
On the Anonymization of Differentially Private
Location Obfuscation

Yusuke Kawamoto
National Institute of Advanced

Industrial Science and Technology (AIST)
Tsukuba, Japan

Takao Murakami
National Institute of Advanced

Industrial Science and Technology (AIST)
Tokyo, Japan

Abstract—Obfuscation techniques in location-based services
(LBSs) have been shown useful to hide the concrete locations
of service users, whereas they do not necessarily provide the
anonymity. We quantify the anonymity of the location data
obfuscated by the planar Laplacian mechanism and that by the
optimal geo-indistinguishable mechanism of Bordenabe et al. We
empirically show that the latter provides stronger anonymity
than the former in the sense that more users in the database
satisfy k-anonymity. To formalize and analyze such approximate
anonymity we introduce the notion of asymptotic anonymity.
Then we show that the location data obfuscated by the optimal
geo-indistinguishable mechanism can be anonymized by remov-
ing a smaller number of users from the database. Furthermore,
we demonstrate that the optimal geo-indistinguishable mecha-
nism has better utility both for users and for data analysts.

I. INTRODUCTION

Location-based services (LBSs) have been increasingly
employed in a variety of applications, including navigation,
resource-trucking, recommendation, advertising, games, and
authentication. One of the popular applications has been to
discover interesting locations from collected location data and
provide them for third parties. When the providers of LBSs
publish some geographic locations of users, the accurate loca-
tions may reveal private information, such as home addresses,
health conditions, and political orientation.

To prevent or mitigate the privacy breach, many location
obfuscation techniques have been proposed to hide accurate lo-
cations of users while providing their approximate information
used in LBSs. For example, the dummy location insertion [1]
generates k − 1 dummy points and makes a user’s location
indistinguishable among a set of k locations, which provides
k-anonymity. The spacial cloaking technique [2] chooses
a sufficiently large region that includes k indistinguishable
locations to achieve k-anonymity. The location perturbation
technique [3] adds to each location a controlled random noise
and guarantees differential privacy, independently of any side
information that an adversary may possess.

Such perturbation techniques have been developed to
construct more practical mechanisms for location obfusca-
tion. The planar Laplacian mechanism [4] satisfies geo-
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Fig. 1. Overview of the proposed method. Each user ui obfuscates a location
xi using a mechanism Q and sends the obfuscated location yi to the LBS
provider, which anonymizes the collected data to publish them.

indistinguishability, an extended notion of differential privacy
to the Euclid distance. The optimal geo-indistinguishable
mechanism [5] minimizes the quality loss caused by the
perturbation while preserving geo-indistinguishability.

Although these geo-indistinguishable mechanisms hide the
concrete locations, no prior work has investigated the rela-
tionships between geo-indistinguishability and anonymity to
our knowledge. In this paper, we show geo-indistinguishability
does not guarantee to provide k-anonymity. This means that
the location data obfuscated by geo-indistinguishable mecha-
nisms might be vulnerable to re-identification attacks (e.g., [6],
[7]) for instance when the LBS provider shares the obfuscated
data with a malicious data analyst. Moreover, such leakage
of user identity information can be efficiently detected and
quantified using an automated tool such as [8], [9].

In this work we empirically explore the relationships among
obfuscation, anonymity, and utility for users and for data
analysts in geo-indistinguishable location obfuscation. In par-
ticular, we propose a method for effectively anonymizing the
obfuscated data by deleting some data before publishing them
to third parties. The overview of the method is shown in Fig. 1.

The contributions of this paper are summarized as follows:

• We evaluate the anonymity of the location data obfuscated
by two location obfuscation mechanisms: PL (the planar
Laplacian mechanism) and OptQL (the optimal geo-
indistinguishable mechanism). We empirically show that
OptQL satisfies stronger anonymity than PL.

• We propose the notion of (κ, α)-asymptotic anonymity,
which generalizes k-anonymity to an approximate
anonymity of sampled users.

• We show that the location deletion method, which simply
removes the locations of the users who do not satisfy
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k-anonymity, makes the location dataset k-anonymous
while preserving ε-geo-indistinguishability. In particular,
we demonstrate that OptQL requires to delete a smaller
number of users than PL to achieve k-anonymity.

• We demonstrate by experiments that the utility for users
and for data analysts is better in OptQL than in PL.

II. PRELIMINARIES

For a finite set S, we denote by #S the number of elements
in S, and by DS the set of all probability distributions over S.

