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Abstract: In the inference attacks studied in Quantitative Information Flow (QIF), the attacker
typically tries to interfere with the system in the attempt to increase its leakage of secret information.
The defender, on the other hand, typically tries to decrease leakage by introducing some controlled
noise. This noise introduction can be modeled as a type of protocol composition, i.e., a probabilistic
choice among different protocols, and its effect on the amount of leakage depends heavily on whether
or not this choice is visible to the attacker. In this work, we consider operators for modeling visible and
hidden choice in protocol composition, and we study their algebraic properties. We then formalize
the interplay between defender and attacker in a game-theoretic framework adapted to the specific
issues of QIF, where the payoff is information leakage. We consider various kinds of leakage games,
depending on whether players act simultaneously or sequentially, and on whether or not the choices
of the defender are visible to the attacker. In the case of sequential games, the choice of the second
player is generally a function of the choice of the first player, and his/her probabilistic choice can be
either over the possible functions (mixed strategy) or it can be on the result of the function (behavioral
strategy). We show that when the attacker moves first in a sequential game with a hidden choice, then
behavioral strategies are more advantageous for the defender than mixed strategies. This contrasts
with the standard game theory, where the two types of strategies are equivalent. Finally, we establish
a hierarchy of these games in terms of their information leakage and provide methods for finding
optimal strategies (at the points of equilibrium) for both attacker and defender in the various cases.

Keywords: information leakage; quantitative information flow; game theory; algebraic properties

1. Introduction

A fundamental problem in computer security is the leakage of sensitive information due to
correlation of secret values with observables—i.e., any information accessible to the attacker, such as,
for instance, the system’s outputs or execution time. The typical defense consists in reducing this
correlation, which can be done in, essentially, two ways. The first, applicable when the correspondence
secret-observable is deterministic, consists in coarsening the equivalence classes of secrets that give
rise to the same observables. This can be achieved with post-processing, i.e., sequentially composing
the original system with a program that removes information from observables. For example, a typical
attack on encrypted web traffic consists in the analysis of the packets’ length, and a typical defense
consists in padding extra bits so to diminish the length variety [1].
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The second kind of defense, on which we focus in this work, consists in adding controlled noise
to the observables produced by the system. This can be usually seen as a composition of different
protocols via probabilistic choice.

Example 1 (Differential privacy). Consider a counting query f , namely a function that, applied to a dataset
x, returns the number of individuals in x that satisfy a given property. A way to implement differential privacy
[2] is to add geometrical noise to the result of f , so to obtain a probability distribution P on integers of the
form P(z) = c e∣z− f (x)∣, where c is a normalization factor. The resulting mechanism can be interpreted as a
probabilistic choice on protocols of the form f (x), f (x)+ 1, f (x)+ 2, . . . , f (x)− 1, f (x)− 2, . . ., where the
probability assigned to f (x)+ n and to f (x)− n decreases exponentially with n.

Example 2 (Dining cryptographers). Consider two agents running the dining cryptographers protocol [3],
which consists in tossing a fair binary coin and then declaring the exclusive or ⊕ of their secret value x and the
result of the coin. The protocol can be thought as the fair probabilistic choice of two protocols, one consisting
simply of declaring x, and the other declaring x⊕ 1.

Most of the work in the literature of quantitative information flow (QIF) considers passive attacks,
in which the attacker only observes the system. Notable exceptions are the works [4–6], which consider
attackers who interact with and influence the system, possibly in an adaptive way, with the purpose of
maximizing the leakage of information.

Example 3 (CRIME attack). Compression Ratio Info-leak Made Easy (CRIME) [7] is a security exploit against
secret web cookies over connections using the HTTPS and SPDY protocols and data compression. The idea is that
the attacker can inject some content a in the communication of the secret x from the target site to the server. The
server then compresses and encrypts the data, including both a and x, and sends back the result. By observing
the length of the result, the attacker can then infer information about x. To mitigate the leakage, one possible
defense would consist in transmitting, along with x, also an encryption method f selected randomly from a set F.
Again, the resulting protocol can be seen as a composition, using probabilistic choice, of the protocols in the set F.

Example 4 (Timing side-channels). Consider a password-checker, or any similar system in which the user
authenticates himself by entering a secret that is checked by the system. An adversary does not know the real
secret, of course, but a timing side-channel could reveal the part (eg. which bit) of the secret in which the
adversary’s input fails. By repeating the process with different inputs, the adversary might be able to fully
retrieve the secret. A possible counter measure is to make the side channel noisy, by randomizing the order in
which the secret’s bit are checked against the user input. This example is studied in detaul in Section 7.

In all examples above the main use of the probabilistic choice is to obfuscate the relation between
secrets and observables, thus reducing their correlation—and, hence, the information leakage. To
achieve this goal, it is essential that the attacker never comes to know the result of the choice. In the
CRIME example, however, if f and a are chosen independently, then (in general) it is still better to
choose f probabilistically, even if the attacker will come to know, afterwards, the choice of f . In fact, this
is true also for the attacker: his best strategies (in general) are to choose a according to some probability
distribution. Indeed, suppose that F = { f1, f2} are the defender’s choices and A = {a1, a2} are the
attacker’s, and that f1(⋅, a1) leaks more than f1(⋅, a2), while f2(⋅, a1) leaks less than f2(⋅, a2). This is a
scenario like the matching pennies in game theory: if one player selects an action deterministically, the
other player may exploit this choice and get an advantage. For each player the optimal strategy is to
play probabilistically, using a distribution that maximizes his own gain for all possible actions of the
attacker. In zero-sum games, in which the gain of one player coincides with the loss of the other, the
optimal pair of distributions always exists, and it is called saddle point. It also coincides with the Nash
equilibrium, which is defined as the point in which neither of the two players gets any advantage in
changing unilaterally his strategy.
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Motivated by these examples, this paper investigates the two kinds of choice, visible and hidden
(to the attacker), in a game-theoretic setting. Looking at them as language operators, we study their
algebraic properties, which will help reason about their behavior in games. We consider zero-sum
games, in which the gain (for the attacker) is represented by the leakage. While for visible choice it is
appropriate to use the “classic” game-theoretic framework, for hidden choice we need to adopt the
more general framework of the information leakage games proposed in [6]. This happens because, in
contrast with standard game theory, in games with hidden choice the payoff of a mixed strategy is a
convex function of the distribution on the defender’s pure actions, rather than simply the expected
value of their utilities. We will consider both simultaneous games—in which each player chooses
independently—and sequential games— in which one player chooses his action first. We aim at
comparing all these situations, and at identifying the precise advantage of the hidden choice over the
visible one.

To measure leakage we use the well-known information-theoretic model. A central notion in this
model is that of entropy, but here we use its converse, vulnerability, which represents the magnitude
of the threat. In order to derive results as general as possible, we adopt the very comprehensive
notion of vulnerability as any convex and continuous function, as used in [4] and [8]. This notion
has been shown [8] to be, in a precise sense, the most general information measures w.r.t. a set of
fundamental information-theoretic axioms. Our results, hence, apply to all information measures that
respect such fundamental principles, including the widely adopted measures of Bayes vulnerability (aka
min-vulnerability, aka (the converse of) Bayes risk) [9,10], Shannon entropy [11], guessing entropy [12],
and g-vulnerability [13].

The main contributions of this paper are:

• We present a general framework for reasoning about information leakage in a game-theoretic
setting, extending the notion of information leakage games proposed in [6] to both simultaneous
and sequential games, with either hidden or visible choice.

• We present a rigorous compositional way, using visible and hidden choice operators, for
representing attacker’s and defender’s actions in information leakage games. In particular,
we study the algebraic properties of visible and hidden choice on channels, and compare the
two kinds of choice with respect to the capability of reducing leakage, in presence of an adaptive
attacker.

• We provide a taxonomy of the various scenarios (simultaneous and sequential) showing when
randomization is necessary, for either attacker or defender, to achieve optimality. Although it is
well-known in information flow that the defender’s best strategy is usually randomized, only
recently it has been shown that when defender and attacker act simultaneously, the attacker’s
optimal strategy also requires randomization [6].

• We compare the vulnerability of the leakage games for these various scenarios and establish a
hierarchy of leakage games based on the order between the value of the leakage in the Nash
equilibrium. Furthermore, we show that when the attacker moves first in a sequential game
with hidden choice, the behavioral strategies (where the defender chooses his probabilistic
distribution after he has seen the choice of the attacker) are more advantageous for the defender
than the mixed strategies (where the defender chooses the probabilistic distribution over his
possible functional dependency on the choice of the attacker). This contrast with the standard
game theory, where the two types of strategies are equivalent. Another difference is that in our
attacker-first sequential games there may not exist Nash equilibria with deterministic strategies
for the defender (although the defender has full visibility of the attacker’s moves).

• We use our framework in a detailed case study of a password-checking protocol. A naive
program, which checks the password bit by bit and stops when it finds a mismatch, is clearly
very insecure, because it reveals at each attempt (via a timing side-channel), the maximum correct
prefix. On the other hand, if we continue checking until the end of the string (time padding), the
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program becomes very inefficient. We show that, by using probabilistic choice instead, we can
obtain a good trade-off between security and efficiency.

Plan of the paper.

The remaining of the paper is organized as follows. In Section 2 we review some basic notions of
game theory and quantitative information flow. In Section 3 we introduce our running example. In
Section 4 we define the visible and hidden choice operators and demonstrate their algebraic properties.
In Section 5, the core of the paper, we examine various scenarios for leakage games. In Section 6 we
compare the vulnerability of the various leakage games, and establish a hierarchy among those games.
In Section 7 we show an application of our framework to a password checker. In Section 8 we discuss
related work and, finally, in Section 9 we conclude.

A preliminary version of this paper appeared in [14]. One difference with respect to [14] is that in
the present paper we consider both behavioral and mixed strategies in the sequential games, while
in [14] we only considered the latter. We also show that the two kinds of strategies are not equivalent in
our context (Example 10: the optimal strategy profile yields a different payoff depending on whether
the defender adopts mixed strategies or behavioral ones). In light of this difference, we provide new
results that concern behavioral strategies, and in particular:

• Theorem 3, which concerns the defender’s behavioral strategies in the defender-first game with
visible choice (Game II) ,

• the second half of Theorem 6, which deals with the adversary’s behavioral strategies in the
attacker-first game with hidden choice (Game VI).

Furthermore, in this paper we define formally all concepts, and provide all the proofs. In particular,
we provide a precise formulation of the comparison among games with visible/hidden choices
(Propositions 4 and 5, Corollaries 3, 4, and 5) in Section 6. Finally, in Section 7 we provide a new result,
expressed by Theorem 7, regarding the optimal strategies for the defender in the presence of a uniform
prior on passwords.

2. Preliminaries

In this section we review some basic notions from game theory and quantitative information flow.
We use the following notation: Given a set I, we denote by DI the set of all probability distributions

over I. Given µ ∈ DI, its support supp(µ) def
= {i ∈ I ∶ µ(i) > 0} is the set of its elements with positive

probability. We use i←µ to indicate that a value i∈I is sampled from a distribution µ on I . A set S ⊆ Rn

is convex if ts0 + (1− t)s1 ∈ S for all s0, s1 ∈ S and t ∈ [0, 1]. For such a set, a function f ∶ S → R
is convex if f (ts0 + (1− t)s1) ≤ t f (s0)+ (1− t) f (s1) for all s0, s1 ∈ S, t ∈ [0, 1], and concave if − f is
convex.

2.1. Basic concepts from game theory

2.1.1. Two-player games

Two-player games are a model for reasoning about the behavior of two players. In a game, each
player has at its disposal a set of actions that he can perform, and he obtains some gain or loss depending
on the actions chosen by both players. Gains and losses are defined using a real-valued payoff function.
Each player is assumed to be rational, i.e., his choice is driven by the attempt to maximize his own
expected payoff. We also assume that the set of possible actions and the payoff functions of both
players are common knowledge.

In this paper we only consider finite games, in which the set of actions available to the players are
finite, and which are also zero-sum games, so the payoff of one player is the loss of the other. Next we
introduce an important distinction between simultaneous and sequential games. In the following, we
will call the two players defender and attacker.
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2.1.2. Simultaneous games

In a simultaneous game, each player chooses his action without knowing the action chosen by
the other. The term “simultaneous” here does not mean that the players’ actions are chosen at the
same time, but only that they are chosen independently. Formally, such a game is defined as a tuple1

(D,A, ud, ua), where D is a nonempty set of defender’s actions, A is a nonempty set of attacker’s actions,
ud ∶ D ×A → R is the defender’s payoff function, and ua ∶ D ×A → R is the attacker’s payoff function.

Each player may choose an action deterministically or probabilistically. A pure strategy of the
defender (resp. attacker) is a deterministic choice of an action, i.e., an element d ∈ D (resp. a ∈ A). A
pair (d, a) is called pure strategy profile, and ud(d, a), ua(d, a) represent the defender’s and the attacker’s
payoffs, respectively. A mixed strategy of the defender (resp. attacker) is a probabilistic choice of an
action, defined as a probability distribution δ ∈ DD (resp. α ∈ DA). A pair (δ, α) is called mixed strategy
profile. The defender’s and the attacker’s expected payoff functions for mixed strategies are defined,
respectively, as:

Ud(δ, α) def
= E

d←δ
a←α

ud(d, a) = ∑
d∈D
a∈A

δ(d)α(a)ud(d, a) and

Ua(δ, α) def
= E

d←δ
a←α

ua(d, a) = ∑
d∈D
a∈A

δ(d)α(a)ua(d, a).

A defender’s mixed strategy δ ∈ DD is a best response to an attacker’s mixed strategy α ∈ DA
if Ud(δ, α) = maxδ′∈DD Ud(δ

′, α). Symmetrically, α ∈ DA is a best response to δ ∈ DD if Ua(δ, α) =
maxα′∈DA Ud(δ, α

′). A mixed-strategy Nash equilibrium is a profile (δ
∗, α

∗) such that δ
∗ is a best response

to α
∗ and vice versa. This means that in a Nash equilibrium, no unilateral deviation by any single

player provides better payoff to that player. If δ
∗ and α

∗ are point distributions concentrated on some
d∗ ∈ D and a∗ ∈ A respectively, then (δ

∗, α
∗) is a pure-strategy Nash equilibrium, and will be denoted

by (d∗, a∗). While not all games have a pure strategy Nash equilibrium, every finite game has a mixed
strategy Nash equilibrium.

