x ∈ CVar+ and c ∈ dConst+,
an intervention relation R⌈c/x⌉; (3) a valuation V that maps a k-ary predicate
symbol η ∈ Psym to a set V(η) of k-tuples of distributions.

Notice that different worlds w and w′ inW may have different data generators
gw and gw′ corresponding to different causal diagrams; that is, W specifies all
possible causal diagrams. Furthermore, different worlds w and w′ may also have
different interpretations ξw and ξw′ of function symbols if we do not have the
knowledge of functions [23].

5 Statistical Causality Language

Predicates and Causal Predicates. Classical predicates in Psym describe
statistical correlation among the distributions of variables, and are interpreted
using a valuation V. For example, pos(x) expresses that x takes each value in
the domain O with a non-zero probability. However, predicates cannot express
the statistical causality among variables, whose interpretation relies on a causal
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diagram. Thus, we introduce a set CPsym of causal predicates (e.g., dsep, nanc,
allnanc) and interpret them using a data generator g instead of a valuation V.
Syntax and Semantics of StaCL. We define the set Fml of formulas: For
η ∈ Psym, χ ∈ CPsym, x∈Var+, u∈Term+, c∈Const+, and f ∈Fsym ∪ FVar,

φ ::= η(x, . . . ,x) |χ(x, . . . ,x) |u=u | f = f | true | ¬φ |φ ∧ φ | ⌈c/x⌉φ | ⌊c/x⌋φ.

Intuitively, ⌈c/x⌉φ (resp. ⌊c/x⌋φ) expresses that φ is satisfied in the eager (resp.
lazy) intervened world. We assume that each variable appears at most once in
x in ⌈c/x⌉ and ⌊c/x⌋. We use syntax sugar false, ∨, →, and ↔ as usual. Note
that the formulas have no quantifiers over variables.

We interpret a formula in a world w in a Kripke model M by:

M, w |= η(x1, . . . ,xk) iff ([[x1]]w, . . . , [[xk]]w) ∈ V(η)
M, w |= u = u′ iff [[u]]w = [[u′]]w M, w |= f = f ′ iff [[f ]]w = [[f ′]]w

M, w |= ¬φ iff M, w ̸|= φ M, w |= φ ∧ φ′ iff M, w |= φ and M, w |= φ′

M, w |= ⌈c/x⌉φ iff M, w⌈c/x⌉ |= φ M, w |= ⌊c/x⌋φ iff M, w⌊c/x⌋ |= φ,

where w⌈c/x⌉ and w⌊u/x⌋ are intervened worlds and the interpretation of atomic
formulas with causal predicates χ is given below. For brevity, we often omit M.

Note that η(x1, . . . , xk) represents a property of k independent distributions
[[x1]]w, . . . , [[xk]]w, where the randomness ri in each [[xi]]

ri
w is chosen independently.

In contrast, η(⟨x1, . . . , xk⟩) expresses a property of a single joint distribution,
since the same r is used in all of [[x1]]rw, . . ., [[xk]]rw.

Atomic formulas with causal predicates χ are interpreted using a causal dia-
gram Gw corresponding to gw. Let ANC(y) is the set of all ancestors of y in Gw,
and PA(y) be the set of all parent variables of y in Gw. Then:

w |= dsep(x,y,z) iff x and y are d-separated by z in Gw

w |= nanc(x,y) iff x∩ ANC(y) = ∅ and x∩y = ∅
w |= allnanc(x,y,z) iff x = y \ ANC(z)

w |= pa(x,y) iff x = PA(y) and x ∩ y = ∅,

where the d-separation 5 of x and y by z [35] is a sufficient condition for the
conditional independence of x and y given z (See Appendix A for details).
Formalization of Causal Effect. Conventionally, the conditional probability
of y given z = o2 after an intervention x = o1 is expressed using the do-operator
by P (y | do(x = o1), z = o2). This causal effect can be expressed using StaCL:

Proposition 1 (Causal effect) Let w be a world, x,y, z ∈ Var(w)+ be dis-
joint, c∈ dConst+, c′ ∈Const+, and f ∈Fsym. Then:

(i) w |= ⌈c/x⌉(c′ =y) iff there is a distribution PGw
that is factorized according

to Gw and satisfies PGw
(y | do(x= c))= [[c′]]w.

5 An undirected path in a causal diagram Gw is said to be d-separated by z if it has
either (a) a chain v′ A vA v′′ s.t. v ∈ z, (b) a fork v′ A

vA v′′ s.t. v ∈ z, or (c) a
collider v′ A v

A

v′′ s.t. v ̸∈ z ∪ ANC(z). x and y are said to be d-separated by z if
all undirected paths between variables in x and in z are d-separated by z.
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Axioms for probability distributions

EqC ⊢g c
(g,x) = x

EqF ⊢g f
(g,y|z,x=c) = y|z,x=c

PD ⊢g (pos(x) ∧ c0 = x ∧ f = y|x ∧ c1 = x ::y) → c1=f(c0)

MPD ⊢g x1 ↓x2= x2 if x2 ⊆ x1� �
Fig. 4: The axioms of AX for probability distributions, where x,x1,x2,y ∈
CVar+ are disjoint, c0, c1, c(g,x) ∈ Const, f, f (g,y|z,x=c) ∈ Fsym.

� �
Axioms for eager interventions

DGEI ⊢g ⌈c/x⌉φ iff ⊢g⌈c/x⌉ φ

EffectEI ⊢g ⌈c/x⌉(x = c)

EqEI ⊢g u1 = u2 ↔ ⌈c/x⌉(u1 = u2) if fv(u1) = fv(u2) = ∅
SplitEI ⊢g ⌈c1/x1, c2/x2⌉φ→ ⌈c1/x1⌉⌈c2/x2⌉φ
SimulEI ⊢g ⌈c1/x1⌉⌈c2/x2⌉φ→ ⌈c′1/x′

1, c2/x2⌉φ if x′
1 = x1\x2, c′1 = c1\c2

RptEI ⊢g ⌈c/x⌉φ→ ⌈c/x⌉⌈c/x⌉φ
CmpEI ⊢g

(
⌈c1/x1⌉(x2 = c2) ∧ ⌈c1/x1⌉(x3 = u)

)
→ ⌈c1/x1, c2/x2⌉(x3 = u)

DistrEI
¬ ⊢g (⌈c/x⌉¬φ) ↔ (¬⌈c/x⌉φ)

DistrEI
∧ ⊢g (⌈c/x⌉(φ1 ∧ φ2)) ↔ (⌈c/x⌉φ1 ∧ ⌈c/x⌉φ2)� �� �

Axioms for lazy interventions
CondLI ⊢g (f = y|x=c) ↔ ⌊c/x⌋(f = y|x=c)

Other axioms are analogous to eager interventions except for EffectEI.� �� �
Axioms for the exchanges of eager and lazy interventions

ExpdEILI ⊢g (⌈c/x⌉c′ = y) ↔ (⌊c/x⌋c′ = y)

ExcdEILI ⊢g pos(z)→
(
(⌈c/x⌉f =y|z)↔(⌊c/x⌋f =y|z)

)� �
Fig. 5: The axioms of AX, where x,x1,x2,x3,y, z ∈ CVar+ are disjoint, f ∈
Fsym, c, c1, c2 ∈ dConst+, c′ ∈ Const+, u,u1,u2 ∈ Term+, and φ,φ1, φ2 ∈ Fml.

(ii) w |= ⌈c/x⌉(f =y|z) iff there is a distribution PGw
that is factorized according

to Gw and satisfies PGw
(y | do(x= c), z)= [[f ]]w.

If x and y are d-separated by z, they are conditionally independent given
z [35] (but not vice versa). StaCL can express this by |=g(dsep(x,y, z)∧pos(z)→
y|z,x=c = y|z, where pos(z) means that z takes each value with a positive
probability, and |=g φ is defined as w |=g φ for all world w having the data
generator g . Furthermore, if [[x]]w and [[y]]w are conditionally independent given
[[z]]w for any world w with the data generator gw, then they are d-separated by z:
|=g (pos(z) → y|z,x=c = y|z) implies |=g dsep(x,y, z) (See Proposition 15 in
Appendix C.1).
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6 Axioms for StaCL

We present a sound deductive system for StaCL in the Hilbert style. Our system
consists of axioms and rules for the judgments of the form Γ ⊢g φ.

The deductive system is stratified into two groups. The system AX, deter-
mined by the axioms in Figs. 4 and 5, concerns the derivation of Γ ⊢g φ that
does not involve causal predicates (e.g., pa, nanc, dsep). The system AXCP, de-
termined by the axioms in Fig. 6, concerns the derivation of a formula φ possibly
equipped with causal predicates in a judgment Γ ⊢g φ.

In these systems, we deal only with the reasoning that is independent of a
causal diagram. Indeed, in Section 7, we will present examples of reasoning using
the deductive system AXCP that do not refer to a specific causal diagram.
Axioms of AX. Fig. 4 shows the axioms of the deductive system AX, where
we omitted the axioms for propositional logic and equations (PT for the propo-
sitional tautologies, MP for the modus ponens, Eq1 for the reflexivity, and Eq2
for the substitutions for formulas). EqC and EqF represent the definitions of
constants and function symbols corresponding to causal variables. PD describes
the relationships among the prior distribution x, the conditional distribution y|x
of y given x, and the joint distribution x ::y. MPD represents the computation
↓x2 of the marginal distribution x2 from a joint distribution x1.

The axioms named with the subscript EI deal with eager intervention. Re-
markably, DGEI reduces the derivation of ⊢g ⌈c/x⌉φ, which involves an interven-
tion modality ⌈c/x⌉, to the derivation of ⊢g⌈c/x⌉φ, which does not involve the
modality under the modified data generator g⌈c/x⌉. The axioms DistrEI

¬ and
DistrEI

∧ allow for pushing intervention operators outside logical connectives.
The axioms with the subscript LI deal with lazy intervention; they are analo-

gous to the corresponding EI-rules. The axioms with the subscript EILI describe
when an eager intervention can be exchanged with a lazy intervention.
Axioms of AXCP. Fig. 6 shows the axioms for AXCP. DsepCI represents that
d-separation implies conditional independence. DsepSm, DsepDc, DsepWu,
and DsepCn are the semi-graphoid axioms [35], characterizing the d-separation.
However, these well-known axioms are not sufficient to derive the relationships
between d-separation and interventions. Therefore, we introduce two axioms
DsepEI and DsepLI in Fig. 6 for the d-separation before/after interventions,
and four axioms to reason about the relationships between the causal predicate
nanc and the interventions/d-separation (named Nanc{1,2,3,4} in Fig. 6). By
AllNanc, PaNanc, and PaDsep, we transform the formulas using allnanc
and pa into those with nanc or dsep.
Properties of Axiomatization. For a data generator g , a set Γ def

={ψ1, . . . , ψn}
of formulas, and a formula φ, we write Γ ⊢g φ if there is a derivation of ⊢g (ψ1 ∧
· · · ∧ ψn) → φ using axioms of AX or AXCP. We write Γ |=g φ if for all model
M and all world w having the data generator g , M, w |= φ. Then we obtain the
soundness of AX and AXCP.

Theorem 1 (Soundness) Let g be a finite, closed, and acyclic data generator.
Γ ⊆ Fml, and φ ∈ Fml. If Γ ⊢g φ then Γ |=g φ.
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Axioms for d-separation

DsepCI ⊢g (dsep(x,y,z) ∧ pos(z)) → y|z,x=c =y|z
DsepSm ⊢g dsep(x,y,z) ↔ dsep(y,x,z)

DsepDc ⊢g dsep(x,y ∪ y′,z) → (dsep(x,y,z) ∧ dsep(x,y′,z))

DsepWu ⊢g dsep(x,y ∪ v,z) → dsep(x,y,z ∪ v)

DsepCn ⊢g (dsep(x,y,z)∧dsep(x,v,z ∪ y)) → dsep(x,y ∪ v,z)� �� �
Axioms for d-separation with interventions

DsepEI ⊢g (⌈c/z⌉dsep(x,y,z)) ↔ dsep(x,y,z)

DsepLI ⊢g (⌊c/z⌋dsep(x,y,z)) ↔ dsep(x,y,z)� �� �
Axioms with other causal predicates

Nanc1 ⊢g (nanc(x,y)∧nanc(x,z)) → (f = y|z ↔ ⌈c/x⌉(f = y|z))
Nanc2 ⊢g nanc(x,y) ↔ ⌈c/x⌉nanc(x,y)
Nanc3 ⊢g nanc(x,y) → ⌈c/x⌉dsep(x,y, ∅)
Nanc4 ⊢g (nanc(x,z)∧ dsep(x,y,z))→nanc(x,y)

AllNanc ⊢g allnanc(x,y,z) → nanc(x,z)

PaNanc ⊢g pa(x,y) → nanc(y,x)

PaDsep ⊢g pa(z,x) → ⌊c/x⌋dsep(x,y,z)� �
Fig. 6: The additional axioms for AXCP where x,y,y′, z,v ∈CVar+ are disjoint,
c∈ dConst+, and f∈Fsym.