A. Obfuscation Mechanism

In this work we consider a number n of users each reporting
some rough information y on his single geographic location
x to an LBS (location-based service) provider while keeping
the exact location x hidden from the provider. To compute an
obfuscated location y, each user uses a location obfuscation
mechanism that adds a certain noise to x and outputs it as y.

Formally, let X be a finite set of all possible locations of
the users, and Y be a finite set of all (possibly fake) locations
reported by the users. Then a location obfuscation mecha-
nism (or simply an obfuscater) is a probabilistic algorithm
Q : X → DY that, given an original location x, outputs
a reported location y. We denote by Qxy the conditional
probability that the mechanism Q outputs y given input x.

The probability distribution of the original locations is
represented by the prior π over X , and the prior probability
of a location x is denoted by πx.

B. Geo-indistinguishability

Geo-indistinguishability [4] is a notion of location privacy
that can be regarded as a variant of local differential privacy
[10] in which the privacy budget ε is multiplied by the
Euclidean distance d(x, x′) between locations x and x′.

Definition 1 (ε-geo-indistinguishability): Given ε ≥ 0, an
obfuscation mechanism Q provides ε-geo-indistinguishability
if for any inputs x, x′ ∈ X and any output y ∈ Y , we have:

Qxy ≤ eεd(x,x
′)Qx′y.

Then the difference between Qxy and Qx′y are proportional
to the distance between x and x′. This implies that geo-
indistinguishability allows an adversary to infer approximate
information about the original location (e.g., a user is in Paris),
but hides the exact location (e.g., home address) from her.
By relaxing the privacy requirements in this way, the amount
of noise added to the location can be significantly reduced
(compared to local differential privacy [10]). Consequently,
geo-indistinguishability is useful to implement practical LBSs
such as the POI (point of interest) retrieval [4].

C. Planar Laplacian (PL) Mechanism

The planar Laplacian (PL) mechanism [4] is an example
of the mechanism providing geo-indistinguishability. It gener-
ates a random noise according to a two-dimensional Laplace
distribution, and obfuscates an original location x by adding
the noise to x. In this paper we use a variant of the planar

Laplacian mechanism, which outputs a symbol “⊥” when the
obfuscated location is outside the area of interest X .

Formally, the variant planar Laplacian mechanism QPL :
X → D(X ∪ {⊥}) is defined by:

QPL
xy =

{
1
c · e

−εd(x,y) (if y ∈ X )
1− 1

c ·
∑
y′∈X e

−εd(x,y′) (if y = ⊥),

where c = maxx
∑
y′∈X e

−εd(x,y′). Intuitively, c is selected
to have the best utility by preventing unnecessarily frequent
outputs of ⊥.

Proposition 1: QPL satisfies ε-geo-indistinguishability.
Proof: QPL can be seen as a cascade of the standard planar
Laplacian (that does not output ⊥) and the post-processing
algorithm that maps each y 6∈ X to ⊥. It is easy to see that by
the triangle inequality, the standard planar Laplacian satisfies
ε-geo-indistinguishability. Since differential privacy is immune
to post-processing, QPL provides ε-geo-indistinguishability. �

D. Optimal Geo-indistinguishability (OptQL) Mechanism
The planar Laplacian mechanism is efficiently computable

while the utility of the reported location may not be optimal.
For this reason, Bordenabe et al. [5] propose an optimal geo-
indistinguishable location obfuscation mechanism OptQL that
given a privacy budget ε, minimizes the quality loss (QL) that
is defined as the expected value of the Euclidean distance, i.e.,

QL(π,Q, d) =
∑
x,y πxQxyd(x, y).

The mechanism OptQL can be obtained by solving a linear
optimization problem that minimizes QL(π,Q, d) while sat-
isfying ε-geo-indistinguishability. However, the computational
complexity of this optimization is in O(#X 3). To reduce this
to O(#X 2), they show an approximation technique based on
a spanning graph of the set of locations. See [5] for details.

E. k-Anonymity
The notion of k-anonymity [11] of a user ensures that the

user cannot be distinguished from at least k − 1 other users
being at the same location. More formally, for a positive
integer k, we say that the users at a location y are k-
anonymous if n(y) ≥ k where n(y) is the number of the users
who report y as their locations. We also say that a dataset of
locations satisfies k-anonymity if for every location y in the
dataset, the users at y are k-anonymous. In this definition k-
anonymity depends only on the users that have the lowest level
of anonymity, and does not take the other users into account.