2.1.3. Sequential games

In a sequential game players may take turns in choosing their actions. In this paper, we only
consider the case in which each player moves only once, in such a way that one of the players (the
leader) chooses his action first, and commits to it, before the other player (the follower) makes his choice.
The follower may have total knowledge of the choice made by the leader, or only partial. We refer to
the two scenarios by the terms perfect and imperfect information, respectively. Another distinction is
the kind of randomization used by the players, namely whether the follower chooses probabilistically
his action after he knows (partially or totally) the move of the leader, or whether he chooses at the
beginning of the game a probabilistic distribution on (deterministic) strategies that depend on the
(partial or total) knowledge of the move of the leader. In the first case the strategies are called behavioral,
in the second case mixed.

We now give the precise definitions assuming that the leader is the defender. The definitions for
the case in which the leader is the attacker are analogous.

A defender-first sequential game with perfect information is a tuple (D, D→A, ud, ua) where D, A, ud
and ua are defined as in simultaneous games: The choice of an action d ∈ D represents a pure strategy
of the defender. As for the attacker, his choice a ∈ A depends functionally on the prior choice d of the
defender, and for this reason the pure strategies of the attacker are functions sa ∶ D→A. As for the

1 Following the convention of security games, we set the first player to be the defender.
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probabilistic strategies, those of the defender are defined as in simultaneous games: namely they are
distributions δ ∈ DD. On the other hand, the attacker’s probabilistic strategies can be defined in two
different ways: In the behavioral case, an attacker’s probabilistic strategy is a function φa ∶ D → D(A).
Namely, the attacker chooses a distribution on its actions after he sees the move of the defender. In the
mixed case, an attacker’s probabilistic strategy is a probability distribution σa ∈ D(D→A). Namely,
the attacker chooses a priori a distribution on pure strategies. The defender’s and the attacker’s expected
payoff functions for mixed strategies are defined, respectively, as

Behavioral case

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ud(δ, φa)
def
= E

d←δ
E

a←φa(d)
ud(d, a) = ∑

d∈D
δ(d) ∑

a∈A
φa(d)(a)ud(d, a)

Ua(δ, φa)
def
= E

d←δ
E

a←φa(d)
ua(d, a) = ∑

d∈D
δ(d) ∑

a∈A
φa(d)(a)ua(d, a)

Mixed case

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ud(δ, σa)
def
= E

d←δ
sa←σa

ud(d, sa(d)) = ∑
d∈D

sa∶D→A

δ(d)σa(sa)ud(d, sa(d))

Ua(δ, σa)
def
= E

d←δ
sa←σa

ua(d, sa(d)) = ∑
d∈D

sa∶D→A

δ(d)σa(sa)ua(d, sa(d))

The case of imperfect information is typically formalized by assuming an indistinguishability
(equivalence) relation over the actions chosen by the leader, representing a scenario in which the follower
cannot distinguish between the actions belonging to the same equivalence class. The pure strategies
of the followers, therefore, are functions from the set of the equivalence classes on the actions of the
leader to his own actions. Formally, a defender-first sequential game with imperfect information is a tuple
(D, Ka → A, ud, ua) where D, A, ud and ua are defined as in simultaneous games, and Ka is a partition
of D. The expected payoff functions are defined as before, except that now the argument of φa and sa is
the equivalence class of d. Note that in the case in which all defender’s actions are indistinguishable
from each other at the eyes of the attacker (totally imperfect information), we have Ka = {D} and the
expected payoff functions coincide with those of the simultaneous games. In contrast, in the games in
which all defender’s actions are distinguishable from the view of the attacker (perfect information), we
have Ka = {{d} ∣ d ∈ D}.

In the standard game theory, under the assumption of perfect recall (i.e., the players never forget
what they have learned), behavioral and mixed strategies are equivalent, in the sense that for any
behavioral strategy there is a mixed strategy that yields the same payoff, and vice versa. This is true for
both cases of perfect and imperfect information, see [15], Chapter 11.4. In our leakage games, however,
this equivalence does not hold anymore, as it will be shown in Sections 5 and 6.

2.1.4. Zero-sum games and Minimax Theorem

A game (D, A, ud, ua) is zero-sum if for any d ∈ D and any a ∈ A, the defender’s loss is equivalent
to the attacker’s gain, i.e., ud(d, a) = −ua(d, a). For brevity, in zero-sum games we denote by u the
attacker’s payoff function ua, and by U the attacker’s expected payoff Ua.2 Consequently, the goal of
the defender is to minimize U, and the goal of the attacker is to maximize it.

In simultaneous zero-sum games the Nash equilibrium corresponds to the solution of the minimax
problem (or equivalently, the maximin problem), namely, the strategy profile (δ

∗, α
∗) such that

U(δ
∗, α

∗) = minδ maxα U(δ, α). The von Neumann’s minimax theorem, in fact, ensures that such
solution (which always exists) is stable.

2 Conventionally in game theory the payoff u is set to be that of the first player, but we prefer to look at the payoff from the
point of view of the attacker to be in line with the definition of payoff as vulnerability.



Version May 21, 2018 accepted to Entropy 7 of 42

Theorem 1 (von Neumann’s minimax theorem). Let X ⊂ Rm and Y ⊂ Rn be compact convex sets, and
U ∶ X × Y → R be a continuous function such that U(x, y) is a convex function in x ∈ X and a concave
function in y ∈ Y . Then

min
x∈X

max
y∈Y

U(x, y) = max
y∈Y

min
x∈X

U(x, y).

A related property is that, under the conditions of Theorem 1, there exists a saddle point (x∗, y∗)
s.t., for all x∈X and y∈Y : U(x∗, y) ≤ U(x∗, y∗) ≤ U(x, y∗).

The solution of the minimax problem can be obtained by using convex optimization techniques.
In case U(x, y) is affine in x and in y, we can also use linear optimization.

In case D and A contain two elements each, there is a closed form for the solution. Let D = {d0, d1}
and A = {a0, a1} respectively. Let uij be the payoff of the defender on di, aj. Then the Nash equilibrium
(δ
∗, α

∗) is given by:
δ
∗(d0) = u11−u10

u00−u01−u10+u11
α
∗(a0) = u11−u01

u00−u01−u10+u11
(1)

if these values are in [0, 1]. Note that, since there are only two elements, the strategy δ
∗ is completely

specified by its value in d0, and analogously for α
∗.

2.2. Quantitative information flow

Finally, we briefly review the standard framework of quantitative information flow, which is
concerned with measuring the amount of information leakage in a (computational) system.

2.2.1. Secrets and vulnerability

A secret is some piece of sensitive information the defender wants to protect, such as a user’s
password, social security number, or current location. The attacker usually only has some partial
knowledge about the value of a secret, represented as a probability distribution on secrets called a
prior. We denote by X the set of possible secrets, and we typically use π to denote a prior belonging to
the set DX of probability distributions over X .

The vulnerability of a secret is a measure of the payoff that it represents for the attacker. In this
paper we consider a very general notion of vulnerability, following [8], and we define a vulnerability
V to be any continuous and convex function of type DX → R. It has been shown in [8] that these
functions coincide with the set of g-vulnerabilities, and are, in a precise sense, the most general
information measures w.r.t. a set of fundamental information-theoretic axioms. 3 This notion, hence,
subsumes all information measures that respect such fundamental principles, including the widely
adopted measures of Bayes vulnerability (aka min-vulnerability, aka (the converse of) Bayes risk) [9,10],
Shannon entropy [11], guessing entropy [12], and g-vulnerability [13].

2.2.2. Channels, posterior vulnerability, and leakage

Computational systems can be modeled as information theoretic channels. A channel C ∶ X ×Y →

R is a function in which X is a set of input values, Y is a set of output values, and C(x, y) represents the
conditional probability of the channel producing output y ∈ Y when input x ∈ X is provided. Every
channel C satisfies 0 ≤ C(x, y) ≤ 1 for all x ∈ X and y ∈ Y , and ∑y∈Y C(x, y) = 1 for all x ∈ X .

A distribution π ∈ DX and a channel C with inputs X and outputs Y induce a joint distribution
p(x, y) = π(x)C(x, y) on X × Y , producing joint random variables X, Y with marginal probabilities
p(x) = ∑y p(x, y) and p(y) = ∑x p(x, y), and conditional probabilities p(x∣y) = p(x,y)/p(y) if p(y) ≠ 0.

3 More precisely, if posterior vulnerability is defined as the expectation of the vulnerability of posterior distributions, the
measure respects the fundamental information-theoretic properties of data-processing inequality (i.e., that post-processing
can never increase information, but only destroy it), and of non-negativity of leakage (i.e., that by observing the output of a
channel an actor cannot, in average, lose information) if, and only if, vulnerability is convex.
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Program 0

High Input: x ∈ {0, 1}
Low Input: a ∈ {0, 1}
Output: y ∈ {0, 1}
y = x ⋅ a
return y

Program 1

High Input: x ∈ {0, 1}
Low Input: a ∈ {0, 1}
Output: y ∈ {0, 1}
c ← flip coin with bias a/3

if c = heads {y = x}
else {y = x}
return y

Figure 1. Alternative programs for the running example.

For a given y (s.t. p(y) ≠ 0), the conditional probabilities p(x∣y) for each x ∈ X form the posterior
distribution pX∣y.

A channel C in which X is a set of secret values and Y is a set of observable values produced by a
system can be used to model computations on secrets. Assuming the attacker has prior knowledge
π about the secret value, knows how a channel C works, and can observe the channel’s outputs, the
effect of the channel is to update the attacker’s knowledge from π to a collection of posteriors pX∣y,
each occurring with probability p(y).

Given a vulnerability V, a prior π, and a channel C, the posterior vulnerability V [π, C] is the
vulnerability of the secret after the attacker has observed the output of the channel C. Formally:

V [π, C] def
= ∑y∈Y p(y)V [pX∣y].

Consider, for instance, the example of the password-checker with a timing side-channel from the
introduction (Example 4, also discussed in detail in Section 7). Here the set of secrets X consists of all
possible passwords (say, all strings of n bits), and a natural vulnerability function is Bayes-vulnerability,
given by V(π) = maxx∈X π(x). This function expresses the adversary’s probability of guessing correctly
the password in one try; assuming that the passwords are chosen uniformly, i.e. π is uniform, any
guess would be correct with probability 2−n, giving V(π) = 2−n. Now, imagine that the timing
side-channel reveals that the adversary’s input failed on the first bit. The adversary now knows the first
bit of the password (say 0), hence the posterior pX∣y assigns probability 0 to all passwords with first

bit 1, and probability 2−(n−1) to all passwords with first bit 0. This happens for all possible posteriors,
giving posterior vulnerability V [π, C] = 2−(n−1) (2 times greater than the prior V).

It is known from the literature [8] that the posterior vulnerability is a convex function of π.
Namely, for any channel C, any family of distributions {πi}, and any set of convex coefficients {ci}, we
have:

V [∑
i

ciπi, C] ≤ ∑
i

ciV [πi, C]

The (information) leakage of channel C under prior π is a comparison between the vulnerability of
the secret before the system was run—called prior vulnerability—and the posterior vulnerability of the
secret. Leakage reflects by how much the observation of the system’s outputs increases the attacker’s
information about the secret. It can be defined either additively (V [π, C]−V [π]), or multiplicatively
(V[π,C]/V[π]). In the password-checker example, the additive leakage is 2−(n−1) − 2−n

= 2−n and the
multiplicative leakage is 2−(n−1)/2−n

= 2.

3. An illustrative example

We introduce an example which will serve as running example through the paper. Although
admittedly contrived, this example is simple and yet produces different leakage measures for all
different combinations of visible/hidden choice and simultaneous/sequential games, thus providing a
way to compare all different scenarios we are interested in.
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Table 1. Channel matrices and payoff table for running example.

(a) The four channels Cda for d, a ∈ {0, 1}

C00 y = 0 y = 1
x = 0 1 0
x = 1 1 0

C01 y = 0 y = 1
x = 0 1 0
x = 1 0 1

C10 y = 0 y = 1
x = 0 0 1
x = 1 1 0

C11 y = 0 y = 1
x = 0 1/3 2/3

x = 1 2/3 1/3

(b) Bayes vulnerability of each channel Cda.

V a = 0 a = 1
d = 0 1/2 1
d = 1 1 2/3

Consider that a binary secret must be processed by a program. As usual, a defender wants
to protect the secret value, whereas an attacker wants to infer it by observing the system’s output.
Assume the defender can choose which among two alternative versions of the program to run. Both
programs take the secret value x as high input, and a binary low input a whose value is chosen by the
attacker. They both return the output in a low variable y. 4 Program 0 returns the binary product of x
and a, whereas Program 1 flips a coin with bias a/3 (i.e., a coin which returns heads with probability
a/3) and returns x if the result is heads, and the complement x of x otherwise. The two programs are
represented in Figure 1.

The combined choices of the defender’s and of the attacker’s determine how the system behaves.
Let D={0, 1} represent the set of the defender’s choices—i.e., the index of the program to use—, and
A = {0, 1} represent the set of the attacker’s choices—i.e., the value of the low input a. We shall refer
to the elements of D and A as actions. For each possible combination of actions d ∈ D and a ∈ A,
we can construct a channel Cda modeling how the resulting system behaves. Each channel Cda is a
function of type X ×Y → R, where X = {0, 1} is the set of possible high input values for the system,
and Y = {0, 1} is the set of possible output values from the system. Intuitively, each channel provides
the probability that the system (which was fixed by the defender) produces output y ∈ Y given that
the high input is x ∈ X (and that the low input was fixed by the attacker). The four possible channels
are depicted in Table 1a.