See Appendices B and C for the proof. As shown in Section 7, AXCP is
expressive enough to derive the rules of Pearl’s do-calculus [29]; it can reason
about all causal effects identifiable by the do-calculus (without referring to a
specific causal diagram). Furthermore, AX includes/derives the axioms used in
the previous work [1] that are complete w.r.t. a different semantics without
dealing with probability distributions. We leave investigating whether AX is
complete w.r.t. our Kripke model for future work. We also remark that AXCP has
axioms corresponding to the composition and effectiveness axioms introduced by
Galles and Pearl [9].

7 Reasoning About Statistical Causality

Deriving the Rules of the Do-Calculus. Using StaCL, we express the do-
calculus’s rules [29], which are sufficient to compute all identifiable causal effects
from observable quantities [16, 32]. Let fv(φ) be the set of all variables occurring
in a formula φ, and cdv(φ) be the set of all conditioning variables in φ.

Proposition 2 (Do-calculus rules) Let v,x,y, z ∈ CVar+ be disjoint, x1,x2 ∈
CVar+, and c0, c1, c2 ∈ dConst+. Let S = cdv(φ0) ∪ cdv(φ1).

1. Do1. Introduction/elimination of conditioning:

⊢g ⌈c0/v⌉(dsep(x,y, z) ∧
∧

s∈S pos(s))→ ((⌈c0/v⌉φ0)↔ ⌈c0/v⌉φ1)
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⊢g ψd1 → ((⌈c/x⌉ψ0)↔ψ1)
Do2

⊢g ψnanc → ((⌈c/x⌉ψ2)↔ψ2)
Nanc3

⊢g ψd2 → ((⌈c/x⌉ψ2)↔ψ2)
Do3 ⊢g (⌈c/x⌉ψ3)↔ψ3

EqEI

ψpre ⊢g (⌈c/x⌉ψ0 ∧ ⌈c/x⌉ψ2 ∧ ⌈c/x⌉ψ3) ↔ (ψ1 ∧ ψ2 ∧ ψ3)

ψpre ⊢g (⌈c/x⌉(ψ0 ∧ ψ2 ∧ ψ3)) ↔ (ψ1 ∧ ψ2 ∧ ψ3)
DistrEI

∧

ψpre ⊢g (⌈c/x⌉c0 = (y|z(z))↓y) ↔ (ψ1 ∧ ψ2 ∧ ψ3)
EqC, EqF, Eq2

ψpre ⊢g (⌈c/x⌉c0 = (y :: z)↓y) ↔ (ψ1 ∧ ψ2 ∧ ψ3)
PD, Eq2

ψpre ⊢g (⌈c/x⌉c0 = y) ↔ (ψ1 ∧ ψ2 ∧ ψ3)
MPD, Eq2

Fig. 7: Sketch of a derivation tree for the correctness of the backdoor adjustment
(Section 2) using AXCP where ψpos

def
= pos(z ::x), ψd1

def
= ⌊c/x⌋dsep(x,y, z)∧ψpos,

ψd2
def
= ⌈c/x⌉dsep(x, z, ∅)∧ψpos, ψnanc

def
= nanc(x, z)∧ψpos, ψpre

def
= ψd1 ∧ψnanc,

ψ0
def
= (f = y|z), ψ1

def
= (f = y|z,x=c), ψ2

def
= (c1 = z), and ψ3

def
= (c0 = f(c1)↓y).

where φ1 is obtained by replacing some occurrences of y|z in φ0 with y|z,x=c1 ;
2. Do2. Exchange between intervention and conditioning:

⊢g ⌈c0/v⌉⌊c1/x⌋(dsep(x,y, z) ∧
∧

s∈S pos(s))→((⌈c0/v, c1/x⌉φ0)↔ ⌈c0/v⌉φ1)

where φ1 is obtained by replacing every occurrence of y|z in φ0 with y|z,x=c1 ;
3. Do3 Introduction/elimination of intervention:

⊢g ⌈c0/v⌉(allnanc(x1,x,y) ∧ ⌈c1/x1⌉(dsep(x,y, z) ∧ pos(z)))

→ ((⌈c0/v⌉φ)↔ ⌈c0/v, c1/x1, c2/x2⌉φ)

where fv(φ) = {y|z} and x
def
= x1 :: x2.

By using the deductive system AXCP, we can derive those rules. Thanks to
the modal operators for lazy interventions, our derivation of those rules is partly
different from Pearl’s [29] in that it does not use diagrams augmented with the
intervention arc of the form Fx A x (See Appendix D for details).
Reasoning About Statistical Adjustment. We present how AXCP can be
used to reason about the correctness of the backdoor adjustment discussed in
Section 2 (See Appendix A.6 for the details of the backdoor adjustment). Fig. 7
shows the derivation of the judgment:

ψpre ⊢g (⌈c/x⌉c0 = y)↔ (ψ1 ∧ ψ2 ∧ ψ3). (3)

This judgment asserts the correctness of the backdoor adjustment in any
causal diagram. Recall that φRCT

def
= (⌈c/x⌉c0 = y) expresses the RCT and

φBDA
def
= (ψ1 ∧ ψ2 ∧ ψ3) expresses the backdoor adjustment. The correctness of

the backdoor adjustment (φRCT ↔ φBDA) depends on the precondition ψpre.
By reading the derivation tree in a bottom-up manner, we observe that the

proof first converts (⌈c/x⌉c0 = y) to a formula to which EqC and EqF are
applicable. Then, the derived axioms Do2 and Do3 in Proposition 2 are used
to complete the proof at the leaves of the derivation.
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In Section 2, we stated the correctness of the backdoor adjustment in (1)
using a simpler requirement pa(z, x) instead of ψd1 and ψnanc. We can derive
the judgment (1) from (3), thanks to the axioms PaDsep and PaNanc.

The derivation does not mention the data generator g representing the causal
diagram G. This exhibits that our logic successfully separates the reasoning
about the properties of arbitrary causal diagrams from those depending on a
specific causal diagram. Once we prove ψpre⊢g φRCT ↔ φBDA using AXCP, one
can claim the correctness of the causal inference (φRCT ↔ φBDA) by checking
that the requirement ψpre indeed holds for a specific causal diagram G.

8 Conclusion

We proposed statistical causality language (StaCL) to formally describe and
explain the correctness of statistical causal inference. We introduced the notion of
causal predicates and Kripke models equipped with data generators. We defined
a sound deductive system AXCP that can deduce all causal effects derived using
Pearl’s do-calculus. In ongoing and future work, we study the completeness of AX
and AXCP and develop a decision procedure for AXCP for automated reasoning.

Acknowledgements. We thank Kenji Fukumizu for providing helpful informa-
tion on the literature on causal inference. The authors are supported by ERATO
HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST.
Yusuke Kawamoto is supported by JST, PRESTO Grant Number JPMJPR2022,
Japan, and by JSPS KAKENHI Grant Number 21K12028, Japan. Tetsuya Sato
is supported by JSPS KAKENHI Grant Number 20K19775, Japan. Kohei Sue-
naga is supported by JST CREST Grant Number JPMJCR2012, Japan.

References

1. Barbero, F., Sandu, G.: Team semantics for interventionist counterfactu-
als: Observations vs. interventions. J. Philos. Log. 50(3), 471–521 (2021).
https://doi.org/10.1007/s10992-020-09573-6

2. Barbero, F., Schulz, K., Smets, S., Velázquez-Quesada, F.R., Xie, K.: Thinking
about causation: A causal language with epistemic operators. In: Proc. the third
International Workshop on Dynamic Logic (DaLí’20). LNCS, vol. 12569, pp. 17–32.
Springer (2020). https://doi.org/10.1007/978-3-030-65840-3\_2

3. Bochman, A.: A logical theory of causality. MIT Press (2021)
4. Bochman, A., Lifschitz, V.: Pearl’s causality in a logical setting. In: Proc.

the Twenty-Ninth AAAI Conference on Artificial Intelligence. pp. 1446–1452.
AAAI Press (2015), http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/
view/9686

5. Corander, J., Hyttinen, A., Kontinen, J., Pensar, J., Väänänen, J.: A logical ap-
proach to context-specific independence. Ann. Pure Appl. Log. 170(9), 975–992
(2019). https://doi.org/10.1016/j.apal.2019.04.004

6. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Approximation
and dependence via multiteam semantics. In: Gyssens, M., Simari, G.R. (eds.)



Formalizing Statistical Causality via Modal Logic 15

Proc. the 9th International Symposium on the Foundations of Information and
Knowledge Systems (FoIKS’16). LNCS, vol. 9616, pp. 271–291. Springer (2016).
https://doi.org/10.1007/978-3-319-30024-5\_15

7. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Probabilistic team
semantics. In: Proc. the 10th International Symposium on the Foundations of In-
formation and Knowledge Systems (FoIKS’18). LNCS, vol. 10833, pp. 186–206.
Springer (2018). https://doi.org/10.1007/978-3-319-90050-6\_11

8. Fernandes-Taylor, S., Hyun, J.K., Reeder, R.N., Harris, A.H.: Common statistical
and research design problems in manuscripts submitted to high-impact medical
journals. BMC Research Notes 4(1), 304 (2011). https://doi.org/10.1186/1756-
0500-4-304, https://doi.org/10.1186/1756-0500-4-304

9. Galles, D., Pearl, J.: An axiomatic characterization of causal counterfactuals. Foun-
dations of Science 3, 151–182 (1998)

10. Halpern, J.Y.: Axiomatizing causal reasoning. J. Artif. Intell. Res. 12, 317–337
(2000). https://doi.org/10.1613/jair.648, https://doi.org/10.1613/jair.648

11. Halpern, J.Y.: A modification of the Halpern-Pearl definition of causality. In: Proc.
IJCAI’15. pp. 3022–3033. AAAI Press (2015)

12. Halpern, J.Y., Pearl, J.: Causes and explanations: A structural-model approach -
part II: explanations. In: Proc. IJCAI’01. pp. 27–34. Morgan Kaufmann (2001)

13. Halpern, J.Y., Pearl, J.: Causes and explanations: A structural-model approach:
Part 1: Causes. In: Proc. UAI’01. pp. 194–202. Morgan Kaufmann (2001)

14. Hirvonen, Å., Kontinen, J., Pauly, A.: Continuous team semantics. In: Proc.
the 15th Annual Conference on Theory and Applications of Models of
Computation (TAMC’19). LNCS, vol. 11436, pp. 262–278. Springer (2019).
https://doi.org/10.1007/978-3-030-14812-6\_16

15. Hodges, W.: Compositional semantics for a language of imperfect information. Log.
J. IGPL 5(4), 539–563 (1997). https://doi.org/10.1093/jigpal/5.4.539

16. Huang, Y., Valtorta, M.: Pearl’s calculus of intervention is complete. In: Proc.
UAI’06. p. 217–224. AUAI Press (2006)

17. Hyttinen, A., Eberhardt, F., Järvisalo, M.: Constraint-based causal discovery: Con-
flict resolution with answer set programming. In: Proc. the Thirtieth Conference
on Uncertainty in Artificial Intelligence (UAI’14). pp. 340–349. AUAI Press (2014)

18. Hyttinen, A., Eberhardt, F., Järvisalo, M.: Do-calculus when the true graph is
unknown. In: Proc. the Thirty-First Conference on Uncertainty in Artificial Intel-
ligence (UAI’15). pp. 395–404. AUAI Press (2015)

19. Ibeling, D., Icard, T.: Probabilistic reasoning across the causal hierarchy. In:
Proc. the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI’20). pp.
10170–10177. AAAI Press (2020), https://aaai.org/ojs/index.php/AAAI/article/
view/6577

20. Kawamoto, Y.: Statistical epistemic logic. In: The Art of Modelling Computational
Systems: A Journey from Logic and Concurrency to Security and Privacy. LNCS,
vol. 11760, pp. 344–362. Springer (2019). https://doi.org/10.1007/978-3-030-31175-
9\_20

21. Kawamoto, Y.: Towards logical specification of statistical machine learning. In:
Proc. SEFM. pp. 293–311 (2019). https://doi.org/10.1007/978-3-030-30446-1\_16

22. Kawamoto, Y.: An epistemic approach to the formal specification of statisti-
cal machine learning. Software and Systems Modeling 20(2), 293–310 (2020).
https://doi.org/10.1007/s10270-020-00825-2

23. Kawamoto, Y., Mano, K., Sakurada, H., Hagiya, M.: Partial knowledge
of functions and verification of anonymity. Transactions of the Japan