III. ANONYMIZATION OF OBFUSCATED LOCATION DATA

In this section we address some limitations in the definition
of k-anonymity and introduce two anonymity notions that gen-
eralize k-anonymity. The first notion measures an obfuscater’s
capability of anonymization independently of the number n
of sampled users. The second notion extends the first one to
take into account the fact that different users in the dataset
may have different levels of anonymity. Finally, we present a
simple solution for enhancing the anonymity of the obfuscated
data while preserving geo-indistinguishability.
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A. Limitations in the Definition of k-Anonymity

k-anonymity is not always useful to evaluate the level of
anonymity in the presence of sampled users.

First, k-anonymity in the context of location privacy de-
pends on the number n of the LBS’s users in a sample data,
and does not solely express an obfuscater Q’s capability of
anonymization. For instance, if the number n of sampled users
increases then k-anonymity tends to hold for a larger value of
k (roughly proportionally to n) for the same π and Q. In other
words, k-anonymity is not defined as a property of (π,Q)
independently of the number n of sampled users.

Second, different users in the dataset may have different
anonymity levels, whereas k-anonymity of the dataset depends
only on the users that have the lowest level of anonymity.
Hence k-anonymity is not expressive enough to take into
account the different anonymity levels of the other users.

B. κ-Asymptotic Anonymity

To overcome the first limitation described in Section III-A,
we introduce a notion that expresses an obfuscater Q’s ca-
pability of anonymization independently of the number n of
sampled users. Intuitively, for a κ ∈ [0, 1], we define the notion
of κ-asymptotic anonymity as an extension of k-anonymity
where for any sufficiently large number n of users, each user
is indistinguishable from roughly n · κ− 1 other users.

Formally, this notion is defined using the probability p(y)
that the obfuscation mechanism Q outputs y as follows.

Definition 2 (κ-asymptotic anonymity): Given a threshold
κ ∈ [0, 1], the users at a location y are κ-asymptotically
anonymous if p(y) > κ. Given a prior π ∈ DX and an
obfuscater Q : X → DY , we say that (π,Q) provides κ-
asymptotic anonymity if for all y ∈ Y , p(y) > 0 implies
p(y) > κ, where p(y) =

∑
x πxQxy .

Note that κ itself can be computed from π and Q indepen-
dently of n. When (π,Q) provides κ-asymptotic anonymity,
the number of users required to achieve k-anonymity is
roughly given by k

κ .
Example 1 (Anonymity of the prior and posterior): Let us

formalize the asymptotic anonymity before/after applying a
mechanism Q. The prior π provides (minx πx)-asymptotic
anonymity while (π,Q) provides (miny

∑
x πxQxy)-

asymptotic anonymity1. To achieve k-anonymity before (resp.
after) applying Q, the number of users should be roughly

k
minx πx

(resp. k
miny

∑
x πxQxy

).
For a large number n of users, we can compute an approx-

imate maximum value of κ from the sample by miny p̂(y) =

miny
n(y)
n , which converges to κ quickly as shown in Fig. 5.

As we will see in Section IV-B1, κ-asymptotic anonymity
(resp. k-anonymity) holds only for small values of κ (resp.
k). This implies that the obfuscation mechanism does not

1Remarkably, the asymptotic anonymity contrasts with the Bayes-
vulnerability (aka. converse of the Bayes risk [12]) in quantitative information
flow. Instead of minimization, the prior/posterior Bayes-vulnerabilities are
respectively maxx πx and

∑
y maxx πxQxy , and represent the probabilities

of an adversary’s correctly guessing x in one attempt before/after observing y.

necessarily provide anonymity to all users although it hides the
exact original locations in terms of geo-indistinguishability.

C. (κ, α)-Asymptotic Anonymity

Similarly to k-anonymity, the definition of κ-asymptotic
anonymity also suffers from the second limitation described
in Section III-A. To evaluate the different levels of anonymity
of different users, we introduce another notion that relaxes
κ-anonymity by allowing some rate α of errors. Roughly
speaking, the new notion expresses that given a sample data
with n users, at least n(1− α) users are nκ-anonymous.

Definition 3 ((κ, α)-asymptotic anonymity): Let p(y) def
=∑

x πxQxy . Given a κ ∈ [0, 1] and an acceptable error rate
α ∈ [0, 1], (π,Q) provides (κ, α)-asymptotic anonymity if∑

y:p(y)>κ p(y)∑
y:p(y)>0 p(y)

≥ 1− α.

This notion can be used to roughly estimate the utility loss
in anonymizing the location data. When there are n users in
the dataset, at most nα users are not nκ-anonymous. If we
remove the locations data of these users, then the dataset
will satisfy nκ-anonymity while the utility of the dataset
deteriorates proportionally to the number nα of deleted users.