Note that channel C00 does not leak any information about the input x (i.e., it is non-interferent),
whereas channels C01 and C10 completely reveal x. Channel C11 is an intermediate case: it leaks some
information about x, but not all.

We want to investigate how the defender’s and the attacker’s choices influence the leakage of the
system. For that we can just consider the (simpler) notion of posterior vulnerability, since in order to
make the comparison fair we need to assume that the prior is always the same in the various scenarios,
and this implies that the leakage is in a one-to-one correspondence with the posterior vulnerability
(this happens for both additive and multiplicative leakage).

For this example, assume we are interested in Bayes vulnerability [9,10], defined as V(π) =
maxx π(x) for every π ∈ DX . Assume for simplicity that the prior is the uniform prior πu. In this case
we know from [16] that the posterior Bayes vulnerability of a channel is the sum of the greatest elements
of each column, divided by the total number of inputs. Table 1b provides the Bayes vulnerability

Vda
def
= V [πu, Cda] of each channel considered above.
Naturally, the attacker aims at maximizing the vulnerability of the system, while the defender tries

to minimize it. The resulting vulnerability will depend on various factors, in particular on whether
the two players make their choice simultaneously (i.e., without knowing the choice of the opponent) or
sequentially. Clearly, if the choice of a player who moves first is known by an opponent who moves
second, the opponent will be in advantage. In the above example, for instance, if the defender knows

4 We adopt the usual convention in QIF of referring to secret variables, inputs and outputs in programs as high, and to their
observable counterparts as low.
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the choice a of the attacker, the most convenient choice for him is to set d = a, and the vulnerability
will be at most 2/3 . Vice versa, if the attacker knows the choice d of the defender, the most convenient
choice for him is to set a ≠ d. The vulnerability in this case will be 1.

Things become more complicated when players make choices simultaneously. None of the pure
choices of d and a are the best for the corresponding player, because the vulnerability of the system
depends also on the (unknown) choice of the other player. Yet there is a strategy leading to the best
possible situation for both players (the Nash equilibrium), but it is mixed (i.e., probabilistic), in that the
players randomize their choices according to some precise distribution.

Another factor that affects vulnerability is whether or not the defender’s choice is known to the
attacker at the moment in which he observes the output of the channel. Obviously, this corresponds to
whether or not the attacker knows what channel he is observing. Both cases are plausible: naturally the
defender has all the interest in keeping his choice (and, hence, the channel used) secret, since then the
attack will be less effective (i.e., leakage will be smaller). On the other hand, the attacker may be able
to identify the channel used anyway, for instance because the two programs have different running
times. We will call these two cases hidden and visible choice, respectively.

It is possible to model players’ strategies, as well as hidden and visible choices, as operations on
channels. This means that we can look at the whole system as if it were a single channel, which will
turn out to be useful for some proofs of our technical results. Next section is dedicated to the definition
of these operators. We will calculate the exact values for our example in Section 5.

4. Choice operators for protocol composition

In this section we define the operators of visible and hidden choice for protocol composition.
These operators are formally defined on the channel matrices of the protocols, and, since channels
are a particular kind of matrix, we use these matrix operations to define the operations of visible and
hidden choice among channels, and to prove important properties of these channel operations.

4.1. Matrices, and their basic operators

Given two sets X and Y , a matrix is a total function of type X × Y → R. Two matrices M1 ∶
X1 × Y1 → R and M2 ∶ X2 × Y2 → R are said to be compatible if X1 = X2. If it is also the case that
Y1 = Y2, we say that the matrices have the same type. The scalar multiplication r⋅M between a scalar r and
a matrix M is defined as usual, and so is the summation (∑i∈I Mi) (x, y) = Mi1(x, y)+ . . .+Min(x, y)
of a family {Mi}i∈I of matrices all of a same type.

Given a family {Mi}i∈I of compatible matrices s.t. each Mi has type X ×Yi → R, their concatenation
◇i∈I is the matrix having all columns of every matrix in the family, in such a way that every column
is tagged with the matrix it came from. Formally, (◇i∈IMi) (x, (y, j)) = Mj(x, y), if y ∈ Yj, and the

resulting matrix has type X × (⨆i∈I Yi) → R. 5 When the family {Mi} has only two elements we may
use the binary version ⋄ of the concatenation operator. The following depicts the concatenation of two
matrices M1 and M2 in tabular form.

M1 y1 y2

x1 1 2
x2 3 4

⋄

M2 y1 y2 y3

x1 5 6 7
x2 8 9 10

=

M1 ⋄ M2 (y1, 1) (y2, 1) (y1, 2) (y2, 2) (y3, 2)
x1 1 2 5 6 7
x2 3 4 8 9 10

5 ⨆i∈I Yi = Yi1 ⊔Yi2 ⊔ . . .⊔Yin denotes the disjoint union {(y, i) ∣ y ∈ Yi , i ∈ I} of the sets Yi1 , Yi2 , . . ., Yin .
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4.2. Channels, and their hidden and visible choice operators

A channel is a stochastic matrix, i.e., all elements are non-negative, and all rows sum up to 1. Here
we will define two operators specific for channels. In the following, for any real value 0 ≤ p ≤ 1, we
denote by p the value 1− p.

4.2.1. Hidden choice

The first operator models a hidden probabilistic choice among channels. Consider a family {Ci}i∈I
of channels of a same type. Let µ ∈ DI be a probability distribution on the elements of the index set I.
Consider an input x is fed to one of the channels in {Ci}i∈I , where the channel is randomly picked
according to µ. More precisely, an index i ∈ I is sampled with probability µ(i), then the input x is fed
to channel Ci, and the output y produced by the channel is then made visible, but not the index i of the
channel that was used. Note that we consider hidden choice only among channels of a same type: if
the sets of outputs were not identical, the produced output might implicitly reveal which channel was
used.

Formally, given a family {Ci}i∈I of channels s.t. each Ci has same type X × Y → R, the hidden
choice operator ⨊i←µ is defined as ⨊i←µCi = ∑i∈I µ(i)Ci.

Proposition 4.1 (Type of hidden choice). Given a family {Ci}i∈I of channels of type X × Y → R, and a
distribution µ on I, the hidden choice ⨊i←µCi is a channel of type X ×Y → R.

See Appendix A for the proof.
In the particular case in which the family {Ci} has only two elements Ci1 and Ci2 , the distribution

µ on indexes is completely determined by a real value 0 ≤ p ≤ 1 s.t. µ(i1) = p and µ(i2) = p. In this
case we may use the binary version p⊕ of the hidden choice operator: Ci1 p⊕ Ci2 = p Ci1+p Ci2 . The
example below depicts the hidden choice between channels C1 and C2, with probability p=1/3.

C1 y1 y2

x1 1/2 1/2

x2 1/3 2/3

1/3⊕
C2 y1 y2

x1 1/3 2/3

x2 1/2 1/2

=

C1 1/3⊕ C2 y1 y2

x1 7/18 11/18

x2 4/9 5/9

4.2.2. Visible choice

The second operator models a visible probabilistic choice among channels. Consider a family
{Ci}i∈I of compatible channels. Let µ ∈ DI be a probability distribution on the elements of the index
set I. Consider an input x is fed to one of the channels in {Ci}i∈I , where the channel is randomly
picked according to µ. More precisely, an index i ∈ I is sampled with probability µ(i), then the input x
is fed to channel Ci, and the output y produced by the channel is then made visible, along with the
index i of the channel that was used. Note that visible choice makes sense only between compatible
channels, but it is not required that the output set of each channel be the same.

Formally, given {Ci}i∈I of compatible channels s.t. each Ci has type X ×Yi → R, and a distribution
µ on I, the visible choice operator &i←µ is defined as &i←µCi =◇i∈I µ(i)Ci.

Proposition 4.2 (Type of visible choice). Given a family {Ci}i∈I of compatible channels s.t. each Ci has
type X × Yi → R, and a distribution µ on I, the result of the visible choice &i←µCi is a channel of type
X × (⨆i∈I Yi) → R.

See Appendix A for the proof.
In the particular case the family {Ci} has only two elements Ci1 and Ci2 , the distribution µ on

indexes is completely determined by a real value 0 ≤ p ≤ 1 s.t. µ(i1) = p and µ(i2) = p. In this case we
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may use the binary version pH of the visible choice operator: Ci1 pH Ci2 = p Ci1 ⋄ p Ci2 . The following
depicts the visible choice betwee channels C1 and C3, with probability p=1/3.

C1 y1 y2

x1 1/2 1/2

x2 1/3 2/3

1/3H
C3 y1 y3

x1 1/3 2/3

x2 1/2 1/2

=

C1 1/3H C3 (y1, 1) (y2, 1) (y1, 3) (y3, 3)
x1 1/6 1/6 2/9 4/9

x2 1/9 2/9 1/3 1/3

4.3. Properties of hidden and visible choice operators

We now prove algebraic properties of channel operators. These properties will be useful when we
model a (more complex) protocol as the composition of smaller channels via hidden or visible choice.

Whereas the properties of hidden choice hold generally with equality, those of visible choice are
subtler. For instance, visible choice is not idempotent, since in general C pH C ≠ C. (In fact if C has
type X × Y → R, C pH C has type X × (Y ⊔ Y) → R.) However, idempotency and other properties
involving visible choice hold if we replace the notion of equality with the more relaxed notion of
“equivalence” between channels. Intuitively, two channels are equivalent if they have the same input
space and yield the same value of vulnerability for every prior and every vulnerability function.

Definition 1 (Equivalence of channels). Two compatible channels C1 and C2 with domain X are equivalent,
denoted by C1 ≈ C2, if for every prior π ∈ DX and every posterior vulnerability V we have V [π, C1] =
V [π, C2].

Two equivalent channels are indistinguishable from the point of view of information leakage,
and in most cases we can just identify them. Indeed, nowadays there is a tendency to use abstract
channels [8,17], which capture exactly the important behavior with respect to any form of leakage. In
this paper, however, we cannot use abstract channels because the hidden choice operator needs a
concrete representation in order to be defined unambiguously.

The first properties we prove regard idempotency of operators, which can be used do simplify
the representation of some protocols.

Proposition 4.3 (Idempotency). Given a family {Ci}i∈I of channels s.t. Ci = C for all i ∈ I, and a
distribution µ on I, then: (a) ⨊i←µCi = C; and (b) &i←µCi ≈ C.

See Appendix A for the proof.
The following properties regard the reorganization of operators, and they will be essential in

some technical results in which we invert the order in which hidden and visible choice are applied in a
protocol.

Proposition 4.4 (“Reorganization of operators”). Given a family {Cij}i∈I,j∈J of channels indexed by sets I
and J , a distribution µ on I, and a distribution η on J :

(a) ⨊i←µ ⨊j←ηCij = ⨊i←µ
j←η

Cij, if all Ci’s have the same type;

(b) &i←µ &j←ηCij ≈ &i←µ
j←η

Cij, if all Ci’s are compatible; and

(c) ⨊i←µ &j←ηCij ≈ &j←η ⨊i←µCij, if, for each i, all Cij’s have same type X ×Yj → R.

See Appendix A for the proof.
Finally, analogous properties of the binary operators are shown in Appendix B.

4.4. Properties of vulnerability w.r.t. channel operators

We now derive some relevant properties of vulnerability w.r.t. our channel operators, which
will be later used to obtain the Nash equilibria in information leakage games with different choice
operations.
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The first result states that posterior vulnerability is convex w.r.t. hidden choice (this result was
already presented in [6]), and linear w.r.t. to visible choice.

Theorem 2 (Convexity/linearity of posterior vulnerability w.r.t. choices). Let {Ci}i∈I be a family of
channels, and µ be a distribution on I. Then, for every distribution π on X , and every vulnerability V:

1. posterior vulnerability is convex w.r.t. to hidden choice: V [π,⨊i←µCi] ≤ ∑i∈I µ(i)V [π, Ci] if all Ci’s
have the same type.

2. posterior vulnerability is linear w.r.t. to visible choice: V [π,&i←µCi] = ∑i∈I µ(i)V [π, Ci] if all Ci’s
are compatible.

Proof. 1. Let us call X ×Y → R the type of each channel Ci in the family {Ci}. Then:

V
⎡⎢⎢⎢⎢⎢⎢⎢⎣

π, ⨊
i←µ

Ci

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=V [π,∑

i
µ(i)Ci] (by definition of hidden choice)

= ∑
y∈Y

p(y) ⋅V [
π(⋅)∑i µ(i)Ci(⋅, y)

p(y) ] (by definition of posterior V)

= ∑
y∈Y

p(y) ⋅V [∑
i

µ(i)π(⋅)Ci(⋅, y)
p(y) ]

≤ ∑
y∈Y

p(y) ⋅∑
i

µ(i)V [π(⋅)Ci(⋅, y)
p(y) ] (by convexity of V)

= ∑
i

µ(i) ∑
y∈Y

p(y)V [π(⋅)Ci(⋅, y)
p(y) ]

= ∑
i

µ(i)V [π, Ci]

where p(y) = ∑x∈X π(x)∑i µ(i)Ci(x, y).

2. Let us call X ×Yi → R the type of each channel Ci in the family {Ci}. Then:

V
⎡⎢⎢⎢⎢⎢⎢⎢⎣

π, '
i←µ

Ci

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=V [π,◇iµ(i)Ci] (by definition of visible choice)

= ∑
y∈Y

p(y) ⋅V [π(⋅)◇i µ(i)Ci(⋅, y)
p(y) ] (by definition of posterior V)

= ∑
y∈Y

p(y) ⋅V [◇iµ(i)π(⋅)Ci(⋅, y)
p(y) ]

= ∑
y∈Y

p(y) ⋅∑
i

µ(i)V [π(⋅)Ci(⋅, y)
p(y) ] (see (*) below)

= ∑
i

µ(i) ∑
y∈Y

p(y)V [π(⋅)Ci(⋅, y)
p(y) ]

= ∑
i

µ(i)V [π, Ci]

where p(y) = ∑x∈X π(x)∑i µ(i)Ci(x, y), and step (*) holds because in the vulnerability of a
concatenation of matrices every column will contribute to the vulnerability in proportion to its
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weight in the concatenation, and hence it is possible to break the vulnerability of a concatenated
matrix as the weighted sum of the vulnerabilities of its sub-matrices.