16 Y. Kawamoto et al.

Society for Industrial and Applied Mathematics 17(4), 559–576 (2007).
https://doi.org/10.11540/jsiamt.17.4\_559

24. Kawamoto, Y., Sato, T., Suenaga, K.: Formalizing statistical beliefs in hy-
pothesis testing using program logic. In: Proc. KR’21. pp. 411–421 (2021).
https://doi.org/10.24963/kr.2021/39

25. Kawamoto, Y., Sato, T., Suenaga, K.: Sound and relatively complete belief Hoare
logic for statistical hypothesis testing programs. CoRR abs/2208.07074 (2022)

26. Makin, T.R., de Xivry, J.J.O.: Science forum: Ten common statistical mistakes to
watch out for when writing or reviewing a manuscript. Elife 8, e48175 (2019)

27. McCain, N., Turner, H.: Causal theories of action and change. In: Proc. the Four-
teenth National Conference on Artificial Intelligence and Ninth Innovative Applica-
tions of Artificial Intelligence Conference (AAAI’97/IAAI’97). pp. 460–465. AAAI
Press / The MIT Press (1997)

28. Moher, D., Hopewell, S., Schulz, K.F., Montori, V., Gøtzsche, P.C., Devereaux, P.,
Elbourne, D., Egger, M., Altman, D.G.: Consort 2010 explanation and elaboration:
updated guidelines for reporting parallel group randomised trials. International
journal of surgery 10(1), 28–55 (2012)

29. Pearl, J.: Causal diagrams for empirical research. Biometrika 82(4), 669–688
(1995), http://www.jstor.org/stable/2337329

30. Pearl, J.: Causality. Cambridge university press (2009)
31. Rückschloß, K., Weitkämper, F.: Exploiting the full power of Pearl’s causality in

probabilistic logic programming. In: Proc. the 9th Workshop on Probabilistic Logic
Programming (PLP’22). CEUR Workshop Proceedings, vol. 3193. CEUR-WS.org
(2022), http://ceur-ws.org/Vol-3193/paper1PLP.pdf

32. Shpitser, I., Pearl, J.: Identification of conditional interventional distributions. In:
Proc. UAI’06. p. 437–444. AUAI Press (2006)

33. Simpson, E.H.: The interpretation of interaction in contingency tables. Journal
of the Royal Statistical Society. Series B (Methodological) 13(2), 238–241 (1951),
http://www.jstor.org/stable/2984065

34. Triantafillou, S., Tsamardinos, I.: Constraint-based causal discovery from multiple
interventions over overlapping variable sets. J. Mach. Learn. Res. 16, 2147–2205
(2015)

35. Verma, T., Pearl, J.: Causal networks: semantics and expressiveness. In: Proc.
UAI’88. pp. 69–78. North-Holland (1988)

36. Von Elm, E., Altman, D.G., Egger, M., Pocock, S.J., Gøtzsche, P.C., Vanden-
broucke, J.P.: The strengthening the reporting of observational studies in epidemi-
ology (strobe) statement: guidelines for reporting observational studies. Bulletin
of the World Health Organization 85, 867–872 (2007)

Appendix

We present the following technical details:

– Appendix A presents the details of our models and causality.
– Appendix B proves the soundness of the deductive system AX for StaCL.
– Appendix C shows the soundness of the deductive system AXCP for StaCL

with causal predicates.
– Appendix D presents the details of the reasoning and the explanation about

statistical causality using StaCL.
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We first introduce notations. We present key notations in Tables 2 and 3.
For tuples x and x′ of variables, we write x ⊆ x′ iff every variable in x

appears in x′. x \ y is the tuple of variables obtained by removing all variables
in y from x. As with ::, the symbol ‘\’ is a meta-operator on sets of variables,
and not a function symbol. For brevity, we identify a singleton tuple ⟨x⟩ as its
element x.

For u, u′ ∈ Term and x ∈ CVar, the substitution u[x 7→ u′] is the term
obtained by replacing every occurrence of x in u with u′.

We recall that a memory is a joint probability distribution m ∈ D(Var →
O ∪ {⊥}) of data values of all variables in Var. We write m(x) for the joint
distribution of all variables in x.

A Details on Models and Causality

In this section, we show a couple of remarks on the interpretation of terms
(Appendix A.1), the relationships between data generators and causal diagrams
(Appendix A.2), and properties on memories (Appendix A.3). Then we present
more details on causal predicates (Appendix A.4), causal effects (Appendix A.5),
and causal diagrams (Appendix A.6).

Table 2: Notations in syntax.
Symbol Description

CVar Set of causal variable
FVar Set of conditional causal variables
fv(φ) Set of all free variables in a formula φ
cdv(φ) Set of all conditioning variables in a formula φ
Fsym Set of function symbols
pFsym Set of probabilistic function symbols
dFsym Set of deterministic function symbols
Const Set of constants
dConst Set of deterministic constants
⊥ Constant denoting the undefined value
CTerm Set of causal terms
Term Set of terms
Psym Set of predicates
CPsym Set of causal predicates
Fml Set of (causality) formulas

A.1 Remarks on the Interpretation of Terms

We present remarks on the at-most-once condition, on deterministic functions,
and on the well-definedness of the interpretation of terms.
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Table 3: Notations in semantics.
Symbol Description

M Kripke model
W Set of all possible worlds
R⌈c/x⌉ Intervention relation
V Valuation
O Domain of data values
DO Set of all probability distributions over O
w Possible world
w⌈c/x⌉ Eagerly intervened world
w⌊c/x⌋ Lazily intervened world
gw Data generator in a world w
x≺g y y’s value depends on x’s in a data generator g
ξw = {ξrw}r∼I Interpretation of function symbols in a world w
mw Memory on variables in a world w
Gw =(U, V,E) Causal diagram in a world w
paGw

(v) All parent variables of v in Gw

PGw (V ) Joint distribution of all variables V in Gw

Remark on At-Most-Once Condition We remark on the at-most-once con-
dition. In Section 3, we assumed that a data generator satisfies the following
at-most-once condition: Each function symbol f and each constant c can be
used at most once in a single data generator. For example, we may consider the
data generator g3 defined by cAg3 z and f(z, z)Ag1 y as it is. Then g3 rewrites
y into f(c, c) after substitutions. In contrast, the data generator g4 defined by

cAg4 z1, cAg4 z2, f(z1, z2)Ag4 y (4)

also rewrites y into f(c, c), but does not satisfy the at-most-once condition. Thus,
the two calls of the constant c should be distinguished and replaced with two
symbols c1 and c2 (denoting the same distribution of data values as c):

c1 Ag4 z1, c2 Ag4 z2, f(z1, z2)Ag4 y. (5)

Then g4 rewrites y into f(c1, c2). This at-most-once condition clarifies that an
occurrence of a probabilistic constant ci represents a single independent sam-
pling. In the former definition (4) of g4, which does not satisfy the at-most-once
condition, it is not clear whether (i) c is sampled once and its (single) value is
assigned to both y1 and y2, or (ii) it is sampled twice and the drawn (two) val-
ues are assigned to y1 and y2. By imposing the at-most-once condition as in the
latter definition (5), we can clarify that there are two occurrences of sampling
that may use different randomness.

Remark on Interpretation of Terms We remark that two copies of the same
data value are obtained from the distribution [[⟨c, c⟩]]w, whereas two different val-
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ues may be drawn from [[⟨c1, c2⟩]]w for constants c1, c2 denoting the same distri-
bution, i.e., [[c1]]w = [[c2]]w. Indeed, for a randomly chosen r, the former results in
[[⟨c, c⟩]]rξ,g = (ξr(c), ξr(c)). In contrast, the latter results in [[⟨c1, c2⟩]]rξ,g = (ξr(c1),
ξr(c2)), where two data values are sampled independently. Notice that this def-
inition is consistent with the at-most-once condition on a data generator g .

Remark on Deterministic Functions As a remark, we consider probabilistic
and deterministic functions. Let pFsym ⊆ Fsym be the set of all probabilistic
function symbols, each denoting a randomized algorithm that produces a data
value using a randomness drawn internally (e.g., a function that returns a number
obtained by adding a random number to an input). Let dFsymdef

= Fsym\pFsym be
the set of all deterministic function symbols, denoting deterministic algorithms
(e.g., + and −).

If f ∈ dFsym, the interpretation of f is independent of the randomness; i.e.,
ξr(f) = ξr

′
(f) for all r, r′ ∈ I, hence ξ(f) maps k data values o to the Dirac

distribution δξr(f)(o), having a single value ξr(f)(o) with probability 1.
We may relax the at-most-once condition in Section 3 so that deterministic

function symbols do not have to satisfy the condition. This is because the inter-
pretation of a deterministic function symbol f is the same in every occurrence
of f .

Well-definedness of the Interpretation We next show that the interpreta-
tion [[_]]w of terms in a world w is unique thanks to the assumption on the strict
partial order ≺ over the defined causal variables dom(gw) as follows.

Proposition 3 (Well-definedness of [[_]]w) Let u be a term and w = (ξ, g,m)
be a world such that g is closed. Then we have [[u]]w ∈ DOk.

Proof. Since g is closed, we have fv(range(g)) ⊆ dom(g). By the definition of
[[u]]w in Section 4, it suffices to show [[u]]rξ,g ∈ Ok for each r ∈ I.

By the definition of the possible world w, g is finite and acyclic. Then,
≺g is the strict partial order over dom(g) defined in Section 3. For a tuple
x = ⟨x1, . . . , xk⟩ of variables, let cntv(x) be the number of variables z such that
z ≺g xi for some i = 1, . . . , k. Since dom(g) is a finite set, cntv(x) is finite.

Let r ∈ I. We first show that for any x = ⟨x1, . . . , xk⟩ ∈ dom(g)k, we have
[[x]]rξ,g ∈Ok by induction on cntv(x).

– Case cntv(x) = 0. By definition, there is no variable z such that z≺gw xi for
any i = 1, . . . , k; hence fv(g(x)) = ∅. Since g is closed, for each i = 1, . . . , k,
[[g(xi)]]w is defined and represented as [[ci]]w or [[fi(ci1, . . . , cil)]]w for constants
ci, ci1, . . . , cil. Therefore,

[[x]]rξ,g = [[⟨g(x1), . . . , g(xk)⟩]]rξ,g ∈ Ok

follows immediately from the definition of ξr.
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– Case cntv(x) > 0. Let z
def
= ⟨z1, . . . , zl⟩ ⊆ fv(g(x)) for l ≥ 1. From the

strict partial order structure of ≺g , we have cntv(z) < cntv(x). By induc-
tion hypothesis, [[z]]rξ,g ∈ Ol. Then, by the definition of fv(g(x)), for each
i = 1, 2, . . . , l, g(xi) can be represented as a constant ci or a causal term
fi(v1, . . . vl) where vj ∈ CVar ∪ Const for each j = 1, 2, . . . , l. In the for-
mer case, [[g(xi)]]rξ,g = [[ci]]

r
ξ,g = ξr(ci) ∈ O by definition. In the latter case,

[[g(xi)]]
r
ξ,g = [[fi(v1, . . . vl)]]

r
ξ,g . If vi ∈ Const then [[vi]]

r
ξ,g ∈ O is immediate; if

vj ∈ CVar then we obtain vj ∈ fv(g(x)), and hence [[vj ]]
r
ξ,g ∈ O. Therefore,

we conclude:

[[fi(v1, . . . , vl)]]
r
ξ,g = ξr(fi)([[⟨v1, . . . , vl⟩]]rξ,g)

= ξr(fi)([[v1]]
r
ξ,g , · · · , [[vl]]rξ,g) ∈ O.

The rest of the proof is immediately by induction on the structures of tuples
of terms. □

A.2 Relationships Between Data Generators and Causal Diagrams

We show that each data generator corresponds to a DAG (directed acyclic graph)
of the causal model as follows.

Proposition 4 (Acyclicity of G) Let G be the causal diagram corresponding
to a finite and acyclic data generator g. Then G is a finite directed acyclic graph.

Proof. Let G = (U, V,E). Since g is finite, dom(g) and range(g) are finite. By
definition, for each xA y ∈ E, we have x≺g y. Since ≺g is a strict partial order,
so is A. Therefore, G is a finite directed acyclic graph. □

Next, we show that the interpretation [[_]]w defines the joint distribution PGw

of all variables in the causal diagram Gw.

Proposition 5 (Relationship between [[_]]w and PGw
) Let w be a world,

Gw be the causal diagram corresponding to the data generator gw, x,y ∈ CVar+,
z ∈ CVar∗, and c ∈ dConst+. Then there is a joint distribution PGw that factor-
izes according to Gw, and that satisfies:

1. [[y|z]]w = PGw
(y | z)

2. [[y|z]]w⌈c/x⌉ = PGw
(y | do(x= [[c]]w), z).