D. Location Deletion Method (Del) for k-Anonymity

As explained so far, ε-geo-indistinguishable mechanisms
are useful to hide the exact locations from the LBS provider,
whereas they may not be able to provide k-anonymity of the
obfuscated location data. When the LBS provider wishes to
publish such obfuscated data to third parties, a simple solution
to achieve k-anonymity is what we call the location deletion
method Del, i.e., to delete the obfuscated locations that do not
satisfy k-anonymity. Then the modified database satisfies k-
anonymity while preserving ε-geo-indistinguishability thanks
to the immunity to the post-processing.

More specifically, given a threshold κ, the minimum number
of users that should be removed is approximately given by:

nαmin = n ·
(∑

y:0<p(y)<κ p(y)∑
y:p(y)>0 p(y)

)
,

where p(y) =
∑
x πxQxy . When Q is a Laplacian mechanism,

then all locations occur with non-zero probabilities, and thus
the approximate number of deleted users is n·

∑
y:p(y)<κ p(y).

We will demonstrate the effect of this combination of obfus-
cation and anonymization by experiments in Section IV.

IV. EXPERIMENTAL EVALUATION

In this section we empirically compare the two obfuscation
mechanisms PL and OptQL, and illustrate how the location
deletion method Del enhances the anonymity of obfuscated
data and affects the utility for users and for data analysts.
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Fig. 2. Trade-offs between the privacy budget ε and the utility for users. As a
utility the graph on the left uses QL (quality loss), and the graph on the right
uses the number of users that remain at the same regions after obfuscation.
As for PL, we excluded the users who report ⊥ as their location.

A. Experimental Set-up

We performed experiments using the Foursquare dataset
(Global-scale Check-in Dataset) [13]. This dataset includes
33278683 location check-ins by 266909 users all over the
world. In our experiments, we used the data in Manhattan,
which consists of location check-ins by 14951 users. We
assumed that each user ui obfuscated a single location xi using
an ε-geo-indistinguishable obfuscation mechanism Q, and sent
the obfuscated location yi to the LBS provider.

We divided Manhattan into 20 × 20 regions with regular
intervals. Let X be the set of these regions, and π be the
empirical distribution of the 14951 users’ locations over X .
We defined the distance d(x, x′) between two regions x and
x′ by the Euclidean distance between their central points. Here
we normalized the distance so that the distance between two
adjacent regions is one.

As an obfuscation mechanism Q, we employed the planar
Laplacian mechanism PL (in Section II-C) and the Optimal
geo-indistinguishable mechanism OptQL (in Section II-D). In
OptQL, we solved the optimization problem2 that minimizes
QL while satisfying ε-geo-indistinguishability using the linear
programming solver linprog in MATLAB. For both PL and
OptQL, we set the privacy budget ε to be 0.1 to 1, which
have been widely used in the literature [14].

After obtaining all obfuscated regions y1, y2, . . . , yn, we
applied the location deletion method Del to remove the regions
that do not satisfy k-anonymity (where k is 10 or 100). We
denote by PL−Del (resp. OptQL−Del) the application of PL
(resp. OptQL) post-processed by Del.

B. Experimental Results

We show the experimental results on anonymity and utility.
1) k-anonymity before anonymization: By experiments we

found that unless we add much noise, the obfuscation does not
provide k-anonymity, i.e., k = 1 for a user. Specifically, k = 1
is provided by PL for ε ≥ 0.4 and by OptQL for ε ≥ 0.2.

2) Utility for users: In Fig. 2 we compare OptQL with
PL in terms of the utility for users. Specifically, we evaluated
the quality loss, i.e., the average Euclidean distance d(xi, yi)

2In OptQL we set the dilation factor to be δ = 1.09.

0

0.02

0.04

0.06

0.08

0.1

0.10.20.30.40.50.60.70.80.9 1

F
ra

c
ti

o
n

 o
f

U
s
e
rs

��������	��
 ���������
 �������� �	��


ε

0

0.2

0.4

0.6

0.8

1

0.10.20.30.40.50.60.70.80.9 1

F
ra

c
ti

o
n

 o
f

U
s
e
rs

ε

k = 10 k = 100

Fig. 3. Trade-offs between the privacy budget ε and the utility for data
analysts. The y-axis represents the fraction of deleted users necessary to satisfy
κ-anonymity (PL−Del (del), OptQL−Del (del)), and that of users who output
⊥ as reported locations (PL−Del (⊥)), where κ = 6.689× 10−4 (k = 10)
on the left and κ = 6.689× 10−3 (k = 100) on the right.

between the original region xi and the obfuscated region yi.
We also evaluated the number of users who remain at the same
region after obfuscation, i.e., xi = yi. As shown in Fig. 2,
for a larger ε, smaller noise is added, hence both PL and
OptQL have better utility for users; They decrease the quality
loss, and increase the number of users remaining at the same
regions. The results also demonstrate that OptQL outperforms
PL in terms of the utility for users. This is because OptQL
chooses locations that minimize the expected distance, which
also makes more users remain at the same regions.