The next result is concerned with posterior vulnerability under the composition of channels using
both operators.

Corollary 1 (Convex-linear payoff function). Let {Cij}i∈I,j∈J be a family of channels, all with domain X
and with the same type, and let π ∈ DX , and V be any vulnerability. Define U ∶ DI ×DJ → R as follows:

U(µ, η) def
= V [π,⨊i←µ &j←η Cij]. Then U is convex on µ and linear on η.

Proof. To see that U(µ, η) is convex on µ, note that:

U(µ, η) =V
⎡⎢⎢⎢⎢⎢⎢⎢⎣

π, ⨊
i←µ

'
j←η

Cij

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(by definition)

≤ ∑
i

µ(i) V
⎡⎢⎢⎢⎢⎢⎢⎢⎣

π, '
j←η

Cij

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(by Theorem 2)

To see that U(µ, η) is linear on η, note that:

U(µ, η) =V
⎡⎢⎢⎢⎢⎢⎢⎢⎣

π, ⨊
i←µ

'
j←η

Cij

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(by definition)

=V
⎡⎢⎢⎢⎢⎢⎢⎢⎣

π, '
j←η

⨊
i←µ

Cij

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(by Prop. 4.4)

= ∑
j

η(j) V
⎡⎢⎢⎢⎢⎢⎢⎢⎣

π, ⨊
i←µ

Cij

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(by Theorem. 2)

5. Information leakage games

In this section we present our framework for reasoning about information leakage, extending the
notion of information leakage games proposed in [6] from only simultaneous games with hidden choice
to both simultaneous and sequential games, with either hidden or visible choice.

In an information leakage game the defender tries to minimize the leakage of information from
the system, while the attacker tries to maximize it. In this basic scenario, their goals are just opposite
(zero-sum). Both of them can influence the execution and the observable behavior of the system via a
specific set of actions. We assume players to be rational (i.e., they are able to figure out what is the best
strategy to maximize their expected payoff), and that the set of actions and the payoff function are
common knowledge.

Players choose their own strategy, which in general may be probabilistic (i.e., behavioral or
mixed) and choose their action by a random draw according to that strategy. After both players have
performed their actions, the system runs and produces some output value which is visible to the
attacker and may leak some information about the secret. The amount of leakage constitutes the
attacker’s gain, and the defender’s loss.

To quantify the leakage we model the system as an information-theoretic channel (cf. Section 2.2).
We recall that leakage is defined as the difference (additive leakage) or the ratio (multiplicative leakage)
between posterior and prior vulnerability. Since we are only interested in comparing the leakage of
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different channels for a given prior, we will define the payoff just as the posterior vulnerability, as the value
of prior vulnerability will be the same for every channel.

5.1. Defining information leakage games

An (information) leakage game consists of:

(1) two nonempty sets D, A of defender’s and attacker’s actions, respectively,
(2) a function C ∶ D ×A → (X × Y → R) that associates to each pair of actions (d, a) ∈ D ×A a

channel Cda ∶ X ×Y → R,
(3) a prior π ∈ DX on secrets, and
(4) a vulnerability measure V, used to define the payoff function u ∶ D ×A → R for pure strategies

as u(d, a) def
= V [π, Cda]. We have only one payoff function because the game is zero-sum.

Like in traditional game theory, the order of actions and the extent by which a player knows the
move performed by the opponent play a critical role in deciding strategies and determining the payoff.
In security, however, knowledge of the opponent’s move affects the game in yet another way: the
effectiveness of the attack, i.e., the amount of leakage, depends crucially on whether or not the attacker
knows what channel is being used. It is therefore convenient to distinguish two phases in the leakage
game:

Phase 1 - Determination of players’ strategies, and the subsequent choice of their actions: Each
player determines the most convenient strategy (which in general is probabilistic) for himself,
and draws his action accordingly. One of the players may commit first to his action, and his
choice may or may not be revealed to the follower. In general, knowledge of the leader’s action
may help the follower choose a more advantageous strategy.

Phase 2 - Observation of the resulting channel’s output, and payoff computation: The attacker
observes the output of the selected channel Cda and performs his attack on the secret. In case he
knows the defender’s action, he is able to determine the exact channel Cda being used (since, of
course, the attacker knows his own action), and his payoff will be the posterior vulnerability
V [π, Cda]. However, if the attacker does not know exactly which channel has been used, then
his payoff will be smaller.

Note that the issues raised in Phase 2 are typical of leakage games; they do not have a
correspondence (to the best of our knowledge) in traditional game theory. Indeed, in traditional
game theory the resulting payoff is a deterministic function of all players’ actions. On the other
hand, the extra level of randomization provided by the channel is central to security, as it reflects the
principle of preventing the attacker from inferring the secret by obfuscating the link between secret
and observables.

Following the above discussion, we consider various possible scenarios for games, along two
lines of classification. The first classification concerns Phase 1 of the game, in which strategies are
selected and actions are drawn, and consists in three possible orders for the two players’ actions.

Simultaneous: The players choose (draw) their actions in parallel, each without knowing the choice
of the other.

Sequential, defender-first: The defender draws an action, and commits to it, before the attacker does.
Sequential, attacker-first: The attacker draws an action, and commits to it, before the defender does.

Note that these sequential games may present imperfect information (i.e., the follower may not know
the leader’s action), and that we have to further specify whether we use behavioral or mixed strategies.

The second classification concerns Phase 2 of the game, in which some leakage occurs in
consequence of the attacker’s observation of the channel’s output, and consists in two kinds of
knowledge the attacker may have at this point about the channel that was used.
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Table 2. Kinds of games we consider. Sequential games have perfect information, except for Game V.

Order of action

simultaneous defender first attacker first

Defender’s
choice

visible & Game I Game II Game III

hidden ⨊ Game IV Game V Game VI

Visible choice: The attacker knows the defender’s action when he observes the output of the channel,
and therefore he knows which channel is being used. Visible choice is modeled by the operator &.

Hidden choice: The attacker does not know the defender’s action when he observes the output of the
channel, and therefore in general he does not exactly know which channel is used (although in
some special cases he may infer it from the output). Hidden choice is modeled by the operator ⨊.

Note that the distinction between sequential and simultaneous games is orthogonal to that
between visible and hidden choice. Sequential and simultaneous games model whether or not,
respectively, the follower’s choice can be affected by knowledge of the leader’s action. This dichotomy
captures how knowledge about the other player’s actions can help a player choose his own action, and
it concerns how Phase 1 of the game occurs. On the other hand, visible and hidden choice capture
whether or not, respectively, the attacker is able to fully determine the channel representing the system,
once the defender and attacker’s actions have already been fixed. This dichotomy reflects the different amounts
of information leaked by the system as viewed by the attacker, and it concerns how Phase 2 of the game
occurs. For instance, in a simultaneous game neither player can choose his action based on the choice
of the other. However, depending on whether or not the defender’s choice is visible, the attacker will
or will not, respectively, be able to completely recover the channel used, which will affect the amount
of leakage.

If we consider also the subdivision of sequential games into perfect and imperfect information,
there are 10 possible different combinations. Some, however, make little sense. For instance, the
defender-first sequential game with perfect information (by the attacker) does not combine naturally
with hidden choice ⨊, since that would mean that the attacker knows the action of the defender
and chooses his strategy accordingly, but forgets it at the moment of computing the channel and its
vulnerability. (We assume perfect recall, i.e., the players never forget what they have learned.) Yet other
combinations are not interesting, such as the attacker-first sequential game with (totally) imperfect
information (by the defender), since it coincides with the simultaneous-game case. Note that the
attacker and defender are not symmetric with respect to hiding/revealing their actions a and d, since
the knowledge of a affects the game only in the usual sense of game theory (in Phase 1), while the
knowledge of d also affects the computation of the payoff (in Phase 2). Note that the attacker and
defender are not symmetric with respect to hiding/revealing their actions a and d, since the knowledge
of a affects the game only in the usual sense of game theory, while the knowledge of d also affects the
computation of the payoff (cf. “Phase 2” above). Other possible combinations would come from the
distinction between behavioral and mixed strategies, but, as we will see, they are always equivalent
except in one scenario, so for the sake of conciseness we prefer to treat it as a case apart.

Table 2 lists the meaningful and interesting combinations. In Game V we assume imperfect
information: the attacker does not know the action chosen by the defender. In all the other sequential
games we assume that the follower has perfect information. In the remaining of this section, we discuss
each game individually, using the example of Section 3 as a running example.
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5.1.1. Game I (simultaneous with visible choice)

This simultaneous game can be represented by a tuple (D, A, u). As in all games with visible
choice &, the expected payoff U of a mixed strategy profile (δ, α) is defined to be the expected value of
u, as in traditional game theory:

U(δ, α) def
= E

d←δ
a←α

u(d, a) =∑
d∈D
a∈A

δ(d) α(a)u(d, a),

where we recall that u(d, a) = V [π, Cda].
From Theorem 2(2) we derive that U(δ, α) = V [π,&d←δ

a←α
Cda], and hence the whole system can

be equivalently regarded as the channel &d←δ
a←α

Cda. Still from Theorem 2(2) we can derive that U(δ, α)
is linear in δ and α. Therefore the Nash equilibrium can be computed using the standard method (cf.
Section 2.1).

Example 5. Consider the example of Section 3 in the setting of Game I, with uniform prior. The Nash equilibrium
(δ
∗, α

∗) can be obtained using the closed formula from Section 2.1, and it is given by δ
∗(0) = α

∗(0) =
(2/3−1)/(1/2−1−1+2/3) = 2/5. The corresponding payoff is U(δ

∗, α
∗) = 2/5 2/5 1/2+ 2/5 3/5+ 3/5 2/5+ 3/5 3/5 2/3 = 4/5.

5.1.2. Game II (defender-first with visible choice)

This defender-first sequential game can be represented by a tuple (D, D→A, u). We will first
consider mixed strategies for the follower (which in this case is the attacker), namely strategies of type
D(D→A). Hence a (mixed) strategy profile is of the form (δ, σa), with δ ∈ DD and σa ∈ D(D→A),
and the corresponding payoff is

U(δ, σa)
def
= E

d←δ
sa←σa

u(d, sa(d)) = ∑
d∈D

sa∶D→A

δ(d) σa(sa)u(d, sa(d)),

where u(d, sa(d)) = V [π, Cdsa(d)].

Again, from Theorem 2(2) we derive: U(δ, σa) = V [π,& d←δ
sa←σa

Cdsa(d)] and hence the system can be

expressed as a channel & d←δ
sa←σa

Cdsa(d). From the same theorem we also derive that U(δ, σa) is linear in

δ and σa, so the mutually optimal strategies can be obtained again by solving the minimax problem. In
this case, however, the solution is particularly simple, because there are always deterministic optimal
strategy profiles. We first consider the case of attacker’s strategies of type D(D→A).

Theorem 3 (Pure-strategy Nash equilibrium in Game II - strategies of type D(D→A)). Consider a

defender-first sequential game with visible choice, and attacker’s strategies of type D(D→A). Let d∗ def
=

argmind maxa u(d, a) and let s∗a ∶ D→A be defined as s∗a (d) def
= argmaxa u(d, a) (if there is more than one a

that maximizes u(d, a), we select one of them arbitrarily). Then for every δ ∈ DD and σa ∈ D(D→A) we have
U(d∗, σa) ≤ u(d∗, s∗a (d∗)) ≤ U(δ, s∗a ).

Proof. Let δ and σa be arbitrary elements of DD and D(D→A), respectively. Then:

U(d∗, σa) = ∑
sa∶D→A

σa(sa)u(d∗, sa(d∗))

≤ ∑
sa∶D→A

σa(sa)u(d∗, s∗a (d∗)) (by definition of s∗a )

= u(d∗, s∗a (d∗)) (since σa is a distribution)
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= ∑
d∈D

δ(d)u(d∗, s∗a (d∗)) (since δ is a distribution)

≤ ∑
d∈D

δ(d)u(d, s∗a (d)) (by definition of d∗)

= U(δ, s∗a )

Hence to find the optimal strategy it is sufficient for the defender to find the action d∗ which
minimizes maxa u(d∗, a), while the attacker’s optimal choice is the pure strategy s∗a such that s∗a (d) =
argmaxa u(d, a), where d is the (visible) move by the defender.

Example 6. Consider the example of Section 3 in the setting of Game II, with uniform prior. If the defender
chooses 0 then the attacker chooses 1. If the defender chooses 1 then the attacker chooses 0. In both cases, the
payoff is 1. The game has therefore two solutions, (δ

∗
1 , α

∗
1 ) and (δ

∗
2 , α

∗
2 ), with δ

∗
1 (0) = 1, α

∗
1 (0) = 0 and

δ
∗
2 (0) = 0, α

∗
2 (1) = 1.

Consider now the case of behavioral strategies. Following the same line of reasoning as before,
we can see that under the strategy profile (δ, φa) the system can be expressed as the channel

'
d←δ

'
a←φa(d)

Cda.

Also in this case there are deterministic optimal strategy profiles. An optimal strategy for the
follower (in this case the attacker) consists in looking at the action d chosen by the leader and then
selecting with probability 1 the action a that maximizes u(d, a).

Theorem 4 (Pure-strategy Nash equilibrium in Game II - strategies of type D → D(A)). Consider a

defender-first sequential game with visible choice, and attacker’s strategies of type D → D(A). Let d∗ def
=

argmind maxa u(d, a) and let φ
∗
a ∶ D → D(A) be defined as φ

∗
a (d)(a) def

= 1 if a = argmaxa′ u(d, a′) (if there

is more than one such a, we select one of them arbitrarily), and φ
∗
a (d)(a) def

= 0 otherwise. Then for every δ ∈ DD
and φa ∶ D → D(A) we have: U(d∗, φa(d∗)) ≤ U(d∗, φ

∗
a (d∗)) ≤ U(δ, φ

∗
a ).