Proof. We fix a world w. For brevity, we write G
def
= Gw. We recall that G is the

triple (U, V,E) consisting of U def
= fc(range(gw)), V

def
= dom(gw), and the set E of

structural equations defined by gw. Let PG(V ) be the probability distribution
defined in (2).
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We inductively define the set Leafk of variables of depth k from leaves and
its subset LFk having a parent variable by:

V 0 = V,

E0 = E,

Leafk = {v ∈ V k | for all v′ ∈ V k, vA v′ /∈ Ek},
LFk = {v ∈ Leafk | there is a v′′ ∈ V k, v′′ A v /∈ Ek},

V k+1 = V k \ LFk,

Ek+1 = Ek ∩ ((U ∪ V k+1)× V k+1).

This procedure terminates when LFk = ∅. Since gw is finite and acyclic, the
above procedure terminates in a finite number N of steps.

Notice that, by the definition of causal terms, for any k < N and and any
v ∈ V k, gw(v) is of the form f(z1, . . . , zl) for some f ∈ Fsym and z1, . . . , zl ∈
CVar.

For each k = 0, 1. . . . , N , we consider the restricted diagram Gk = (U, V k, Ek).
We first claim that [[V k]]w = PGk(V k) for any k = 0, 1, . . . , N . We prove this

by induction on k as follows.
The base case is k = N . Since no variable in V N has a parent variable, there

is a c ∈ Const+ such that gw(V
N ) = c. Hence,

PG(V N ) = [[c]]w = [[gw(V
N )]]w = [[V N ]]w.

Next, we consider the case k < N . Since the above procedure terminates
exactly at N steps, we obtain LFk ̸= ∅. By applying the induction hypothesis
(the case of k + 1), we obtain PGk+1(V k \ LFk) = PGk+1(V k+1) = [[V k+1]]w =

[[V k \ LFk]]w. Since each causal term is of depth at most 1 by definition, the
set paGk(v) of all parents of a variable v in the causal diagram Gk is given by
fv(gw(v)). Hence,

PGk(V k) = PGk+1(LFk) · PGk+1(V k \ LFk)

=
( ∏
v∈LFk

PGk(v | paGk(v))
)
· PGk+1(V k \ LFk)

=
( ∏
v∈LFk

PGk(v | paGk(v))
)
· [[V k \ LFk]]w

(by induction hypothesis)

= [[V k]]w.

(since each causal term is of depth at most 1)

Therefore, we conclude:

PG(V ) = PG0(V 0) = [[V 0]]w = [[V ]]w.
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Now the first equation in the proposition is obtained as follows.

[[y|z]]w = [[y::z]]w
[[z]]w

=
([[V ]]w)|y::z

([[V ]]w)|z

=
(PGw (V ))|y::z

(PGw (V ))|z

=
PGw (y::z)
PGw (z)

= PGw
(y | z).

Similarly, the second equation in the proposition is obtained as follows. Let
G ′

w be the causal diagram obtained by an intervention x := [[c]]w in Gw.

[[y|z]]w⌈c/x⌉ =
[[y::z]]w⌈c/x⌉
[[z]]w⌈c/x⌉

=
([[V ]]w⌈c/x⌉)|y::z

([[V ]]w⌈c/x⌉)|z

=
(PG′

w
(V ))|y::z

(PG′
w
(V ))|z

=
PGw (y::z | do(x= [[c]]w))
PGw (z | do(x= [[c]]w))

= PGw
(y | do(x= [[c]]w), z).

□

A.3 Properties on Memories

We present basic properties on memories. Intuitively, we show that:

(i) the same formulas φy with free variables y are satisfied in any worlds w and
w′ having the same memory on y;

(ii) an eager and a lazy interventions to x result in the same distribution of the
variables y disjoint from x;

(iii) disjoint worlds w and w′ have data generators gw and gw′ with disjoint
domains.

Proposition 6 (Properties on mw) Let w and w′ be worlds, x,y ∈Var+, c∈ dConst+,
and φy ∈Fml with fv(φy) = y.

(i) If mw(y) = mw′(y) ̸= ⊥, then w |= φy iff w′ |= φy.
(ii) If x ∩ y = ∅, then mw⌈c/x⌉(y) = mw⌊c/x⌋(y).
(iii) If Var(w)∩Var(w′) = ∅ (namely, dom(mw)∩dom(mw′) = ∅), then dom(gw)∩

dom(gw′) = ∅.

Proof. (i) Assume that mw(y) = mw′(y) ̸= ⊥. Then we prove w |= φy iff
w′ |= φy by induction on φy.
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If φy
def
= η(y) for η ∈ Psym, then:

w |= η(y)

iff mw(y) ∈ V(η)
iff mw′(y) ∈ V(η) (by mw(y) = mw′(y) ̸= ⊥)
iff w′ |= η(y).

The other cases are straightforward by definitions.
(ii) Assume x ∩ y = ∅. By definition, we obtain:

mw⌈c/x⌉(y) = [[gw⌈c/x⌉(y)]]w⌈c/x⌉

= [[gw(y)]]w⌈c/x⌉ (by x ∩ y = ∅)
= [[gw(y)[x 7→ c]]]w⌈c/x⌉

= [[gw(y)[x 7→ c]]]w⌊c/x⌋ (by x ∩ fv(gw(y)[x 7→ c]) = ∅)
= [[gw⌊c/x⌋(y)]]w⌊c/x⌋

= mw⌊c/x⌋(y).

(iii) By the definition of possible worlds, we have dom(gw) ⊆ dom(mw) and
dom(gw′) ⊆ dom(mw′). Therefore, we obtain dom(gw)∩dom(gw′) ⊆ dom(mw)
∩ dom(mw′) = ∅.

□

A.4 Causal Predicates

Next, we present more details on causal predicates. Among the causal predicates
listed below, our deduction system AXCP requires only dsep, nanc, and allnanc.
For the sake of convenience, we can use pa, but it is sufficient for us to derive
the formulas equipped with pa from those with nanc. Thus, we do not deal with
axioms of the other predicates in this paper.

We show a list of causal predicates as follows.

– dsep(x,y, z) x and y are d-separated by z;
– pa(x,y) x is the set of all parents of variables in y;
– npa(x,y) x is a set of non-parents of variables in y;
– anc(x,y) x is the set of all ancestors of variables in y;
– nanc(x,y) x is a set of non-ancestors of variables in y;
– allnanc(x,y, z) x is the set of all variables in y that are not ancestors of

any variables in z.

These causal predicates are interpreted using a data generator gw in a world w
as follows.

Definition 1 (Semantics of dsep, pa, npa, anc, nanc, allnanc). Let w be a
world, and Gw be the causal diagram corresponding to gw. Let PA(y) be the set
of all parent variables of y:

PA(y) = {x ∈ Var(w) | xA y′, y′ ∈ y}.
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Let ANC(y) is the set of all ancestors variables of y:

ANC(y) = {x ∈ Var(w) | xA
+ y′, y′ ∈ y}

where A
+ is the transitive closure of A. The interpretations of the causal pred-

icates dsep, pa,npa, anc,nanc, allnanc are given as follows:

w |= dsep(x,y, z) iff x and y are d-separated by z in Gw

w |= pa(x,y) iff x = PA(y) and x ∩ y = ∅
w |= npa(x,y) iff x∩ PA(y) = ∅ and x∩y = ∅
w |= anc(x,y) iff x = ANC(y) and x ∩ y = ∅
w |= nanc(x,y) iff x∩ ANC(y) = ∅ and x∩y = ∅

w |= allnanc(x,y, z) iff x = y \ ANC(z),

where we recall the notion of d-separation in Appendix A.6.

Proposition 7 (Relationships among causal predicates) The causal pred-
icates pa, npa, anc, and nanc satisfy the relationships:

1. |= pa(x,y)→ anc(x,y).
2. |= anc(x,y)→ nanc(y,x).
3. |= nanc(y,x)→ npa(y,x).

Proof. These claim are straightforward from Definition 1. □

A.5 Causal Effect

We show that the causal effect can be expressed using a StaCL formula as follows.

Proposition 1 (Causal effect) Let w be a world, x,y, z ∈ Var(w)+ be dis-
joint, c∈ dConst+, c′ ∈Const+, and f ∈Fsym. Then:

(i) w |= ⌈c/x⌉(c′ =y) iff there is a distribution PGw
that is factorized according

to Gw and satisfies PGw
(y | do(x= c))= [[c′]]w.

(ii) w |= ⌈c/x⌉(f =y|z) iff there is a distribution PGw that is factorized according
to Gw and satisfies PGw

(y | do(x= c), z)= [[f ]]w.

Proof. We show the first claim as follows. By Proposition 5, there is a joint
distribution PGw

that is factorized according to Gw and that satisfies [[y]]w⌈c/x⌉ =
PGw

(y | do(x= [[c]]w)). Thus, we obtain:

w |= ⌈c/x⌉(c′ =y)

iff w⌈c/x⌉ |= c′ =y

iff [[y]]w⌈c/x⌉ = [[c′]]w

iff PGw
(y | do(x= [[c]]w))= [[c′]]w.
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Analogously, the second claim is obtained as follows. By Proposition 5, there
is a joint distribution PGw

that is factorized according to Gw and that satisfies
[[y|z]]w⌈c/x⌉ = PGw(y | do(x= [[c]]w), z). Thus, we obtain:

w |= ⌈c/x⌉(c′ =y|z)
iff w⌈c/x⌉ |= c′ =y|z
iff [[y|z]]w⌈c/x⌉ = [[c′]]w

iff PGw
(y | do(x= c), z)= [[c′]]w.

□

A.6 Details on Causal Diagrams

Next, we recall the notion of d-separation [35] as follows.

Definition 2 (d-separation). Let x,y, z be disjoint sets of variables, and
ANC∗(z)

def
= z ∪ ANC(z) be the union of z and the set of z’s all ancestors. An

undirected path p is said to be d-separated by z if it satisfies one of the following
conditions:

(a) p has a chain v′ A vA v′′ s.t. v ∈ z.
(b) p has a fork v′ A

vA v′′ s.t. v ∈ z.
(c) p has a collider v′ A v

A
v′′ s.t. v ̸∈ ANC∗(z).

x and y are d-separated by z if all undirected paths between variables in x and
in z are d-separated by z.

We also recall the notion of back-door path as follows.

Definition 3 (Back-door path). For variables x and y, a back-door path from
x to y in a causal diagram G is an arbitrary undirected path between x and y in
G that starts with an arrow pointing to x (i.e., an undirected path of the form
x

A

v · · · y). For tuples of variables x and y, a back-door path from x to y is an
arbitrary back-door path from x ∈ x to y ∈ y.

We remark on the relationships between back-door paths and two kinds of
interventions as follows.

Remark 1. An eager intervention ⌈c/x⌉ can remove all back-door paths from x
to y, because all of these paths have arrows pointing to x and ⌈c/x⌉ removes all
such arrows.

In contrast, a lazy intervention ⌊c/x⌋ can remove all undirected paths be-
tween x and y except for all back-door paths from x to y, because ⌊c/x⌋ re-
moves all arrows emerging from x while keeping all arrows pointing to x. Thus,
⌊c/x⌋dsep(x,y, z) represents that all back-door paths from x to y are d-separated
by z.
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These relationships are used to reason about the causality, e.g., when we
derive the second rule of Pearl’s do-calculus using our StaCL (Proposition 2).

Now we recall the back-door criteria and the back-door adjustment in Pearl’s
causal model.

Definition 4 (Back-door criterion). For two sets x and y of variables, a set
z of variables satisfies the back-door criterion in a causal diagram G if (i) no
variable in z is a descendent of an element of x in G and (ii) all back-door paths
from x to y are d-separated by z in G.

The back-door criterion is expressed as the following StaCL formula:

nanc(x, z) ∧ ⌊c/x⌋dsep(x,y, z).

When z satisfies the back-door criterion in a causal diagram G, then the
causal effect of x on y is given by:

PG(y | do(x)) =
∑
z

PG(y | z,x)PG(z).

In Fig. 7 in Section 7, we show a derivation tree for the correctness of com-
puting the causal effect using the backdoor adjustment.

B Proof for the Soundness of AX

We show that the deductive system AX of StaCL is sound w.r.t. the Kripke
semantics for statistical causality (Theorem 1).

We first remark that AX satisfies the deduction theorem.

Proposition 8 (Deduction) Let Γ ⊆ Fml, and φ1, φ2 ∈ Fml. Then Γ ⊢g φ1 →
φ2 iff Γ, φ1 ⊢g φ2.

Proof. The direction from left to right is straightforward by the application of
MP. The other direction is shown as usual by induction on the derivation. □

We prove the soundness of AX as follows. We show the validity of the axioms
for basic constructs (Appendix B.1), for eager interventions (Appendix B.2), for
lazy interventions (Appendix B.3), and for the exchanges of eager/lazy interven-
tions (Appendix B.4).
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B.1 Validity of the Basic Axioms

Here are the basic axioms of AX without interventions.