3) Utility for data analysts: In Fig. 3 we compare OptQL
with PL in terms of the utility for data analysts. The graphs
show the ratio of deleted users for κ = 6.689×10−4 (k = 10)
on the left and for κ = 6.689× 10−3 (k = 100) on the right.
As for PL we also show the ratio of users reporting ⊥ as
obfuscated regions (indicated as PL−Del (⊥)).

According to these graphs, the ratio of deleted users is
significantly smaller in OptQL−Del than in PL−Del. To see
this in detail, we present the maps of Manhattan that plot the
density of the user locations without noise (Fig. 4a), and of
those obfuscated by PL (Fig. 4b) and by OptQL (Fig. 4c).

In Fig 4b we see that the planar Laplacian PL spreads
the population over the whole map. This is because PL
uniformly draws an angle (from [0, 2π)) to which it maps each
location. For ε ≈ 0, the reported regions are distributed almost
uniformly. Hence for a small value of k, only a few obfuscated
regions need to be deleted to achieve k-anonymity (Fig. 3 on
the left), whereas for a large value of k, most of the obfuscated
locations need to be deleted (Fig. 3 on the right).

In contrast to PL, the optimal geo-indistinguishable mecha-
nism OptQL concentrates more users in the crowded regions
as shown in Fig. 4c. To see this in detail, we note that for a
more crowded region x, the prior probability πx is larger. Since
OptQL tries to minimize

∑
x,y πxQxyd(x, y), if πx is larger

then OptQL chooses a region y with a smaller d(x, y), i.e.,
closer to x. Hence the users located in the crowded regions
tend not to move by the obfuscation. Conversely, the users
outside the crowded regions tend to move to one of the closest
crowded regions that provide geo-indistinguishability.

Owing to this concentration, OptQL provides (κ, α)-
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Fig. 5. Relationship between the number of users and the level κ of the
asymptotic anonymity for α = 0.05 on the left and for α = 0.1 on the right.
As for PL−Del we excluded ⊥ from the computation of κ for clarity.

TABLE I
THE LEVEL κ OF ASYMPTOTIC ANONYMITY CONVERGES TO THE

FOLLOWING VALUES WHEN INCREASING THE NUMBER OF USERS.

α = 0.05 α = 0.1

prior (without noise) 8.7× 10−4 1.7× 10−3

after applying PL−Del 6.4× 10−4 1.0× 10−3

after applying OptQL−Del 1.9× 10−3 3.9× 10−3

asymptotic anonymity with a smaller error rate α. For instance,
in OptQL, only 161 users do not satisfy 10-anonymity (α =
0.011), whereas in PL, 773 users do not (α = 0.052). This
means that OptQL−Del removes a smaller number of users
than PL−Del, and thus has a better utility for data analysts.

To sum up OptQL−Del is more effective than PL−Del in
terms of the utility both for users and for data analysts while
providing ε-geo-indistinguishability and k-anonymity.

4) Convergence of the empirical value of κ: In Fig. 5 we
show how the empirically computed value of κ converges to
the value displayed in Table I when increasing the number
n′ of users. In the experiments we uniformly sampled a
subset (of size n′) from the original dataset, applied each
mechanism with ε = 1, and computed the maximum κ such
that n′(1−α) users satisfy n′κ-anonymity (for α = 0.05, 0.1).
These graphs imply that κ is (roughly) independent of n′ and
thus κ-asymptotic anonymity can be seen as a property of the
prior and obfuscater. Therefore κ is useful to learn that given
a different number n of sampled users, the dataset roughly
satisfies nκ-anonymity.

V. CONCLUSION

We have empirically evaluated the anonymity of the location
data obfuscated by PL and by OptQL, and shown that OptQL
provides stronger anonymity than PL in the sense that it
requires to remove a fewer users to achieve k-anonymity. To
analyze this formally, we have introduced the notion of (κ, α)-
asymptotic anonymity. We have also demonstrated that OptQL
has better utility for users and for data analysts.

In future work we plan to develop a utility-optimal ob-
fuscater satisfying geo-indistinguishability and anonymity. We
will also explore rigorous foundations of obfuscation based on
statistics, and relationships with quantitative information flow.
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