Proof. Let a∗ be the action selected by φ
∗
a (d∗), i.e., φ

∗
a (d∗)(a∗) def

= 1. Then u(d∗, a∗) = maxa u(d∗, a).
Let δ and φa be arbitrary elements of DD and D → D(A), respectively. Then:

U(d∗, φa(d∗)) = ∑
a∈A

φa(d∗)(a)u(d∗, a)

≤ ∑
a∈A

φa(d∗)(a)u(d∗, a∗) (since u(d∗, a∗) = maxa u(d∗, a))

= u(d∗, a∗) (since φa(d∗) is a distribution)

= U(d∗, φ
∗
a (d∗)) (by definition of a∗)

= ∑
d∈D

δ(d)u(d∗, φ
∗
a (d∗)) (since δ is a distribution)

≤ ∑
d∈D

δ(d)u(d, φ
∗
a (d)) (by definition of d∗ and of φ

∗
a )

= U(δ, φ
∗
a )
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As a consequence of Theorems 3 and 4 we can show that in the games we consider the payoff
of the optimal mixed and behavioral strategy profiles coincide. Note that this result could also be
derived from the result from standard game theory which states that, in the cases we consider, for any
behavioral strategy there is a mixed strategy that yields the same payoff, and viceversa [15]. However,
the proof of [15] relies on Khun’s theorem, which is non-constructive (and rather complicated, because
it is for more general cases). In our scenario the proof is very simple, as we will see in the following
corollary. Furthermore, since such a result does not hold for leakage games with hidden choice, we
think it will be useful to show the proof formally in order to analyze the difference.

Corollary 2 (Equivalence of optimal strategies of types D(D→A) and D → D(A) in Game II). Consider
a defender-first sequential game with visible choice, and let d∗, s∗a and φ

∗
a be defined as in Theorems 3 and 4

respectively. Then u(d∗, s∗a (d∗)) = U(d∗, φ
∗
a (d∗)).

Proof. The result follows immediately by observing that u(d∗, s∗a (d∗)) = maxa u(d∗, a) = u(d∗, a∗) =
U(d∗, φ

∗
a (d∗)).

5.1.3. Game III (attacker-first with visible choice)

This game is also a sequential game, but with the attacker as the leader. Therefore it can be
represented as tuple of the form (A→D, A, u). It is the same as Game II, except that the roles of
the attacker and the defender are inverted. In particular, the payoff of a mixed strategy profile
(σd, α) ∈ D(A→D)×DA is given by

U(σd, α) def
= E

sd←σd
a←α

u(sd(a), a) = ∑
sd∶A→D

a∈A

σd(sd) α(a)u(sd(a), a)

and by Theorem 2(2) the whole system can be equivalently regarded as channel '
sd←σd
a←α

Csd(a)a. For a

behavioral strategy (φd, α) ∈ (A → D(D))×DA, the payoff is given by

U(φd, α) def
= E

a←α
E

d←φd(a)
u(d, a) = ∑

a∈A
α(a)∑

d∈D
φd(a)(d)u(d, a)

and by Theorem 2(2) the whole system can be equivalently regarded as channel '
a←α

'
d←φd(a)

Cda.

Obviously, the same results that we have obtained in previous section for Game II hold also for
Game III, with the role of attacker and defender switched. We collect all these results in the following
theorem.

Theorem 5 (Pure-strategy Nash equilibria in Game III and equivalence of D(A→D) and (A → D(D))).

Consider a defender-first sequential game with visible choice. Let a∗ def
= argmaxa mind u(d, a). Let s∗d ∶

A→D be defined as s∗d(a) def
= argmind u(d, a), and let φ

∗
d ∶ A → D(D) be defined as φ

∗
d (a)(d) def

= 1 if
d = argmind′ u(d′, a). Then:

1. For every α ∈ DA and σd ∈ D(A→D) we have U(s∗d , α) ≤ u(s∗d(a∗), a∗) ≤ U(σd, a∗).

2. For every α ∈ DA and φd ∶ A → D(D) we have: U(φ
∗
d , α) ≤ U(φ

∗
d (a∗), a∗) ≤ U(φd(a∗), a∗).

3. u(s∗d(a∗), a∗) = U(φ
∗
d (a∗), a∗).

Proof. These results can be proved by following the same lines as the proofs of Theorems 3 and 4, and
Corollary 2.
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Example 7. Consider now the example of Section 3 in the setting of Game III, with uniform prior. If the attacker
chooses 0 then the defender chooses 0 and the payoff is 1/2. If the attacker chooses 1 then the defender chooses 1
and the payoff is 2/3. The latter case is more convenient for the attacker, hence the solution of the game is the
strategy profile (δ

∗, α
∗) with δ

∗(0) = 0, α
∗(0) = 0.

5.1.4. Game IV (simultaneous with hidden choice)

The simultaneous game with hidden choice is a tuple (D,A, u). However, it is not an ordinary
game in the sense that the payoff a mixed strategy profile cannot be defined by averaging the payoff of the
corresponding pure strategies. More precisely, the payoff of a mixed profile is defined by averaging on the
strategy of the attacker, but not on that of the defender. In fact, when hidden choice is used, there is an
additional level of uncertainty in the relation between the observables and the secret from the point of
view of the attacker, since he is not sure about which channel is producing those observables. A mixed
strategy δ for the defender produces a convex combination of channels (the channels associated to the
pure strategies) with the same coefficients, and we know from previous sections that the vulnerability
is a convex function of the channel, and in general is not linear.

In order to define the payoff of a mixed strategy profile (δ, α), we need therefore to consider the
channel that the attacker perceives given his limited knowledge. Let us assume that the action that the
attacker draws from α is a. He does not know the action of the defender, but we can assume that he
knows his strategy (each player can derive the optimal strategy of the opponent, under the assumption
of common knowledge and rational players).

The channel the attacker will see is ⨊d←δCda, obtaining a corresponding payoff of V [π,⨊d←δCda].
By averaging on the strategy of the attacker we obtain

U(δ, α) def
= E

a←α
V [π, ⨊

d←δ

Cda] = ∑
a∈A

α(a)V [π, ⨊
d←δ

Cda] .

From Theorem 2(2) we derive: U(δ, α) = V [π,&a←α ⨊d←δCda] and hence the whole system can be
equivalently regarded as channel &a←α ⨊d←δCda. Note that, by Proposition 4.4(3), the order of the
operators is interchangeable, and the system can be equivalently regarded as ⨊d←δ &a←αCda. This
shows the robustness of this model.

From Corollary 1 we derive that U(δ, α) is convex in δ and linear in η, hence we can compute the
Nash equilibrium by the minimax method.

Example 8. Consider now the example of Section 3 in the setting of Game IV. For δ ∈ DD and α ∈ DA, let
p = δ(0) and q = α(0). The system can be represented by the channel (C00 p⊕ C10) qH (C01 p⊕ C11)
represented below.

C00 p⊕ C10 y = 0 y = 1
x = 0 p p
x = 1 1 0

qH
C01 p⊕ C11 y = 0 y = 1

x = 0 1/3+ 2/3 p 2/3− 2/3 p
x = 1 2/3− 2/3 p 1/3+ 2/3 p

For uniform π, we have V [π, C00 p⊕ C10]=1 − 1/2 p, while V [π, C10 p⊕ C11] is equal to 2/3 − 2/3 p if
p ≤ 1/4, and equal to 1/3 + 2/3 p if p > 1/4. Hence the payoff, expressed in terms of p and q, is U(p, q) =
q(1 − 1/2 p) + q(2/3 − 2/3 p) if p ≤ 1/4, and U(p, q) = q(1 − 1/2 p) + q(1/3 + 2/3 p) if p > 1/4. The Nash
equilibrium can be computed by imposing that the partial derivatives of U(p, q) with respect to p and q are both
0, which means that we are in a saddle point. We have:

∂U(p, q)
∂q

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
3 +

1
6 p , if p ≤ 1

4

2
3 −

7
6 p , if p > 1

4

∂U(p, q)
∂p

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− 2
3 +

1
6 q , if p ≤ 1

4

2
3 −

7
6 q , if p > 1

4
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We can see that the equations ∂U(p,q)/∂q = 0 and ∂U(p,q)/∂p = 0 do not have solutions in [0, 1] for p ≤ 1/4, while
for p > 1/4 they have solution p∗ = q∗ = 4/7. The pair (p∗, q∗) thus constitutes the Nash equilibrium, and the
corresponding payoff is U(p∗, q∗) = 5/7.

5.1.5. Game V (defender-first with hidden choice)

This is a defender-first sequential game with imperfect information, hence it can be represented as
a tuple of the form (D, Ka → A, u), where Ka is a partition of D. Since we are assuming perfect recall,
and the attacker does not know anything about the action chosen by the defender in Phase 2, i.e., at the
moment of the attack (except the probability distribution determined by his strategy), we must assume
that the attacker does not know anything in Phase 1 either. Hence the indistinguishability relation
must be total, i.e., Ka = {D}. But {D} → A is equivalent to A, hence this kind of game is equivalent to
Game IV. It is also a well known fact in game theory that when in a sequential game the follower does
not know the leader’s move before making his choice, the game is equivalent to a simultaneous game.6

5.1.6. Game VI (attacker-first with hidden choice)

This game is also a sequential game with the attacker as the leader, hence it is a tuple of the form
(A→D, A, u). It is similar to Game III, except that the payoff is convex on the strategy of the defender,
instead of linear. We will see, however, that this causes quite some deviation from the properties of
Game III, and from standard game theory.

The payoff of the mixed strategy profile (σd, α) ∈ D(A→D)×DA is

U(σd, α) def
= E

a←α
V [π, ⨊

sd←σd

Csd(a)a] = V [π, '
a←α

⨊
sd←σd

Csd(a)a],

so the whole system can be equivalently regarded as channel '
a←α

⨊
sd←σd

Csd(a)a.

The first important difference from Game III is that in Game VI there may not exist optimal
strategies, either mixed or behavioral, that are deterministic for the defender. On the other hand, for
the attacker there are always deterministic optimal strategies, and this is true independently from
whether the defender uses mixed or behavioral strategies.

To show the existence of deterministic optimal strategies for the attacker, let us first introduce
some standard notation for functions: given a variable x and an expression M, λx.M represents the
function that on the argument x gives as result the value of M. Given two sets X and Y where Y is
provided with an ordering ≤, the point-wise ordering on X → Y is defined as follows: for f , g ∶ X → Y,
f ≤ g if and only if ∀x ∈ X. f (x) ≤ g(x).

Theorem 6 (Attacker’s pure-strategy Nash equilibrium in Game VI). Consider an attacker-first sequential
game with hidden choice.

1. Mixed strategies – type D(A→D). Let a∗ def
= argmaxa minσd V [π,⨊sd←σd

Csd(a)a], and let σ
∗
d

def
=

argminσd
λa.V [π,⨊sd←σd

Csd(a)a]. Then, for every α ∈ DA and σd ∈ D(A→D) we have

U(σ
∗
d , α) ≤ U(σ

∗
d , a∗) ≤ U(σd, a∗)

6 However, one could argue that, since the defender has already committed, the attacker does not need to perform the action
corresponding to the Nash equilibrium, any payoff-maximizing solution would be equally good for him.
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2. Behavioral strategies – type A → D(D). Let a∗ def
= argmaxa minδ V [π,⨊d←δCda], and let φ

∗
d

def
=

argminφd
λa.V [π,⨊d←φd(a)Cda]. (The minimization is with respect to the point-wise ordering.) Then,

for every α ∈ DA and φd ∶ A → D(D) we have

U(φ
∗
d , α) ≤ U(φ

∗
d , a∗) ≤ U(φd, a∗)

Proof. 1. Let α and σd be arbitrary elements of DA and D(A→D), respectively. Then:

U(σ
∗
d , α) = ∑

a∈A
α(a)V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
π, ⨊

sd←σ∗d

Csd(a)a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ ∑
a∈A

α(a)V
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

π, ⨊
sd←σ∗d

Csd(a∗)a∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(by definition of a∗ and σ

∗
d )

= V
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

π, ⨊
sd←σ∗d

Csd(a∗)a∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
( = U(σ

∗
d , a∗)) (since α is a distribution)

≤ V [π, ⨊
sd←σd

Csd(a∗)a∗] (by definition of σ
∗
d )

= U(σd, a∗)

2. Let α and φd be arbitrary elements of DA and A → D(D), respectively. Then:

U(φ
∗
d , α) = ∑

a∈A
α(a)V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
π, ⨊

d←φ∗d (a)
Cda

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ ∑
a∈A

α(a)V
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

π, ⨊
d←φ∗d (a∗)

Cda∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(by definition of a∗ and φ

∗
d )

= V
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

π, ⨊
d←φ∗d (a∗)

Cda∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
( = U(φ

∗
d , a∗)) (since α is a distribution)

≤ V
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

π, ⨊
d←φd(a∗)

Cda∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(by definition of φ

∗
d )

= U(φd, a∗)

We show now, with the following example, that the optimal strategies for the defender are
necessarily probabilistic.

Example 9. Consider the channel matrices Cij defined in Section 3, and define the following new channels:
C′00 = C′11 = C01 and C′10 = C′01 = C10. Define Dp as the result of the hidden choice, with probability p, between

C′00 and C′10, i.e., Dp
def
= C′00 p⊕ C′10, and observe that Dp[0, 0] = Dp[1, 1] = p, and Dp[1, 0] = Dp[0, 1] =

1− p. Furthermore, Dp = C′01 1−p⊕ C′11. The vulnerability of Dp, for uniform π, is V [π, Dp] = 1− 1/2p for

p ≤ 1/2 and V [π, Dp] = p for p > 1/2, hence, independently from the choice of the attacker, the best strategy for
the defender is to choose p = 1/2. Every other value for p gives a strictly higher vulnerability. Therefore, the
best mixed strategy for the defender is σ

∗
d defined as σ

∗
d (λa.0) = σ

∗
d (λa.1) = 1/2. Similarly, the best behavioral

strategy for the defender is φ
∗
d defined as φ

∗
d (0) = φ

∗
d (1) = λd.1/2.
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Game U
I 4/5

II 1
III 2/3

IV 5/7

V 5/7

VIm 4/7

VIb 1/2

Figure 2. Summary of the results for the running example introduced in Section 3, for uniform prior.
Graph (A) is for the case of visible choice: it represents the Bayes vulnerability V of C00 pH C10 and of
C01 pH C11 (cases a = 0 and a = 1 respectively), as a function of p. Graph (B) is for the case of hidden
choice and it represents the vulnerability of C00 p⊕ C10 and of C01 p⊕ C11 as a function of p. The table
on the right gives the payoff in correspondence of the Nash equilibrium for the various games. VIm
and VIb represent the attacker-first sequential games with defender strategy of type D(A→D) (mixed)
and A → D(D) (behavioral), respectively.