PT ⊢g φ for a propositional tautology φ
MP φ1, φ1 → φ2 ⊢g φ2

Eq1 ⊢g x = x

Eq2 ⊢g x = y → (φ1 → φ2)

where φ2 is the formula obtained by replacing
any number of occurrences of x in φ1 with y

EqC ⊢g c(g,x) = x

EqF ⊢g f (g,y|z,x=c) = y|z,x=c

PD ⊢g (pos(x) ∧ c0=x ∧ f=y|x ∧ c1=x ::y)→ c1=f(c0)

MPD ⊢g x1 ↓x2= x2 if x2 ⊆ x1

The validity of the rules PT, MP, Eq1, Eq2, is straightforward. The validity
of EqC and EqF is by the definition of the interpretation of the constants and
function symbols introduced for the purpose of reasoning (Section 4):

ξr(c(g,x)) = [[x]]rξ,g

ξr(f (g,y|z,x=c)) = [[y|z,x=c]]
r
ξ,g .

We show the validity of PD and MPD as follows.

Proposition 9 (Probability distributions) Let x,x1,x2, y ∈ CVar+, c0, c1 ∈
Const, and f ∈ Fsym.
(i) PD ⊢g (pos(x) ∧ c0=x ∧ f=y|x ∧ c1=x ::y)

→ c1=f(c0).
(ii) MPD ⊢g x1 ↓x2= x2 if x2 ⊆ x1.

Proof. Let w = (gw, ξw,mw) be a world such that x,x1,x2,y ∈ Var(w)+.

(i) We show the validity of PD as follows. Suppose that w |= pos(x) ∧ c0=x ∧
f=y|x ∧ c1=x ::y. Then we have [[x]]w(o

′
x) > 0 for all o′x ∈ O|x|, [[c0]]w =

[[x]]w, [[c1]]w = [[x ::y]]w, and [[f ]]w = [[y|x]]w. Since [[x]]w(o
′
x) > 0, we have:

([[y|x]]w(o′x)) =
∑

o′y

[[x ::y]]w(o′x,o
′
y)

[[x]]w(o′x)
· δ(o′x,o′y).

Thus, for each ox ∈ O|x| and oy ∈ O|y|, we have:

[[f(c0)]]w(ox, oy)

= ([[f ]]w[[c0]]w)(ox, oy)

= ([[y|x]]w[[x]]w)(ox, oy)

=
(∑

o′x

∑
o′y

[[x ::y]]w(o′x,o
′
y)

[[x]]w(o′x)
[[x]]w(o

′
x) · δ(o′x,o′y)

)
(ox, oy)

= [[x ::y]]w(ox, oy)

= [[c1]]w(ox, oy).
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Therefore, we obtain w |= c1=f(c0).
(ii) We show the validity of MPD as follows. Let ⊗ be the product of probability

distributions of data values. Let x1 = {x1, . . . , xk}. Assume that ∅ ≠ x2 ⊆
x1. Then we may write x2 = {xl(1), . . . , xl(k′)} for some 1 ≤ k′ ≤ k and
monotone increasing function l : {1, . . . , k′} → {1, . . . , k}. Using this, we
obtain:

[[x1 ↓x2 ]]w

= [[↓x2 ]]w[[x1]]w

= ((o1, . . . , ok) 7→ (ol(1), . . . , ol(k′)))[[⟨x1, . . . , xk⟩]]w
= ((o1, . . . , ok) 7→ (ol(1), . . . , ol(k′)))[[x1]]w ⊗ · · · ⊗ [[xk]]w

= [[xl(1)]]w ⊗ · · · ⊗ [[xl(k′)]]w

= [[⟨xl(1), . . . , xl(k′)⟩]]w = [[x2]]w.

Therefore, we obtain w |= x1 ↓x2= x2 if x2 ⊆ x1. □

B.2 Validity of the Axioms for Eager Interventions

Here are the axioms of AX with the eager interventions ⌈·⌉.

DGEI ⊢g ⌈c/x⌉φ iff ⊢g⌈c/x⌉ φ
EffectEI ⊢g ⌈c/x⌉(x = c)

EqEI ⊢g u1 = u2 ↔ ⌈c/x⌉(u1 = u2)

if fv(u1) = fv(u2) = ∅
SplitEI ⊢g ⌈c1/x1, c2/x2⌉φ→ ⌈c1/x1⌉⌈c2/x2⌉φ
SimulEI ⊢g ⌈c1/x1⌉⌈c2/x2⌉φ→ ⌈c′

1/x′
1, c2/x2⌉φ

for x′
1 = x1 \ x2 and c′1 = c1 \ c2

RptEI ⊢g ⌈c/x⌉φ→ ⌈c/x⌉⌈c/x⌉φ
CmpEI ⊢g

(
⌈c1/x1⌉(x2 = c2) ∧ ⌈c1/x1⌉(x3 = u)

)
→ ⌈c1/x1, c2/x2⌉(x3 = u)

DistrEI
¬ ⊢g (⌈c/x⌉¬φ)↔ (¬⌈c/x⌉φ)

DistrEI
∧ ⊢g (⌈c/x⌉(φ1 ∧ φ2))↔ (⌈c/x⌉φ1 ∧ ⌈c/x⌉φ2)

Next, we show basic laws of eager interventions as follows.

Proposition 10 (Basic laws of ⌈·⌉) Let x,x1,x2,x3,y, z ∈ CVar+ be dis-
joint, c, c1, c2 ∈ dConst+, u,u1,u2 ∈ Term+, and φ ∈ Fml.

1. DGEI |=g⌈c/x⌉φ iff |=g⌈c/x⌉ φ.
2. EffectEI |= ⌈c/x⌉(x = c).
3. EqEI |= u1 = u2 ↔ ⌈c/x⌉(u1 = u2)

if fv(u1) = fv(u2) = ∅.
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4. SplitEI |= ⌈c1/x1, c2/x2⌉φ→ ⌈c1/x1⌉⌈c2/x2⌉φ.
5. SimulEI |= ⌈c1/x1⌉⌈c2/x2⌉φ→ ⌈c′

1/x′
1, c2/x2⌉φ

for x′
1 = x1 \ x2 and c′1 = c1 \ c2.

6. RptEI |= ⌈c/x⌉φ→ ⌈c/x⌉⌈c/x⌉φ.
7. CmpEI |=

(
⌈c1/x1⌉(x2 = c2) ∧ ⌈c1/x1⌉(x3 = u)

)
→ ⌈c1/x1, c2/x2⌉(x3 = u).

Proof. Let w = (gw, ξw,mw) be a world such that x,x1,x2,x3,y, z ∈ Var(w)+.

1. Assume that |=g⌈c/x⌉ φ. Then for any world w′ having the data generator g ,
we have w′⌈c/x⌉ |= φ, hence w′ |= ⌈c/x⌉φ. Therefore, |=g⌈c/x⌉φ. The other
direction is also shown analogously.

2. By the definition of an eagerly intervened world in Section 4, we have gw⌈c/x⌉(x) =
c. By ξw = ξw⌈c/x⌉, [[c]]w = [[c]]w⌈c/x⌉.
Then [[x]]w⌈c/x⌉ = [[gw⌈c/x⌉(x)]]w⌈c/x⌉ = [[c]]w⌈c/x⌉. Hence w⌈c/x⌉ |= x = c.
Therefore, w |= ⌈c/x⌉(x = c).

3. Assume that fv(u1) = fv(u2) = ∅. Then for each i = 1, 2, [[ui]]w = [[ui]]w⌈c/x⌉.
Hence, |= u1 = u2 ↔ ⌈c/x⌉(u1 = u2).

4. The proof is straightforward from the definition.
5. The proof is straightforward from the definition.
6. The proof is straightforward from the definition.
7. Assume that w |= ⌈c1/x1⌉(x2 = c2)∧ ⌈c1/x1⌉(x3 = u). Then gw⌈c1/x1⌉(x2) =

c2 and gw⌈c1/x1⌉(x3) = u. Let w′ = w⌈c1/x1⌉. Thus,

[[gw⌈c1/x1,c2/x2⌉(x3)]]w⌈c1/x1,c2/x2⌉

= [[gw′⌈c2/x2⌉(x3)]]w′⌈c2/x2⌉

= [[gw′(x3)]]w′⌈c2/x2⌉

= [[u]]w⌈c1/x1,c2/x2⌉.

Therefore, w |= ⌈c1/x1, c2/x2⌉(x3 = u). □

The eager intervention operator ⌈·⌉ is distributive w.r.t. logical connectives.

Proposition 11 (Distributive laws of ⌈·⌉) Let x ∈ CVar+, c ∈ dConst+,
and φ,φ′ ∈ Fml.

(i) DistrEI
¬ |= ⌈c/x⌉¬φ↔ ¬⌈c/x⌉φ.

(ii) DistrEI
→ |= ⌈c/x⌉(φ→ φ′)↔

(
⌈c/x⌉φ→ ⌈c/x⌉φ′).

Similarly, the eager intervention operator ⌈·⌉ is distributive w.r.t. ∨ and ∧.

Proof. Let w be a world such that x ∈ Var(w)+.

(i)

w |= ⌈c/x⌉¬φ iff w⌈c/x⌉ |= ¬φ
iff w⌈c/x⌉ ̸|= φ

iff w ̸|= ⌈c/x⌉φ
iff w |= ¬⌈c/x⌉φ.
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(ii) We first show the direction from left to right as follows.

w |= ⌈c/x⌉(φ→ φ′) and w |= ⌈c/x⌉φ
=⇒ w⌈c/x⌉ |= φ→ φ′ and w⌈c/x⌉ |= φ

=⇒ w⌈c/x⌉ |= φ′

=⇒ w |= ⌈c/x⌉φ′.

We next show the other direction as follows. Assume that w |= ⌈c/x⌉φ →
⌈c/x⌉φ′. Then:

w⌈c/x⌉ |= φ

=⇒ w |= ⌈c/x⌉φ
=⇒ w |= ⌈c/x⌉φ′ (by assumption)
=⇒ w⌈c/x⌉ |= φ′.

Hence w |= ⌈c/x⌉(φ→ φ′) iff w |= ⌈c/x⌉φ→ ⌈c/x⌉φ′. □

B.3 Validity of the Axioms for Lazy Interventions

Here are the axioms of AX with the lazy interventions ⌊·⌋.

DGLI ⊢g ⌊c/x⌋φ iff ⊢g⌊c/x⌋ φ
CondLI ⊢g (f = y|x=c)↔ ⌊c/x⌋(f = y|x=c)

EqLI ⊢g u1 = u2 ↔ ⌊c/x⌋(u1 = u2)

if fv(u1) = fv(u2) = ∅
SplitLI ⊢g ⌊c1/x1, c2/x2⌋φ→ ⌊c1/x1⌋⌊c2/x2⌋φ
SimulLI ⊢g ⌊c1/x1⌋⌊c2/x2⌋φ→ ⌊c′

1/x′
1, c2/x2⌋φ

if x′
1 = x1 \ x2 and c′1 = c1 \ c2

RptLI ⊢g ⌊c/x⌋φ→ ⌊c/x⌋⌊c/x⌋φ
CmpLI ⊢g

(
⌊c1/x1⌋(x2 = c2) ∧ ⌊c1/x1⌋(x3 = u)

)
→ ⌊c1/x1, c2/x2⌋(x3 = u)

DistrLI
¬ ⊢g (⌊c/x⌋¬φ)↔ (¬⌊c/x⌋φ)

DistrLI
∧ ⊢g (⌊c/x⌋(φ1 ∧ φ2))↔ (⌊c/x⌋φ1 ∧ ⌊c/x⌋φ2)

Proposition 12 (Basic properties of ⌊·⌋) Let x,x1,x2,x3,y ∈ CVar+ be dis-
joint, c, c1, c2 ∈ dConst+, u,u1,u2 ∈ Term+, f ∈ Fsym, and φ ∈ Fml.

1. DGLI |=g⌊c/x⌋φ iff ⊢g⌊c/x⌋φ.
2. CondLI |= (f = y|x=c)↔ ⌊c/x⌋(f = y|x=c).
3. EqLI |= u1 = u2 ↔ ⌊c/x⌋(u1 = u2) if fv(u1) = fv(u2) = ∅.
4. SplitLI |= ⌊c1/x1, c2/x2⌋φ→ ⌊c1/x1⌋⌊c2/x2⌋φ
5. SimulLI |= ⌊c1/x1⌋⌊c2/x2⌋φ→ ⌊c′

1/x′
1, c2/x2⌋φ if x′

1=x1\x2 and c′1=c1\c2.
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6. RptLI |= ⌊c/x⌋φ→ ⌊c/x⌋⌊c/x⌋φ.
7. CmpLI |=

(
⌊c1/x1⌋(x2 = c2) ∧ ⌊c1/x1⌋(x3 = u)

)
→ ⌊c1/x1, c2/x2⌋(x3 = u).

Proof. Let w = (gw, ξw,mw) be a world such that x,x1,x2,x3,y ∈ Var(w)+.

1. The proof is similar to Proposition 10.
2. Let gw(x) = u, Gw be the causal diagram corresponding to gw, and DEC(x)

be the set of all descendant variables of x. Let y0,y1 be possibly empty
tuples of variables such that y = y0 ::y1, y0 ⊆ DEC(x), and y1∩DEC(x) = ∅.
Then on every undirected path between y0 and y1 in Gw, x are on chains
or forks. Hence PGw

(y0 :: y1|x) = PGw
(y0|x) · PGw

(y1|x). Thus, we obtain:

[[y|x=c]]w

= PGw(y0 :: y1|x = c)

= PGw(y0|x = c) · PGw(y1|x = c)

= PGw⌊c/x⌋(y0|x = c) · PGw⌊c/x⌋(y1|x = c)

= PGw⌊c/x⌋(y0 :: y1|x = c)

= [[y|x=c]]w⌊c/x⌋.

Therefore, w |= f = y|x=c iff w |= ⌊c/x⌋f = y|x=c.
3. Assume that fv(u1) = fv(u2) = ∅. Then for each i = 1, 2, [[ui]]w = [[ui]]w⌊c/x⌋.

Hence, |= u1 = u2 ↔ ⌊c/x⌋(u1 = u2).
4. The proof is straightforward from the definition.
5. The proof is straightforward from the definition.
6. The proof is straightforward from the definition.
7. Assume that w |= ⌊c1/x1⌋(x2 = c2)∧⌊c1/x1⌋(x3 = u). Then gw⌊c1/x1⌋(x2) =

c2 and gw⌊c1/x1⌋(x3) = u. Let w′ = w⌊c1/x1⌋. Thus,

[[gw⌊c1/x1,c2/x2⌋(x3)]]w⌊c1/x1,c2/x2⌋

= [[gw′⌊c2/x2⌋(x3)]]w′⌊c2/x2⌋

= [[gw′(x3)[x2 7→ c2]]]w′⌊c2/x2⌋

= [[u[x2 7→ c2]]]w′⌊c2/x2⌋

= [[u]]w′⌊c2/x2⌋.

= [[u]]w⌊c1/x1,c2/x2⌋.

Therefore, w |= ⌊c1/x1, c2/x2⌋(x3 = u). □

The lazy intervention operator⌊·⌋ is also distributive w.r.t. logical connec-
tives.

Proposition 13 (Distributive laws of ⌊·⌋) Let x ∈ CVar+, c ∈ dConst+,
and φ,φ′ ∈ Fml.

(i) DistrLI
¬ |= ⌊c/x⌋¬φ↔ ¬⌊c/x⌋φ.

(ii) DistrLI
→ |= ⌊c/x⌋(φ→ φ′)↔

(
⌊c/x⌋φ→ ⌊c/x⌋φ′).

Similarly, the lazy intervention operator ⌊·⌋ is distributive w.r.t. ∨ and ∧.

Proof. The proofs are analogous to those for Proposition 11. □
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B.4 Validity of the Exchanges of Eager/Lazy Interventions

Here are the axioms of AX for the exchanges of eager/lazy interventions.

ExpdEILI ⊢g (⌈c/x⌉c′ = y)↔ (⌊c/x⌋c′ = y)

ExcdEILI ⊢g pos(z)→
(
(⌈c/x⌉f = y|z)↔(⌊c/x⌋f = y|z)

)
Proposition 14 (Exchanges of ⌈·⌉ and ⌊·⌋) Let x,y, z ∈ CVar+, c, c′ ∈ dConst+,
and f ∈ Fsym.

(i) ExpdEILI |= (⌈c/x⌉c′ = y)↔ (⌊c/x⌋c′ = y).
(ii) ExcdEILI |= pos(z)→

(
(⌈c/x⌉f =y|z)↔(⌊c/x⌋f =y|z)

)
.

Proof. (i) Let w be a world. By Proposition 6 (ii), we have: [[y]]w⌈c/x⌉ = mw⌈c/x⌉(y) =
mw⌊c/x⌋(y) = [[y]]w⌊c/x⌋. Therefore, we obtain the claim.

(ii) Let w be a world such that w |= pos(z). Let c1, c2 ∈ dConst+. By the first
claim, we have w |= (⌈c/x⌉c1 = y :: z) ↔ (⌊c/x⌋c1 = y :: z) and w |=
(⌈c/x⌉c2 = z)↔ (⌊c/x⌋c2 = z). Then we have:

[[y|z]]w⌈c/x⌉ =
[[y :: z]]w⌈c/x⌉

[[z]]w⌈c/x⌉

=
[[y :: z]]w⌊c/x⌋

[[z]]w⌊c/x⌋

= [[y|z]]w⌊c/x⌋

Therefore, we obtain the claim. □

B.5 Remarks on Axioms and Invalid Formulas

From our axioms, we can derive the following formulas that are considered as
axioms in the previous work [1].

Unq ⊢g ⌈u/x⌉(y = d)→ ⌈u/x⌉(y ̸= d′) for d ̸= d′

We show examples formulas that are not valid in our model. The following
formulas suggest the difference between the intervention ⌈c/x⌉φ and the condi-
tioning (x = c)→ φ.

– Strengthened intervention:
⌈u1/x1⌉φ ̸|= ⌈u1/x1, u2/x2⌉φ.

– Pseudo transitivity:
(⌈u/x⌉y = d) ∧ ⌈d/y⌉φ ̸|= ⌈u/x⌉φ.

– Weak pseudo transitivity:
(⌈u/x⌉y = d) ∧ ⌈u/x, d/y⌉φ ̸|= ⌈u/x⌉φ.

– Pseudo contraposition:
⌈u/x⌉d = y ̸|= ⌈d/y⌉(x = u).
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– Replacing conjunction with intervention:
x = u ∧ φ ̸|= ⌈u/x⌉φ.

– Pseudo Modus Ponens:
(x = u ∧ ⌈u/x⌉φ) ̸|= φ.

– Pseudo Modus Tollens:
(¬φ ∧ ⌈u/x⌉φ) ̸|= (x ̸= u).

Similar formulas are not valid also in [1], which does not deal with probability
distributions.

B.6 Remark on Defining Lazy Interventions as Syntax Sugar

We remark that a lazy intervention ⌊c/x⌋ can be defined as syntax sugar if we
expand data generators.

Recall that ⌊c/x⌋φ expresses that φ is satisfied in the lazy intervened world:

M, w |= ⌊c/x⌋φ iff M, w⌊c/x⌋ |= φ.

To define ⌊c/x⌋φ as syntax sugar, we expand the data generator gw as follows. For
each x ∈ dom(gw), we introduce a fresh auxiliary variable x′, add gw(x

′) = x,
and replace every occurrence of x in range(gw) with x′. Then the corresponding
causal diagram has arrows xA x′ and x′ A y instead of xA y. Now the lazy
intervention ⌊c/x⌋φ can be defined as the eager intervention ⌈c/x′⌉φ.

In summary, we can replace the lazy intervention ⌊c/x⌋φ with its correspond-
ing eager intervention ⌈c/x′⌉φ by considering a model M that have possible
worlds equipped only with expanded data generators.

C Proof for the Soundness of AXCP

In this section, we prove the soundness of AXCP w.r.t. the Kripke semantics for
statistical causality by showing the validity of the axioms with the d-separation
predicate dsep (Appendix C.1), with the non-ancestor causal predicate nanc
(Appendix C.2), and with other causal predicates (Appendix C.3)

C.1 Validity of the Axioms with d-Separation

Here are the axioms of AXCP with the d-separation dsep.

DsepCI ⊢g (dsep(x,y, z) ∧ pos(z))→ y|z,x=c = y|z
DsepSm ⊢g dsep(x,y, z)↔ dsep(y,x, z)

DsepDc ⊢g dsep(x,y∪y′, z)→ (dsep(x,y, z) ∧ dsep(x,y′, z))

DsepWu ⊢g dsep(x,y∪v, z)→ dsep(x,y, z∪v)
DsepCn ⊢g (dsep(x,y, z)∧dsep(x,v, z∪y))→ dsep(x,y∪v, z)
DsepEI ⊢g (⌈c/z⌉dsep(x,y, z))↔ dsep(x,y, z)

DsepLI ⊢g (⌊c/z⌋dsep(x,y, z))↔ dsep(x,y, z)

DsepLIC ⊢g dsep(x,y, z ∪ z′)→ ⌊c/z⌋dsep(x,y, z′)
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We first show the validity of DsepCI. It is well-known that the d-separation in
a causal diagram G implies the conditional independence, but not vice versa [30].
However, if [[x]]w and [[y]]w are conditionally independent given [[z]]w for any
interpretation [[_]]w factorizing G (i.e., for any world w with the data generator
gw corresponding to G), then they are d-separated by z.

Proposition 15 (d-separation and conditional independence) Let x,y ∈
CVar+ and z ∈ CVar∗ be disjoint. Let c ∈ dConst+.

1. DsepCI
|= (dsep(x,y, z) ∧ pos(z))→ y|z,x=c = y|z.

2. For any finite, closed, acyclic data generator g, we have:

|=g (pos(z)→ y|z,x=c = y|z) implies |=g dsep(x,y, z). (6)

Proof. We show the first claim as follows. Let w be a world. Assume that w |=
dsep(x,y, z)∧pos(z). Then in the causal diagram Gw, x and y are d-separated
by z. Thus, x and y are conditionally independent given z. Therefore, w |=
y|z,x=c = y|z.

We show the second claim as follows. Assume that |=g (pos(z)→ y|z,x=c =
y|z). Then, for any world w with a data generator g, [[x]]w and [[y]]w are condi-
tionally independent given [[z]]w. Let G be the causal diagram corresponding to
g. We recall that if x and y are conditionally independent given z for any joint
distribution PG factorized according to G, then they are d-separated by z in G
(see e.g., [30]). Therefore, we obtain |=g dsep(x,y, z). □

d-separation is known to satisfy the semi-graphoid axioms [35], which we can
describe using our logic as follows:

Proposition 16 (Semi-graphoid) Let x,y,y′ ∈ CVar+ and z,v ∈ CVar∗ be
disjoint. Then dsep satisfies:

1. DsepSm (symmetry):
|= dsep(x,y, z)↔ dsep(y,x, z).

2. DsepDc (decomposition):
|= dsep(x,y ∪ y′, z)→ (dsep(x,y, z) ∧ dsep(x,y′, z)).

3. DsepWu (weak union):
|= dsep(x,y ∪ v, z)→dsep(x,y, z ∪ v).

4. DsepCn (contraction):
|= (dsep(x,y, z) ∧ dsep(x,v, z ∪ y))→ dsep(x,y ∪ v, z).

The causal predicates and interventions satisfy the following axioms, which
are later used in Appendix D to prove the soundness of Pearl’s do-calculus
rules (Proposition 2). We prove the validity of these axioms and an additional
property DsepLIC as follows.

Proposition 17 (Relationships between dsep and ⌈·⌉) Let x,y ∈ CVar+

and z, z′ ∈ CVar∗ be disjoint, and c ∈ dConst+.
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1. DsepEI1 |= (⌈c/z⌉dsep(x,y, z))→ dsep(x,y, z).
2. DsepEI2 |= dsep(x,y, z)→ ⌈c/x⌉dsep(x,y, z).
3. DsepLI1 |= (⌊c/z⌋dsep(x,y, z))→ dsep(x,y, z).
4. DsepLI2 |= dsep(x,y, z)→ ⌊c/x⌋dsep(x,y, z).
5. DsepLIC |= dsep(x,y, z ∪ z′)→ ⌊c/z⌋dsep(x,y, z′).

Proof. Let w be a world such that x,y ∈ Var(w)+ and z, z′ ∈ Var(w)∗. Re-
call that a data generator corresponds to a causal diagram that is defined as a
directed acyclic graph (DAG) in Section 4. Let G be the causal diagram corre-
sponding to the data generator gw in the world w.

Then the causal diagram G⌈c/x⌉ corresponding to gw⌈c/x⌉ is obtained by
removing all arrows pointing to x in G. Similarly, the causal diagram G⌊c/x⌋
corresponding to gw⌊c/x⌋ is obtained by removing all arrows emerging from x
in G.