The second important difference from Game III is that in Game VI behavioral strategies and
mixed strategies are not necessarily equivalent. More precisely, there are cases in which the optimal
strategy profile yields a different payoff depending on whether the defender adopts mixed strategies
or behavioral ones. The following is an example in which this difference manifests itself.

Example 10. Consider again the example of Section 3, this time in the setting of Game VI, and still with
uniform prior π. Let us analyze first the case in which the defender uses behavioral strategies.

Behavioral strategies – type A → D(D). If the attacker chooses 0, which corresponds to committing to the
system C00 p⊕ C10, then the defender will choose p = 1/4, which minimizes its vulnerability. If he chooses
1, which corresponds to committing to the system C01 p⊕ C11, then the defender will choose p = 1, which
minimizes the vulnerability. In both cases, the leakage is p = 1/2, hence both these strategies are solutions
to the minimax. Note that in the first case the strategy of the defender is probabilistic, while that of the
attacker is pure in both cases.

Mixed strategies – type D(A→D). Observe that there are only four possible pure strategies for the defender,

corresponding to the four functions fij ∶ A→D for i, j ∈ {0, 1} defined as fij(a) def
= i if i = j and

fij(a) def
= a⊕ i if i ≠ j. Consider a distribution σd ∈ D(A→D) and let pij

def
= σd( fij). Then we have

pij ≥ 0 and ∑i,j pij = 1. Observe that the attacker’s choice a = 0 determines the matrix C00 p⊕ C10,

with p = p00 + p10, whose vulnerability is V [π, C00 p⊕ C10] = 1 − 1/2p. On the other hand, the
attacker’s choice a = 1 determines the matrix C01 p′⊕ C11, with p′ = p00 + p01, whose vulnerability
is V [π, C01 p′⊕ C11] = 2/3− 2/3p for p′ ≤ 1/4, and V [π, C01 p′⊕ C11] = 1/3+ 2/3p for p′ > 1/4. By
geometrical considerations (cf. the red dashed line in Figure 2) we can see that the optimal solutions for
the defender are all those strategies which give p = 6/7 and p′ = 1/7, which yield payoff 4/7.

The facts that behavioral and mixed strategies are not equivalent is related to the non-existence of
deterministic optimal strategies. In fact, it is easy to see that from a behavioral deterministic strategy
we can construct a (deterministic) mixed strategy, and vice versa.

Figure 2 illustrates the graphs of the vulnerability of the various channel compositions, and
summarizes the results of this section.
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6. Comparing the leakage games

In previous section we have computed the vulnerability for the running example in the various
kind of games introduced in Section 5. The values we have obtained, listed in decreasing order, are
as follows: II ∶ 1; I ∶ 4/5; IV ∶ 5/7; V ∶ 5/7; III ∶ 2/3; VIm∶ 4/7; VIb∶ 1/2. This order is not accidental: in this
section we will prove that some of these relations between games hold for any vulnerability function,
and for any prior. These results will allow us to reason about which kind of scenarios and compositions
are more convenient for the defender, or, vice versa, for the attacker.

6.1. Simultaneous games vs. sequential games

The relations between II, I, and III, and between IV-V and VIm are typical in game theory: in any
zero-sum sequential game the leader’s payoff is less than or equal to his payoff in the corresponding
simultaneous game. In fact, by acting first, the leader commits to an action, and this commitment
can be exploited by the attacker to choose the best possible strategy relatively to that action7. In the
following propositions we give the precise formulation of these results in our framework, and we
show how they can be derived formally.

Proposition 1 (Game II ⩾ Game I).

min
δ

max
σa

V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
π, '

d←δ
sa←σa

Cdsa(d)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≥ min

δ
max

α
V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
π, '

d←δ
a←α

Cda

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Proof. We prove the first inequality as follows. Independently of δ, consider the attacker’s strategy σ
∗
a

that assigns probability 1 to the function s∗a defined as s∗a (d) = argmaxa V [π, Cda] for any d ∈ D. Then
we have that:

min
δ

max
σa

V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
π, '

d←δ
sa←σa

Cdsa(d)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≥ min

δ
V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

π, '
d←δ

sa←σ
∗
a

Cdsa(d)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(by maximization on σa)

= min
δ

V [π, '
d←δ

Cds∗a (d)] (by definition of σ
∗
a )

= min
δ

∑
d

δ(d)V [π, Cds∗a (d)] (by Theorem 2(2))

= min
δ

∑
d

δ(d)max
α

∑
a

α(a)V [π, Cds∗a (d)] (since α is a distribution)

≥ min
δ

∑
d

δ(d)max
α

∑
a

α(a)V [π, Cda] (by definition of s∗a )

≥ min
δ

max
α

∑
d

δ(d)∑
a

α(a)V [π, Cda]

= min
δ

max
α

V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
π, '

d←δ
a←α

Cda

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(by Theorem 2(2))

7 The fact that the leader has a disadvantage may seem counterintuitive because in many real games it is the opposite, the
player who moves first has an advantage. Such discrepancy is due to the fact that these games feature preemptive moves,
i.e. moves that, when made by one player, make impossible other moves for the other player. The games we are considering
in this paper, on the contrary, do not consider preemptive moves.
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Note that the strategy σ
∗
a is optimal for the attacker, so the first of the above inequalities is

actually an equality. It is easy to see that the second inequalities is an equality as well, because of the
maximization on α. Therefore, the only inequalities that may be strict is the third one, and the reason
why it may be strict is that in the left-hand side α depends on d (and on δ), while on the right-hand side
α depends on δ, but not the actual d (that will be sampled from δ). This corresponds to the fact that in
the defender-first sequential game the attacker chooses his strategy after he knows the action d chosen
by the defender, while in the simultaneous game the attacker knows the strategy of the defender (i.e.,
the distribution δ he will use to choose probabilistically his actions), but not the actual action d that the
defender will choose.

Analogous considerations can be done for the simultaneous versus the attacker-first case, that we
will examine next.

Proposition 2 (Game I ⩾ Game III).

min
δ

max
α

V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
π, '

d←δ
a←α

Cda

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≥ max

α
min

σd
V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
π, '

sd←σd
a←α

Csd(a)a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Proof. Independently of α, consider the defender’s strategy σ
∗
d that assigns probability 1 to the function

s∗d defined as s∗d(a) = argmind V [π, Cda] for any a ∈ A. Then we have that:

min
δ

max
α

V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
π, '

d←δ
a←α

Cda

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= min

δ
max

α
∑

d

δ(d)∑
a

α(a)V [π, Cda] (by Theorem 2(2))

= max
α

min
δ

∑
d

δ(d)∑
a

α(a)V [π, Cda] (by Theorem 1)

≥ max
α

∑
a

α(a)min
d

V [π, Cda]

= max
α

∑
a

α(a)V [π, Cs∗d (a)a] (by definition of s∗d )

= max
α

∑
a

α(a)∑
sd

σ
∗
d (sd)V [π, Csd(a)a] (by definition of σ

∗
d )

= max
α

V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
π, '

sd←σ
∗
d

a←α

Csd(a)a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(by Theorem 2(2))

≥ max
α

min
σd

V
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

π, '
sd←σd
a←α

Csd(a)a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(by minimization on σd)

Again, the strategy σ
∗
d is optimal for the attacker, so the last of the above inequalities is actually an

equality. Therefore, the only inequality that may be strict is the first one and the strictness is due to the
fact that in the left-hand side δ does not depend on a while in the right-hand side it does. Intuitively,
this corresponds to the intuition that if the defender knows the action of the attacker then it may be
able to choose a better strategy to reduce the leakage.
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Proposition 3 (Game IV ⩾ Game VIm).

min
δ

max
α

V [π, '
a←α

⨊
d←δ

Cda] ≥ max
α

min
σd

V [π, '
a←α

⨊
sd←σd

Csd(a)a]

Proof. Given α ∈ DA, let δ
∗
α

def
= minδ ∑a α(a)V [π,⨊d←δCda]. For any d ∈ D, let fd be the constant

function defined as fd(a) = d for any a ∈ A, and define σ
∗
d ∈ D(A→D) as σ

∗
d ( fd)

def
= δ

∗
α (d) for any

d ∈ D. Let U(δ, α) = V [π,&a←α ⨊d←δCda]. Then U(δ, α) is convex in δ and linear in α. Hence we have:

min
δ

max
α

V [π, '
a←α

⨊
d←δ

Cda] = max
α

min
δ

V [π, '
a←α

⨊
d←δ

Cda] (by Theorem 1)

= max
α

V
⎡⎢⎢⎢⎢⎢⎢⎢⎣

π, '
a←α

⨊
d←δ∗α

Cda

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(by definition of δ

∗
α )

= max
α

V
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

π, '
a←α

⨊
fd←σ∗d

C fd(a)a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(by definition of σ

∗
d )

≥ max
α

min
σd

V [π, '
a←α

⨊
sd←σd

Csd(a)a] (by minimization on σd)

6.2. Visible choice vs. hidden choice

We consider now the case of Games III and IV-V. In the running example the payoff for III is lower
than for IV-V, but it is easy to find other cases in which the situation is reversed. For instance, if in
the running example we set C11 to be the same as C01, the payoff for III will be 1 (corresponding to
the choice a = 1 for the attacker), and that for IV-V will be 2/3 (corresponding to the Nash equilibrium
p∗ = q∗ = 2/3. So we conclude that Games III and IV-V are incomparable: there is no general ordering
between them.

The relation between Games I and IV comes from the fact that they are both simultaneous games,
and the only difference is the way in which the payoff is defined. The same holds for the case of Games
III and VIm, which are both attacker-first sequential games. The essence of the proof is expressed by
the following proposition.

Proposition 4 (visible choice ⩾ hidden choice). For every a ∈ A and every δ ∈ DD we have:
V [π,&d←δCda] ≥ V [π,⨊d←δCda] .

Proof.

V [π, '
d←δ

Cda] = ∑
d∈D

δ(d)V [π, Cda] (by Theorem 2(2))

≥ V [π, ⨊
d←δ

Cda] (by Theorem 2(1))

From the above proposition we can derive immediately the following corollaries:
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Corollary 3 (Game I ⩾ Game IV).

min
δ

max
α

V

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
π, '

d←δ
a←α

Cda

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≥ min

δ
max

α
V [π, '

a←α

⨊
d←δ

Cda]

Corollary 4 (Game III ⩾ Game VIm).

max
α

min
σd

V
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

π, '
sd←σd
a←α

Csd(a)a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≥ max

α
min

σd
V [π, '

a←α

⨊
sd←σd

Csd(a)a]

Finally, we show that the vulnerability for the optimal solution in Game VIm is always greater
than or equal to that of Game VIb, which means that for the defender it is always convenient to use
behavioral strategies. We can state actually a more general result: for any mixed strategy, there is
always a behavioral strategy that gives the same payoff.

Proposition 5. For any α ∈ DA and any σd ∈ D(A→D) there exists φd ∶ A → D(D) such that:

V
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

π, '
a←α

⨊
d←φd(a)

Cda

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= V [π, '

a←α

⨊
sd←σd

Csd(a)a]

Proof. For σd ∈ D(A→D), define φd ∶ A → D(D) as follows: for any a ∈ A and d ∈ D,

φd(a)(d) def
= ∑

sd(a)=d

σd(sd)

and observe that for every a ∈ A we have ⨊
d←φd(a)

Cda = ⨊
sd←σd

Csd(a)a.

From this proposition we derive immediately the following corollary:

Corollary 5.

max
α

min
σd

V [π, '
a←α

⨊
sd←σd

Csd(a)a] ≥ max
α

min
φd

V
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

π, '
a←α

⨊
d←φd(a)

Cda

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

The lattice in Figure 3 illustrates the results of this section about the relations between the various
games. These relations can be used by the defender as guidelines to better protect the system, if he has
some control over the rules of the game. Obviously, for the defender the games lower in the ordering
are to be preferred to compose protocols, since they yield a lower vulnerability for the result.

7. Case study: a safer, faster password-checker

In this section we apply our game-theoretic, compositional approach to show how a defender can
mitigate an attacker’s typical timing side-channel attack, while avoiding the usual burden imposed on
the password-checker’s efficiency by measures that make time consumption constant.

The following sections are organized as follows: We first provide a formalization of the trade-off
between efficiency and security in password checkers using our framework of leakage games. We then
illustrate the approach in a simple instance of the program for 3-bit passwords. Finally, we provide
general results for the n-bit case regarding the defender’s optimal strategy in equilibrium.
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Figure 3. Order of games w.r.t. the payoff in the Nash equilibrium. Games higher in the lattice have
larger payoff.

7.1. Modeling the trade-off between efficiency and security as a game

Consider the password-checker PWD1..n of Algorithm 1, which performs a bitwise-check of an
n-bit low-input a = a1a2 . . . an provided by the attacker against an n-bit secret password x = x1x2 . . . xn.
The bits are compared in increasing order (1, 2, . . ., n), with the low-input being rejected as soon as it
mismatches the secret, and accepted otherwise.

Algorithm 1: Password-checker PWD1..n.