1. Assume that w |= ⌈c/z⌉dsep(x,y, z). Then w⌈c/z⌉ |= dsep(x,y, z). Let p be
an undirected path between x and y in G⌈c/x⌉. Since x and y are d-separated
by z in the diagram G⌈c/z⌉, we have:
(a) there is no path p in G⌈c/z⌉ that has a chain v′ A vA v′′ s.t. v ∈ z;
(b) there is no path p in G⌈c/z⌉ that has a fork v′ A

vA v′′ s.t. v ∈ z;
(c) if G⌈c/z⌉ has a path with a collider v′ A v

A

v′′, then v ̸∈ ANC∗(z).
By (a), if G has an undirected path with a chain v′ A vA v′′, then v ∈ z,
because v ̸∈ z contradicts (a).
By (b), if G has an undirected path with a fork v′

A
v A v′′, then v ∈ z,

because v ̸∈ z contradicts (b).
Let p be an undirected path in G⌈c/z⌉ that has a collider v′ A v

A

v′′. By
(c), we have v ̸∈ ANC∗(z) in G⌈c/z⌉. Then, G also has the same path p, and
the arrows connecting with v in G are the same as those in G⌈c/z⌉. Hence,
we obtain v ̸∈ ANC∗(z) in G.
Therefore, w |= dsep(x,y, z).

2. Assume that w |= dsep(x,y, z). Then in the diagram G, x and y are d-
separated by z. By definition, G⌈c/x⌉ is the same as G except that it has no
arrows pointing to x. Hence, also in G⌈c/x⌉, x and y are d-separated by z.
Therefore, w |= ⌈c/x⌉dsep(x,y, z).

3. Assume that w |= ⌊c/z⌋dsep(x,y, z). Then w⌊c/z⌋ |= dsep(x,y, z). Let p be
an undirected path between x and y in G⌊c/x⌋. Since x and y are d-separated
by z in the diagram G⌊c/z⌋, we have:
(a) there is no path p in G⌊c/z⌋ that has a chain v′ A vA v′′ s.t. v ∈ z;
(b) there is no path p in G⌊c/z⌋ that has a fork v′ A

vA v′′ s.t. v ∈ z;
(c) if G⌊c/z⌋ has a path with a collider v′ A v

A

v′′, then v ̸∈ ANC∗(z).
By (a), if G has an undirected path with a chain v′ A vA v′′, then v ∈ z,
because v ̸∈ z contradicts (a).
By (b), if G has an undirected path with a fork v′

A

v A v′′, then v ∈ z,
because v ̸∈ z contradicts (b).
Let p be an undirected path in G⌊c/z⌋ that has a collider v′ A v

A

v′′. By
(c), we obtain v ̸∈ ANC∗(z) in G⌊c/z⌋. Then, G also has the path p, and may
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have additional arrows pointing to v and no arrows pointing from v. Hence,
we obtain v ̸∈ ANC∗(z) in G.
Therefore, w |= dsep(x,y, z).

4. The proof for Claim 4 is analogous to that for Claim 2.
5. Assume that w |= dsep(x,y, z ∪ z′). Then in the diagram G, x and y are
d-separated by z ∪ z′. By definition, G⌊c/z⌋ has no arrows emerging from z.
If G⌊c/x⌋ has no undirected path between x and y, then x and y are d-
separated by z′, hence w |= ⌊c/x⌋dsep(x,y, z′).
Otherwise, let p be an undirected path between x and y in G⌊c/x⌋. Since
x and y are d-separated by z ∪ z′, we fall into one of the three cases in
Definition 2.
(a) If p has a chain v′ → v → v′′ s.t. v ∈ z ∪ z′, then v ∈ z′, because G⌊c/z⌋

has no arrows pointing from z. Hence, p is d-separated by z′.
(b) For the same reason as (a), if p has a fork v′ ← v → v′′ s.t. v ∈ z ∪ z′,

then v ∈ z′. Hence, p is d-separated by z′.
(c) If p has a collider v′ → v ← v′′ s.t. v ̸∈ ANC∗(z ∪ z′), then v ̸∈ ANC∗(z

′).
Thus p is d-separated by z′.

Therefore, w |= ⌊c/x⌋dsep(x,y, z′). □

Remark 2. In contrast with Claim 5 in Proposition 17, there exists a world w
s.t.

w ̸|= dsep(x,y, z ∪ z′)→ ⌈c/z⌉dsep(x,y, z′).

To see this, assume that w |= dsep(x,y, z ∪ z′). Suppose that w has a causal
diagram G where there is an undirected path p between x and y that has a fork
v′ ← v → v′′ s.t. v ∈ z and no other variable in z∪z′ appears on p. Then G⌈c/z⌉
also has the path p, because the intervention ⌈c/z⌉ removes no arrows in p. Hence,
p is d-separated by z but not by z′ in G⌈c/z⌉. Therefore, w ̸|= ⌈c/z⌉dsep(x,y, z′).

C.2 Validity of the Axioms with nanc

Here are the axioms of AXCP with the non-anscestor predicate nanc and a
property Nanc0.

Nanc0 ⊢g nanc(x,y)→ ((c′ = y)↔ ⌈c/x⌉(c′ = y))

Nanc1 ⊢g (nanc(x,y) ∧ nanc(x, z))→ (f=y|z ↔ ⌈c/x⌉(f=y|z))
Nanc2 ⊢g nanc(x,y)↔ ⌈c/x⌉nanc(x,y)
Nanc3 ⊢g nanc(x,y)→ ⌈c/x⌉dsep(x,y, ∅)
Nanc4 ⊢g (nanc(x, z) ∧ dsep(x,y, z))→ nanc(x,y)

Concerning nanc, the axioms Nanc1 to Nanc4 are sufficient for us to derive
the rules of Pearl’s do-calculus.
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Proposition 18 (Validity of axioms with nanc) Let x,y, z ∈ CVar+ be dis-
joint, c ∈ dConst+, c′ ∈ Const+, and f ∈ Fsym.

1. Nanc0
|= nanc(x,y)→ (c′ = y ↔ ⌈c/x⌉(c′ = y)).

2. Nanc1
|= (nanc(x,y) ∧ nanc(x, z))→ (f=y|z ↔ ⌈c/x⌉(f=y|z)).

3. Nanc2
|= nanc(x,y)↔ ⌈c/x⌉nanc(x,y).

4. Nanc3
|= nanc(x,y)→ ⌈c/x⌉dsep(x,y, ∅).

5. Nanc4
|= (nanc(x, z) ∧ dsep(x,y, z))→ nanc(x,y).

Proof. Let w = (gw, ξw,mw) be a world such that x,y, z ∈ Var(w)+.

1. Assume that w |= nanc(x,y). Let Gw be the causal diagram corresponding
to the data generator gw. Then x ∩ ANC(y) = ∅ in Gw. This means that the
value of y does not depend on that of x. Thus we obtain:

mw⌈c/x⌉(y) = [[gw⌈c/x⌉(y)]]w⌈c/x⌉

= [[gw⌈c/x⌉(y)]]w (by ξw⌈c/x⌉ = ξw)
= [[gw(y)]]w (by gw⌈c/x⌉(y) = gw(y))
= mw(y).

Thus, w |= c′ = y iff w⌈c/x⌉ |= c′ = y. Therefore, w |= c′=y ↔ ⌈c/x⌉(c′=y).
2. Let c0, c1 ∈ Const. Assume that w |= nanc(x,y) ∧ nanc(x, z). Then w |=

nanc(x,y :: z). By Claim 1, w |= c0 = y :: z ↔ ⌈c/x⌉(c0 = y :: z) and w |=
c1 = z ↔ ⌈c/x⌉(c1 = z). By [[y :: z]]w⌈c/x⌉ = [[y :: z]]w and [[z]]w⌈c/x⌉ = [[z]]w,
we have [[y|z]]w⌈c/x⌉ = [[y|z]]w. Therefore, w |= f = y|z ↔ ⌈c/x⌉(f = y|z).

3. We show the direction from left to right as follows. Assume that w |=
nanc(x,y). Then, in the diagram G, all variables in x are non-ancestors
of the variables in y; i.e., G has no directed path from x to y. Since the
eager intervention ⌈c/x⌉ removes only arrows pointing to x, G⌈c/x⌉ still has
no directed path from x to y. Therefore, w |= ⌈c/x⌉nanc(x,y).
The other direction is shown in a similar way, since the eager intervention
⌈c/x⌉ only remove arrows pointing to x.

4. Assume that w |= nanc(x,y). By Claim 3, w |= ⌈c/x⌉nanc(x,y), hence
w⌈c/x⌉ |= nanc(x,y). Then, in the diagram G⌈c/x⌉, all variables in x are
non-ancestors of the variables in y; i.e., G⌈c/x⌉ has no directed path from x
to y.
Suppose that G⌈c/x⌉ has no undirected path between x and y. By Defini-
tion 2, x and y are d-separated by ∅, namely, they are independent. Hence,
w⌈c/x⌉ |= dsep(x,y, ∅). Therefore, w |= ⌈c/x⌉dsep(x,y, ∅).
Suppose that G⌈c/x⌉ has some undirected path p between x and y. By the
definition of the eager intervention,G⌈c/x⌉ has no arrows pointing to x, hence
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has arrows pointing from x. On the other hand, since G⌈c/x⌉ has no directed
path from x to y, p is not directed. Thus, p has a collider node v; i.e., it is of
the form x→ · · · → v ← · · ·y. Then, by (c) in Definition 2, p is d-separated
by ∅; namely, w⌈c/x⌉ |= dsep(x,y, ∅). Therefore, w |= ⌈c/x⌉dsep(x,y, ∅).

5. We show the contraposition as follows. Assume that w |= ¬nanc(x,y) ∧
dsep(x,y, z). Then it is sufficient to prove w |= ¬nanc(x, z).
Recall the definition in Appendix A.4. By assumption, x∩ANC(y) ̸= ∅. Then
there are x0 ∈ x and y0 ∈ y s.t. x0 is an ancestor of y0, i.e., x0 ∈ ANC(y0).
Then there exists a directed path from x0 to y0. Let p be a directed path from
x0 to y0. By w |= dsep(x,y, z), p is d-separated by z. By (a) of Definition 2,
there is a variable z0 ∈ z on p, hence x0 ∈ ANC(z0). Therefore, x∩ANC(z) ̸= ∅,
i.e., w |= ¬nanc(x, z). □

C.3 Validity of the Axioms with Other Causal Predicates

Here are the axioms of AXCP that replace allnanc with nanc and pa with nanc
or dsep.

AllNanc ⊢g allnanc(x,y, z)→ nanc(x, z)

PaNanc ⊢g pa(x,y)→ nanc(y,x)

PaDsep ⊢g pa(z,x)→ ⌊c/x⌋dsep(x,y, z)

We prove the validity of these axioms as follows.

Proposition 19 (Validity of axioms with other causal predicates) Let x,y, z ∈
CVar+ be disjoint, and c ∈ dConst+.

1. AllNanc |= allnanc(x,y, z)→ nanc(x, z).
2. PaNanc |= pa(x,y)→ nanc(y,x).
3. PaDsep |= pa(z,x)→ ⌊c/x⌋dsep(x,y, z).

Proof. Let w = (gw, ξw,mw) be a world such that x,y, z ∈ Var(w)+.

1. This claim is straightforward from the definitions of the semantics of allnanc
and nanc.

2. This claim is straightforward from Proposition 7.
3. Assume that w |= pa(z,x). Then, in the diagram G, z is the set of all

variables pointing to x.
If G⌊c/x⌋ has no undirected path between x and y, then x and y are d-
separated by z, hence w |= ⌊c/x⌋dsep(x,y, z).
Otherwise, let p be an undirected path between x and y in G⌊c/x⌋. By
definition, G⌊c/x⌋ has no arrows emerging from x. Since z is the set of all
variables pointing to x, p has:
– either a chain x0 ← z0 ← v s.t. x0 ∈ x, z0 ∈ z, and v ̸∈ x ∪ z,
– or a fork x0 ← z0 → v s.t. x0 ∈ x, z0 ∈ z, and v ̸∈ x ∪ z.

Thus, p is d-separated by z0. Hence, in G⌊c/x⌋, x and y are d-separated by
z. Therefore, w |= ⌊c/x⌋dsep(x,y, z). □
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D Details of the Derivation of the Do-Calculus Rules
Using AXCP

In this section, we formalize and derive the three rules of Pearl’s do-calculus [29]
using our statistical causal language (StaCL).

By Proposition 1, StaCL formulas correspond to the do-calculus notations
as follows.

– ⌈c/x⌉(c′ =y) describes the post-intervention distribution PGw(y | do(x= c))
of y. For instance, given a world w, w |= ⌈c/x⌉c′ =y represents PGw

(y |
do(x= c))= [[c′]]w. Note that the do(x= c) operation is expressed as the
eager intervention ⌈c/x⌉ in our formulation.

– ⌈c/x⌉(f =y|z) describes the post-intervention conditional distribution PGw
(y |

do(x= c), z) of y given z. Note that the conditioning on z takes place after
the intervention do(x= c) is performed.