High input : x ∈ {0, 1}n

Low input : a ∈ {0, 1}n

Output : y ∈ {T, F}
accept ∶= T;
for i ∶= 1 to n do

if ai ≠ xi then
accept ∶= F;
break;

return accept;

The attacker can choose low-inputs to try to gain information about the password. Obviously,
in case PWD1..n accepts the low-input, the attacker learns the password value is a = x. Yet, even when
the low-input is rejected, there is some leakage of information: from the duration of the execution the
attacker can estimate how many iterations have been performed before the low-input was rejected,
thus inferring a prefix of the secret password.

To model this scenario, let X = {0, 1}n be the set of all possible n-bit passwords, and Y = {F}×
{1, 2, . . . , n}∪ {T}× {n} = {(F, 1), (F, 2), (F, 3), . . . , (F, n), (T, n)} be the set of observables produced
by the system. Each observable is an ordered pair whose first element indicates whether or not the
password was accepted (T or F, respectively), and the second element indicates the duration of the
computation (1, 2, . . ., or n iterations).

For instance, consider a scenario with 3-bit passwords. Let PWD123 be a password checker that
performs the bitwise comparison in increasing order (1, 2, 3). Channel C123,101 in Table 3a models
PWD123’s behavior when the attacker provides low-input a = 101. Note that this channel represents
the fact that PWD123 accepts the low-input when the secret is x = 101 (the channel outputs (T, 3) with
probability 1), and otherwise rejects the low-input in a certain number of steps (e.g., the checker rejects
the low-input in 2 steps when the password is x = 110, so in this case the channel outputs (F, 2) with
probability 1).
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Table 3. Channels Cda modeling different versions of 3-bit password checker for defender’s action d
and attacker’s action a.

(a) Channel C123,101 modeling the case in which the
defender compares bits in order (1,2,3), and the
attacker picks low-input 101.

C123,101
y = y = y = y =

(F, 1) (F, 2) (F, 3) (T, 3)
x = 000 1 0 0 0
x = 001 1 0 0 0
x = 010 1 0 0 0
x = 011 1 0 0 0
x = 100 0 0 1 0
x = 101 0 0 0 1
x = 110 0 1 0 0
x = 111 0 1 0 0

(b) Channel Ccons,101 modeling the case in which
the defender runs a constant-time checker, and the
attacker picks low-input 101.

Ccons,101
y = y =

(F, 3) (T, 3)
x = 000 1 0
x = 001 1 0
x = 010 1 0
x = 011 1 0
x = 100 1 0
x = 101 0 1
x = 110 1 0
x = 111 1 0

To quantify the password checker’s leakage of information, we will adopt Bayes vulnerability,
so the prior Bayes vulnerability V [π] will correspond to the probability that the attacker guesses
correctly the password in one try, whereas the posterior Bayes vulnerability V [π, C] will correspond
to the probability that the attacker guesses correctly the password in one try, after he observes the
output of the channel (i.e., after he has measured the time needed for the checker to accept or reject the
low-input). For instance, in the 3-bit password scenario, if the prior distribution on all possible 3-bit
passwords is π̂ = (0.0137, 0.0548, 0.2191, 0.4382, 0.0002, 0.0002, 0.0548, 0.2191), the corresponding prior
Bayes vulnerability is V [π̂] = 0.4382. For prior π̂ above, the posterior Bayes vulnerability of channel
C123,101 is V [π̂, C123,101] = 0.6577, which represents an increase in Bayes vulnerability of about 50%).

A way to mitigate this timing side-channel is to make the checker’s execution time independent
of the secret. This can be done by by eliminating the break command within the loop in PWD1..n, so
no matter when the matching among high and low input happens, the password checker will always
need n iterations to complete. For instance, in the context of our 3-bit password example, we can
let PWDcons be a constant-time 3-bit password checker that applies this counter measure. Channel
Ccons,101 from Table 3b models PWDcons’s behavior when the attacker’s low-input is a = 101. Note that
this channel reveals only whether or not the low-input matches the secret value, but does not allow
the attacker to infer a prefix of the password. Indeed, this channel’s posterior Bayes vulnerability is
V [π̂, C123,101] = 0.4384, which brings the multiplicative Bayes leakage down to an increase of only
about 0.05%.

However, the original program is substantially more efficient than the modified one. Consider
the general case of n-bit passwords and assume that either the password, or the program’s low input,
are chosen uniformly at random. Because of this assumption, each bit being checked in the original
program has probability 1/2 of being rejected. Hence, the program will finish after 1 iteration with
probability 1/2, after 2 iterations with probability 1/4, and so on, up to the n-th iteration. After that the
program always finishes, so with the remaining probability 2−n the program finishes after n iterations,
giving a total expected time of

n

∑
k=1

k2−k
+ n2−n

= 2(1− 2−n) .

The above derivation is based on the series ∑n
k=1 kzk

= z 1−(n+1)zn+nzn+1

(1−z)2 . Hence the expected running
time of the original program (under the uniform assumption) is constant: always bounded by 2,
and converging to 2 as n grows. On the other hand, the running time of the modified constant-time
program is n iterations, an n/2-fold increase.
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Table 4. Payoff for each pure strategy profile of 3-bit password scenario.

Attacker’s action a
U(d, a) 000 001 010 011 100 101 110 111

D
ef

en
de

r’
s

ac
ti

on
d

123 0.7257 0.7257 0.9311 0.9311 0.6577 0.6577 0.7122 0.7122
132 0.8900 0.9311 0.8900 0.9311 0.7122 0.7122 0.7122 0.7122
213 0.5068 0.5068 0.9311 0.9311 0.4934 0.4934 0.7668 0.7668
231 0.5068 0.5068 0.7668 0.9311 0.5068 0.5068 0.7668 0.9311
312 0.7257 0.9311 0.7257 0.9311 0.7122 0.8766 0.7122 0.8766
321 0.6712 0.7122 0.7257 0.9311 0.6712 0.7122 0.7257 0.9311

Seeking some compromise between security and efficiency, assume the defender can employ
different versions of the password-checker, each performing the bitwise comparison among low-input
a and secret password x in a different order. More precisely, there is one version of the checker for
every possible order in which the index i ranges in the control of the loop in Algorithm 1.

To determine a defender’s best choice of which versions of the checker to run, we model this
problem as game. The attacker’s set of actions A consists in all possible 2n low-inputs to the checker,
and the defender’s set of actions D consists in all n! orders in which the checker can perform the bitwise
comparison. There is, then, a channel Cad∶X×Y→R for each possible combination of d ∈ D, a ∈ A. In
our framework, the payoff of a mixed strategy profile (δ, α) is given by U(δ, α) = Ea←αV [π,⨊d←δCda] .
For each pure strategy profile (d, a), the payoff of the game will be the posterior Bayes vulnerability of
the resulting channel Cda (since, if we are measuring the information leakage, the prior vulnerability is
the same for every channel once the prior is fixed).

In the 3-bit password scenario, the attacker’s actions A = {000, 001, 010, 011, 100, 101, 110, 111}
are all possible 3-bit low-inputs, and the defender’s D = {123, 132, 213, 231, 312, 321} are all possible
versions of the password checker (each action represents the order in which the 3 bits are checked).
Table 4 depicts the corresponding payoffs of all 48 possible resulting channels Cad with d ∈ D, a ∈ A,
when the prior is still π̂ = (0.0137, 0.0548, 0.2191, 0.4382, 0.0002, 0.0002, 0.0548, 0.2191). Note that the
attacker’s and defender’s actions substantially affect the effectiveness of the attack: vulnerability
ranges between 0.4934 and 0.9311 (and so multiplicative leakage is in the range between an increase of
12% and one of 112%). Using techniques from [6], we can compute the best (mixed) strategy for the
defender in this game, which turns out to be

δ
∗
= (0.1667, 0.1667, 0.1667, 0.1667, 0.1667, 0.1667).

This strategy is part of an equilibrium and guarantees that for any choice of the attacker the posterior
Bayes vulnerability is at most 0.6573 (so the multiplicative leakage is bounded by 50%, an intermediate
value between the minimum of about 12% and the maximum of about 112%).

The running time, on the other hand, of this new password-checker is the same as that of
the original one. Under the assumption that either the password, or the low-input, are uniformly
distributed, each check fails with probability 1/2, giving a total expected time of 2(1− 2−n). Hence
this technique substantially decreases the program’s information leakage, without affecting at all its
expected running time.

7.2. On optimal strategies for the defender

Interestingly, in the 3-bit password case study from the previous section, the defender’s optimal
strategy consists in uniformly sampling among all available versions of the checker. A uniform
distribution seems to be an adequate candidate for the defender, but is it always the best choice for any
prior and any number of bits?

We first answer this question in the case of a uniform prior π for arbitrary n-bit passwords,
which already turns out to be challenging. Under this prior, and exploiting a crucial symmetry of the
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password checker (see the proof of Theorem 7), we can show that all strategies for the adversary are in
fact equivalent, namely

U(α, δ) = U(α
′, δ) for all α, α

′, δ .

For the defender, on the other hand, the situation is far from trivial: although all pure strategies d are
still equivalent, U(α, δ) does in general depend on δ. By exploiting another symmetry of the password
checker together with the symmetry of V, we can show that a uniform strategy is indeed optimal for
the defender, as stated in the following result.

Theorem 7. Consider the password checker program of Algorithm 1 for n-bit passwords, where the attacker
controls the low input to the checker, and the defender controls the order in which the bits are checked. If the
prior π on possible passwords is uniform, and the payoff is given by the posterior Bayes-vulnerability U(δ, α)
= Ea←αV [π,⨊d←δCda], then the strategy (δ

∗, α) where δ
∗ is uniform and α is arbitrary is an equilibrium

strategy.

Perhaps surprisingly, however, Theorem 7 does not generalize to non-uniform priors (or to
different vulnerability metrics). More precisely, when the prior on passwords is not uniform, the
defender may benefit from assigning different probabilities to different versions of the password
checker. This subtlety arises from the fact that the defender’s goal is not to maximize the attacker’s
uncertainty about the selected password checker itself (i.e., the defender’s action), but it is rather to
maximize the attacker’s uncertainty about the secret value. The following examples illustrate this
(perhaps counter-intuitive) fact.

Consider again a 3-bit password scenario, similar to that of the previous section. Assume that the
attacker knows only that the first bit of the password is surely 0, so that the prior on secrets is

π
(A)

= (0.25, 0.25, 0.25, 0.25, 0, 0, 0, 0).

The payoff table for this case is presented in Table 5a, and a corresponding equilibrium defender’s best
strategy, computed using techniques from [6], is

δ
∗(A)

= (0.25, 0.25, 0, 0.25, 0, 0.25).

Note that this equilibrium means that the defender never has to check the bits in the order (2,1,3) or in
the order (3,1,2). The game’s payoff (i.e., posterior Bayes vulnerability) in this case is 0.5625, which is
smaller than the payoff of 0.5833 that would ensue in case the defender’s strategy were uniform. This
means that, from the point of view of the defender, uniformly randomizing is not optimal.

Now assume that the attacker knows that some passwords are more likely than others, even if all
are possible, as reflected in the prior

π
(B)

= (0.25, 0.20, 0.15, 0.10, 0.10, 0.10, 0.05, 0.05).

The payoff table for this case is presented in Table 5b, and a corresponding equilibrium defender’s best
strategy can be computed to be

δ
∗(B)

= (0.1974, 0.1974, 0.1316, 0.1316, 0.1711, 0.1711).

Note that this equilibrium means that every version of the checker may be selected by the defender,
but the probability distribution is not uniform. The game’s payoff (i.e., posterior Bayes vulnerability)
in this case is 0.4553, which is again smaller than the payoff of 0.4666 that would ensue in case the
defender’s strategy were uniform.
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Table 5. Payoff tables, under different priors, for each pure strategy profile of 3-bit password scenario.

(a) Under prior π
(A).

Attacker’s action a
U(d, a) 000 001 010 011 100 101 110 111

D
ef

en
de

r’
s

ac
ti

on
d

123 0.75 0.75 0.75 0.75 0.25 0.25 0.25 0.25
132 0.75 0.75 0.75 0.75 0.25 0.25 0.25 0.25
213 0.75 0.75 0.75 0.75 0.50 0.50 0.50 0.50
231 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
312 0.75 0.75 0.75 0.75 0.50 0.50 0.50 0.50
321 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

(b) Under prior π
(B).

Attacker’s action a
U(d, a) 000 001 010 011 100 101 110 111

D
ef

en
de

r’
s

ac
ti

on
d

123 0.70 0.70 0.60 0.60 0.50 0.50 0.45 0.4
132 0.70 0.65 0.70 0.65 0.50 0.50 0.50 0.5
213 0.70 0.70 0.55 0.55 0.60 0.60 0.50 0.5
231 0.70 0.70 0.55 0.55 0.70 0.70 0.55 0.5
312 0.70 0.65 0.70 0.65 0.60 0.60 0.60 0.6
321 0.70 0.65 0.65 0.60 0.70 0.65 0.65 0.6

8. Related work

Many studies have applied game theory to analyses of security and privacy in networks [18–20],
cryptography [21], anonymity [22], location privacy [23], and intrusion detection [24], to cite a few. See
[25] for a survey.

In the context of quantitative information flow, most works consider only passive attackers.
Boreale and Pampaloni [4] consider adaptive attackers, but not adaptive defenders, and show that in
this case the attacker’s optimal strategy can be always deterministic. Mardziel et al. [5] propose a model
for both adaptive attackers and defenders, but in none of their extensive case-studies the attacker
needs a probabilistic strategy to maximize leakage. In this paper we characterize when randomization
is necessary, for either attacker or defender, to achieve optimality in our general information leakage
games.

Security games have been employed to model and analyze payoffs between interacting agents,
especially between a defender and an attacker. Korzhyk et al. [26] theoretically analyze security
games and study the relationships between Stackelberg and Nash Equilibria under various forms of
imperfect information. Khouzani and Malacaria [27] study leakage properties when perfect secrecy is
not achievable due to constraints on the allowable size of the conflating sets, and provide universally
optimal strategies for a wide class of entropy measures, and for g-entropies. In particular, they prove
that designing a channel with minimum leakage is equivalent to computing Nash equilibria in a
corresponding two-player zero-sum games of incomplete information for a range of entropy measures.
These works, contrarily to ours, do not consider games with hidden choice, in which optimal strategies
differ from traditional game-theory.