To formalize the rules of the do-calculus, we denote the set of all conditioning
variables appearing in a formula φ by:

cdv(φ) = {z | y|z ∈ fv(φ) ∩ FVar} ∪ {(z :: x)|x=c | y|z,x=c ∈ fv(φ) ∩ FVar}.

Now we formalize the rules of Pearl’s do-calculus in Proposition 2. After that,
we explain the meaning of these rules.

Proposition 2 (Do-calculus rules) Let v,x,y, z ∈ CVar+ be disjoint, x1,x2 ∈
CVar+, and c0, c1, c2 ∈ dConst+. Let S = cdv(φ0) ∪ cdv(φ1).

1. Do1. Introduction/elimination of conditioning:

⊢g ⌈c0/v⌉(dsep(x,y, z) ∧
∧

s∈S pos(s))→ ((⌈c0/v⌉φ0)↔ ⌈c0/v⌉φ1)

where φ1 is obtained by replacing some occurrences of y|z in φ0 with y|z,x=c1 ;
2. Do2. Exchange between intervention and conditioning:

⊢g ⌈c0/v⌉⌊c1/x⌋(dsep(x,y, z) ∧
∧

s∈S pos(s))→((⌈c0/v, c1/x⌉φ0)↔ ⌈c0/v⌉φ1)

where φ1 is obtained by replacing every occurrence of y|z in φ0 with y|z,x=c1 ;
3. Do3 Introduction/elimination of intervention:

⊢g ⌈c0/v⌉(allnanc(x1,x,y) ∧ ⌈c1/x1⌉(dsep(x,y, z) ∧ pos(z)))

→ ((⌈c0/v⌉φ)↔ ⌈c0/v, c1/x1, c2/x2⌉φ)

where fv(φ) = {y|z} and x
def
= x1 :: x2.

We explain these three rules as follows.
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1. The first rule allows for adding/removing the conditioning on x when x and
y are d-separated by z (hence when they are conditionally independent given
z).
In the do-calculus, this is expressed by:

P (y | do(v), z) = P (y | do(v), z,x)
if (x ⊥⊥ y | v, z)Gv

where
– Gv is the diagram obtained by deleting all arrows pointing to nodes in v;
– (x ⊥⊥ y | v, z)Gv

represents that x and y are d-separated by v∪z in the
causal diagram Gv.

In our formulation, the deletion of arrows pointing to v is expressed by the
eager intervention ⌈c0/v⌉.

2. The second rule represents that the conditioning on x and the intervention to
x result in the same conditional distribution of y given z under the condition
that all back-door paths from x to y (Definition 3) are d-separated by v ∪ z
(Definition 2).6
In the do-calculus, this is expressed by:

P (y | do(v),x, z) = P (y | do(v), do(x), z)
if (x ⊥⊥ y | z,v)Gvx

where Gvx is the diagram obtained by deleting all arrows pointing to nodes
in v and deleting all arrows emerging from nodes in x.
In our formulation, the “upper manipulation” v is expressed by the eager
intervention ⌈c0/v⌉ whereas the “lower-manipulation” x is expressed by the
lazy intervention ⌊c1/x⌋.
Recall that the lazy intervention ⌊c1/x⌋ removes all arrows emerging from
x, and hence preserves only back-door paths from x to y while removing all
other undirected paths between x and y (Remark 1). Thus, ⌊c1/x⌋dsep(x,y, z)
represents that all back-door paths from x to y are d-separated by z.

3. The third rule allows for adding/removing the intervention to x without
changing the conditional probability distribution of y given z under a certain
condition.
In the do-calculus, this is expressed by:

P (y | do(v), z) = P (y | do(v), do(x), z)
if (x ⊥⊥ y | z,v)G

vx\ANC(z)

where G
vx\ANC(z) is the diagram obtained by deleting all arrows pointing to

nodes in v and then deleting those in x \ ANC(z).

Now, we derive these three rules using AXCP as follows.
6 This condition is denoted by ⌊c1/x⌋dsep(x,y,z∪v) and follows from Proposition 17

and dsep(x,y,z ∪ v).
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Proof. Let w be a world such that v,x,y, z,x1,x2 ∈ CVar(w)+.

1. We prove the first claim as follows. Let ψpre
def
= dsep(x,y, z) ∧

∧
s∈S pos(s).

Then:

By DsepCI,

⊢g⌈c0/v⌉ (dsep(x,y, z) ∧ pos(z))→ (y|z,x=c1 = y|z) (7)
By (7), Eq2, PT, MP,

⊢g⌈c0/v⌉ ψpre → (φ0 ↔ φ1) (8)
By (8), DGEI, MP,

⊢g ⌈c0/v⌉(ψpre → (φ0 ↔ φ1)) (9)
By (9), DistrEI

∧, DistrEI
→, PT, MP,

⊢g (⌈c0/v⌉ψpre)→ ((⌈c0/v⌉φ0)↔ ⌈c0/v⌉φ1).

Therefore, Claim (1) follows.

2. We prove the second claim as follows. Let ψpre
def
= dsep(x,y, z)∧

∧
s∈S pos(s).

Then:

By DsepCI,

⊢g⌈c0/v⌉⌊c1/x⌋ (dsep(x,y, z) ∧ pos(z))→ (y|z,x=c1 = y|z) (10)
By (10), DGEI, MP,

⊢g⌈c0/v⌉ ⌊c1/x⌋
(
(dsep(x,y, z) ∧ pos(z))→ (y|z,x=c1 = y|z)

)
(11)

By (11), DistrEI
→, MP,

⊢g⌈c0/v⌉ (⌊c1/x⌋(dsep(x,y, z) ∧ pos(z)))

→ (⌊c1/x⌋y|z,x=c1 = y|z) (12)
By (12), EqF, PT, MP,

⊢g⌈c0/v⌉ (⌊c1/x⌋(dsep(x,y, z) ∧ pos(z)))

→ (⌊c1/x⌋f = y|z,x=c1 ↔ ⌊c1/x⌋f = y|z) (13)
By (13), CondLI, PT, MP,

⊢g⌈c0/v⌉ (⌊c1/x⌋(dsep(x,y, z) ∧ pos(z)))

→ (f = y|z,x=c1 ↔ ⌊c1/x⌋f = y|z) (14)
By (14), ExcdEILI, PT, MP,

⊢g⌈c0/v⌉ (⌊c1/x⌋(dsep(x,y, z) ∧ pos(z)))

→ (f = y|z,x=c1 ↔ ⌈c1/x⌉f = y|z) (15)
By (15), Eq2, PT, MP,

⊢g⌈c0/v⌉ (⌊c1/x⌋ψpre)→ ((⌈c1/x⌉φ0)↔ φ1) (16)
By (16), DGEI, MP,

⊢g ⌈c0/v⌉
(
(⌊c1/x⌋ψpre)→ ((⌈c1/x⌉φ0)↔ φ1)

)
(17)

By (17), DistrEI
→, PT, MP,
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⊢g (⌈c0/v⌉⌊c1/x⌋ψpre)→ ((⌈c0/v⌉⌈c1/x⌉φ0)↔ ⌈c0/v⌉φ1) (18)
By (18), SimulEI, MP,

⊢g (⌈c0/v⌉⌊c1/x⌋ψpre)→ ((⌈c0/v, c1/x⌉φ0)↔ ⌈c0/v⌉φ1).

Therefore, Claim (2) follows.

3. We prove the third claim as follows. Let f ∈ Fsym, ψdp
def
= dsep(x,y, z) ∧

pos(z), ψpre
def
=allnanc(x1,x,y)∧⌈c1/x1⌉ψdp, and ψdo2

def
= ⌊c2/x2⌋(dsep(x2,y, z)∧

pos(z)). Let g0
def
= g⌈c0/v⌉. Then:

By PT, MP,

⊢g0 ψpre → ⌈c1/x1⌉ψdp (19)
By DsepDc, PT, MP,

⊢g0⌈c1/x1⌉ ψdp → (dsep(x1,y, z) ∧ pos(z)) (20)
⊢g0⌈c1/x1⌉ ψdp → (dsep(x2,y, z) ∧ pos(z)) (21)
By DsepCI, MP,
⊢g0⌈c1/x1⌉ (dsep(x2,y, z) ∧ pos(z))→ (y|z,x2=c2 = y|z) (22)
By EqF, PT, MP,
⊢g0⌈c1/x1⌉ (f0 = y|z) (23)
By DGEI, MP,
⊢g0 ⌈c1/x1⌉(f0 = y|z) (24)
By (21), DsepLI2,PT,MP,
⊢g0⌈c1/x1⌉ ψdp → ⌊c2/x2⌋(dsep(x2,y, z) ∧ pos(z)) (25)
By AllNanc, PT, MP,
⊢g0 ψpre → nanc(x1, z) (26)
By (26), Nanc2, PT, MP,

⊢g0 ψpre → ⌈c1/x1⌉nanc(x1, z) (27)
By Nanc4, PT, MP,

⊢g0⌈c1/x1⌉ (dsep(x1,y, z) ∧ nanc(x1, z))

→ (nanc(x1,y) ∧ nanc(x1, z)) (28)
By (28), DGEI, MP,

⊢g0 ⌈c1/x1⌉((dsep(x1,y, z) ∧ nanc(x1, z))

→ (nanc(x1,y) ∧ nanc(x1, z))) (29)
By (29), DistrEI

→, DistrEI
∧, MP,

⊢g0 ((⌈c1/x1⌉dsep(x1,y, z) ∧ ⌈c1/x1⌉nanc(x1, z)))

→ (⌈c1/x1⌉nanc(x1,y) ∧ ⌈c1/x1⌉nanc(x1, z)) (30)
By (30), Nanc2, PT, MP,

⊢g0 ((⌈c1/x1⌉dsep(x1,y, z) ∧ ⌈c1/x1⌉nanc(x1, z)))

→ (nanc(x1,y) ∧ nanc(x1, z)) (31)
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By (31), Nanc1, PT, MP,

⊢g0 ((⌈c1/x1⌉dsep(x1,y, z) ∧ ⌈c1/x1⌉nanc(x1, z)))

→ ((f1 = y|z)↔ ⌈c1/x1⌉(f1 = y|z)) (32)
By (32), (20), PT, MP,

⊢g0 ((⌈c1/x1⌉ψdp) ∧ ⌈c1/x1⌉nanc(x1, z))

→ ((f1 = y|z)↔ ⌈c1/x1⌉(f1 = y|z)) (33)
By (33), (27), (19), PT, MP,

⊢g0 ψpre → ((f1 = y|z)↔ ⌈c1/x1⌉(f1 = y|z)) (34)
By (34), (24), Eq2, PT, MP,

⊢g0 ψpre → ((f0 = y|z)↔ ⌈c1/x1⌉(f0 = y|z)) (35)

By Do2, PT,MP,

⊢g0⌈c1/x1⌉ ψdo2 → (f2 = y|z,x2=c2 ↔ ⌈c2/x2⌉f2 = y|z) (36)
By (36), (25), PT, MP,

⊢g0⌈c1/x1⌉ ψdp → (f2 = y|z,x2=c2 ↔ ⌈c2/x2⌉f2 = y|z) (37)
By (37), (23), Eq2, PT, MP

⊢g0⌈c1/x1⌉ ψdp → (f0 = y|z ↔ ⌈c2/x2⌉f0 = y|z) (38)
By (38), DGEI, DistrEI

→, DistrEI
∧, PT, MP,

⊢g0 ⌈c1/x1⌉ψdp → ((⌈c1/x1⌉f0 = y|z)↔ ⌈c1/x1⌉⌈c2/x2⌉f0 = y|z) (39)
By (39), (19), PT, MP,

⊢g0 ψpre → ((⌈c1/x1⌉f0 = y|z)↔ ⌈c1/x1⌉⌈c2/x2⌉f0 = y|z) (40)
By (35), (40), Eq2, PT, MP,

⊢g0 ψpre → ((f0 = y|z)↔ ⌈c1/x1⌉⌈c2/x2⌉f0 = y|z) (41)
By (41), DGEI, PT, MP,

⊢g (⌈c0/v⌉ψpre)

→ ((⌈c0/v⌉f0 = y|z)↔ ⌈c0/v⌉⌈c1/x1⌉⌈c2/x2⌉f0 = y|z) (42)
By (42), SimulEI, MP,

⊢g (⌈c0/v⌉ψpre)

→ ((⌈c0/v⌉f0 = y|z)↔ ⌈c0/v, c1/x1, c2/x2⌉f0 = y|z) (43)
By (43), Eq2, PT, MP,

⊢g (⌈c0/v⌉ψpre)

→ ((⌈c0/v⌉φ)↔ ⌈c0/v, c1/x1, c2/x2⌉φ)

Therefore, Claim (3) follows. □