Several security games have modeled leakage when the sensitive information are the defender’s
choices themselves, rather than a system’s high input. For instance, Alon et al. [28] propose zero-sum
games in which a defender chooses probabilities of secrets and an attacker chooses and learns some of
the defender’s secrets. Then they present how the leakage on the defender’s secrets gives influences
on the defender’s optimal strategy. More recently, Xu et al. [29] show zero-sum games in which the
attacker obtains partial knowledge on the security resources that the defender protects, and provide
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the defender’s optimal strategy under the attacker’s such knowledge. Contrarily to these studies,
in this paper we assume that a secret value is drawn from some prior distribution and is not the
defender’s strategy itself.

Security games have also been used to provide optimal trade-offs between two conflicting
desirable properties. Khouzani et al. [30] study the clash between security and usability in the
password selection, and present a game-theoretic framework for determining an optimal trade-off.
They analyze guessing attacks and derive the optimal policies for secret picking as Nash/Stackelberg
Equilibria. Yang et al. [31] propose a game-theoretic framework to analyze user behavior in anonymity
networks. They consider the cost of anonymity in terms of the loss of utility. They also consider
incentives and their impact on users’ cooperation. Shokri et al. [32] present a game-theoretic model for
a designer to find the optimal privacy mechanism by taking the adversary’s knowledge into account.
More specifically, they show a Stackelberg Bayesian game in which a user first chooses a location
obfuscation mechanism to maximize his location privacy and then an adversary tries to estimate the
user’s location to minimize its error. In contrast, our work presents a more general framework that
is not limited to a particular domain, and focuses on protocol composition as a method to limit the
leakage.

Regarding channel operators, sequential and parallel composition of channels have been studied
(e.g., [33]), but we are unaware of any explicit definition and investigation of hidden and visible choice
operators. Although Kawamoto et al. [34] implicitly use the hidden choice to model a probabilistic
system as the weighted sum of systems, they do not derive the set of algebraic properties we do for
this operator, and for its interaction with the visible choice operator.

9. Conclusion and future work

In this paper we used protocol composition to model the introduction of noise performed by
the defender to prevent leakage of sensitive information. More precisely, we formalized visible and
hidden probabilistic choices of different protocols. We then formalized the interplay between defender
and attacker in a game-theoretic framework adapted to the specific issues of QIF, where the payoff is
information leakage. We considered various kinds of leakage games, depending on whether players
act simultaneously or sequentially, and whether the choices of the defender are visible or not to the
attacker. We established a hierarchy of these games, and provided methods for finding the optimal
strategies (at the points of equilibrium) in the various cases. We also proved that in a sequential
game with hidden choice, the behavioral strategies are more advantageous for the defender than the
mixed strategies. This contrast with the standard game theory, where the two types of strategies are
equivalent.

As future research, we would like to extend leakage games to the case of repeated observations,
i.e., when the attacker can observe the outcomes of the system in successive runs, under the assumption
that both attacker and defender may change the channel in each run. We would also like to extend our
framework to non zero-sum games, in which the costs of attack and defense are not equivalent, and to
analyze differentially-private mechanisms.
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QIF Quantitative information flow

Appendix A. Proofs of Technical Results

In this section we provide the proofs of the technical results which are not in the main body of the
paper.

Appendix A.1. Preliminaries for proofs

We start by providing some necessary background for the subsequent technical proofs.
Definition 1 states that two compatible channels (i.e., with the same input space) are equivalent if

yield the same value of vulnerability for every prior and every vulnerability function. The result below,
from the literature, provides necessary and sufficient conditions for two channels being equivalent.
The result employs the extension of channels with an all-zero column as follows. For any channel C of
type X ×Y → R, its zero-column extension C0 is the channel of type X × (Y ∪ {y0}) → R, with y0 ∉ Y ,
s.t. C0(x, y) = C(x, y) for all x ∈ X , y ∈ Y , and C0(x, y0) = 0 for all x ∈ X .

Lemma A1 (Characterization of channel equivalence [13,17]). Two channels C1 and C2 are equivalent iff
every column of C1 is a convex combination of columns of C0

2 , and every column of C2 is a convex combination
of columns of C0

1 .

Note that the result above implies that for being equivalent, any two channels must be compatible.

Appendix A.2. Proofs of Section 4

Proposition 4.1 (Type of hidden choice). Given a family {Ci}i∈I of channels of type X × Y → R, and a
distribution µ on I, the hidden choice ⨊i←µCi is a channel of type X ×Y → R.

Proof. Since hidden choice is defined as a summation of matrices, the type of ⨊i←µCi is the same as
the type of every Ci in the family.

To see that ⨊i←µCi is a channel (i.e., all of its entries are non-negative, and all of its rows sum up
to 1), first note that, since each Ci in the family is a channel matrix, Ci(x, y) lies in the interval [0, 1] for
all x ∈ X , y ∈ Y . Since µ is a set of convex coefficients, from the definition of hidden choice it follows
that also ∑i∈I µ(i)Ci(x, y) must lie in the interval [0, 1] for every x, y.

Second, note that for all x ∈ X :

∑
y∈Y

⎛
⎜
⎝
⨊
i←µ

Ci
⎞
⎟
⎠
(x, y) = ∑

y∈Y
∑
i∈I

µ(i)Ci(x, y) (def. of hidden choice)

= ∑
i∈I

µ(i) ∑
y∈Y

Ci(x, y)

= ∑
i∈I

µ(i) ⋅ 1 (Ci∶X×Y→R are channels)

= 1 (µ is a prob. dist.)

Proposition 4.2 (Type of visible choice). Given a family {Ci}i∈I of compatible channels s.t. each Ci has
type X × Yi → R, and a distribution µ on I, the result of the visible choice &i←µCi is a channel of type
X × (⨆i∈I Yi) → R.

Proof. Visible choice applied to a family {Ci} of channels scales each matrix Ci by a factor µ(i), which
preserves the type X × Yi → R of each matrix, and then concatenates all the matrices so produced,
yielding a result of type X × (⨆i∈I Yi) → R.
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To see that &i←µCi is a channel (i.e., that all of its entries are non-negative, and that all rows
sum-up to 1), note that each element of the visible choice on the family {Ci} can be denoted by
(&i←µCi) (x, (y, j)), where x ∈ X , j ∈ I, and y ∈ Yj. Then, note that for all x ∈ X , j ∈ I, and y ∈ Yj:

⎛
⎜
⎝
'
i←µ

Ci
⎞
⎟
⎠
(x, (y, j)) = (◇i∈Iµ(i)Ci) (x, (y, j)) (def. of visible choice)

= (µ(j)Cj) (x, y) (def. of concatenation)

= µ(j)Cj(x, y) (def. of scalar mult.) (A1)

which is a non-negative value, since, both µ(j) and Cj(x, y) are non-negative.
Finally, note that for all x ∈ X :

∑
j∈I

y∈Yj

⎛
⎜
⎝
'
i←µ

Ci
⎞
⎟
⎠
(x, (y, j)) = ∑

j∈I
y∈Yj

µ(j)Cj(x, y) (by Eq. (A1))

= ∑
j∈I

µ(j) ∑
y∈Yj

Cj(x, y)

= ∑
j∈I

µ(j) ⋅ 1 (Cj∶X×Yj→R are channels)

= 1 (µ is a prob. dist.)

Proposition 4.3 (Idempotency). Given a family {Ci}i∈I of channels s.t. Ci = C for all i ∈ I, and a
distribution µ on I, then: (a) ⨊i←µCi = C; and (b) &i←µCi ≈ C.

Proof. a) Idempotency of hidden choice:

⨊
i←µ

Ci = ∑
i

µ(i)Ci (def. of hidden choice)

= ∑
i

µ(i)C (since every Ci = C)

=C ∑
i

µ(i)

=C (since µ is a prob. dist.)

b) Idempotency of visible choice:

'
i←µ

Ci = ◇i µ(i)Ci (def. of visible choice)

= ◇i µ(i)C (since every Ci = C)

≈C (by Lemma A1)

In the above derivation, we can apply Lemma A1 because every column of the channel on each
side of the equivalence can be written as a convex combination of the zero-column extension of
the channel on the other side.

Proposition 4.4 (“Reorganization of operators”). Given a family {Cij}i∈I,j∈J of channels indexed by sets I
and J , a distribution µ on I, and a distribution η on J :
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(a) ⨊i←µ ⨊j←ηCij = ⨊i←µ
j←η

Cij, if all Ci’s have the same type;

(b) &i←µ &j←ηCij ≈ &i←µ
j←η

Cij, if all Ci’s are compatible; and

(c) ⨊i←µ &j←ηCij ≈ &j←η ⨊i←µCij, if, for each i, all Cij’s have same type X ×Yj → R.

Proof. a)

⨊
i←µ

⨊
j←η

Cij =⨊
i←µ

⎛
⎜
⎝
∑

j
η(j)Cij

⎞
⎟
⎠

(def. of hidden choice)

= ∑
i

µ(i)
⎛
⎜
⎝
∑

j
η(j)Cij

⎞
⎟
⎠

(def. of hidden choice)

= ∑
i,j

η(i)η(j)Cij (reorganizing the sums)

=⨊
i←µ
j←η

Cij (def. of hidden choice)

b)

'
i←µ

'
j←η

Cij ='
i←µ

(◇jCij) (def. of visible choice)

= ◇i µ(i) (◇jη(j)Cij) (def. of visible choice)

≈◇ij µ(i)η(j)Cij (by Lemma A1)

='
i←µ
j←η

Cij (def. of visible choice)

In the above derivation, we can apply Lemma A1 because every column of the channel on each
side of the equivalence can be written as a convex combination of the zero-column extension of
the channel on the other side.

c)

⨊
i←µ

'
j←η

Cij =⨊
i←µ

(◇jCij) (def. of visible choice)

= ∑
i

µ(i) (◇jη(j)Cij) (def. of hidden choice)

≈ ◇j η(j) (∑
i

η(i)Cij) (by Lemma A1)

='
j←η

⨊
i←µ

Cij (def. of operators)

In the above derivation, we can apply Lemma A1 because every column of the channel on each
side of the equivalence can be written as a convex combination of the zero-column extension of
the channel on the other side.

Appendix A.3. Proofs of Section 7

Theorem A1. Consider the password checker program of Algorithm 1 for n-bit passwords, where the attacker
controls the low input to the checker, and the defender controls the order in which the bits are checked. If the
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prior π on possible passwords is uniform, and the payoff is given by the posterior Bayes-vulnerability U(δ, α)
= Ea←αV [π,⨊d←δCda], then the strategy (δ

∗, α) where δ
∗ is uniform and α is arbitrary is an equilibrium

strategy.

Proof. We show that (δ
∗, α) where δ

∗ is uniform and α is arbitrary, is a saddle point of U(δ, α). The
proof will rely on two crucial symmetries of the password checker, in combination with the use of a
uniform prior. Note that, under uniform π, the Bayes-vulnerability of a channel C is proportional to
the sum of the column maxima of C, namely V [π, C] = 1

∣X ∣ ∑y maxx C(x, y). Given a permutation

σ of X , define Cσ as C with its rows permuted, namely Cσ(x, y) = C(σ(x), y). Note that Cσ can be
written as MσC where Mσ is a permutation matrix. Permuting the rows does not affect the column
maxima, hence V [π, C] = V [π, Cσ].

For the attacker things are simple, since we can show that under a uniform π all attacker strategies
are equivalent, that is,

U(α, δ) = U(α
′, δ) for all α, α

′, δ .

To show this, we use the first important symmetry of the password checker, which is due to the fact
that the output of the algorithm only depends on whether xi ≠ ai is true or false for each bit. Hence,
any modification on a can be matched with a modification on x that preserves the output, namely for
all a, a′ there exists a permutation σ of passwords such that Cda = Cσ

da′ for all d. Denote Cδa = ⨊d←δCda,
we have that

Cδa = ⨊
d←δ

Cda = ⨊
d←δ

MσCda′ = Mσ ⨊
d←δ

Cda′ = Cσ
δa′

From V [π, Cδa] = V [π, Cσ
δa′] we have that U(a, δ) = U(a′, δ) for all pure strategies a, a′, which implies

U(α, δ) = U(α
′, δ) since U(α, δ) is linear on α. So in the remaining of the proof we assume that the

attacker plays the fixed pure strategy a0, having the zero bitstring 0..0 as the low input.
For the defender, on the other hand, the situation is far from trivial: although all pure strategies d

are still equivalent, U(α, δ) is only convex on δ and as a consequence the payoff highly depends on δ.
Our goal is to show that

U(a0, δ) = 1
∣X ∣ ∑y

max
x

∑
d

δ(d)Cda0(x, y)

is minimized on the uniform δ
∗. To do so, we show something stronger, namely that each addend of the

y-sum is simultaneously minimized on the uniform δ
∗. Fix an arbitrary y, and let

f (δ) = max
x

δ ⋅ ψx

where ⋅ is the dot product and ψx ∈ R∣D∣ is the vector defined by ψx(d) = Cda0(x, y). Note that, since
Cda0 is deterministic, all elements of ψx are either 0 or 1. Intuitively, ψx(d) = 1 if x produces the fixed
output y when the bit checking order is d.

We need to show that f (δ) is minimized on δ
∗. However, f seen as a function on the whole R∣D∣

has no global minimum. In our case, though, δ is a probability distribution taking values in DD ⊂ R∣D∣.
That is, only ∣D∣− 1 elements of δ are free, so we can reduce the dimension by one as follows: fix some
d0 ∈ D and let δ̃, ψ̃x ∈ R∣D∣−1 be the same as δ, ψx with the element corresponding to d0 removed. We
have that δ(d0) = 1−∑d≠d0

δ(d) = 1− δ̃ ⋅ 1, where 1 is the “ones” vector, hence we can rewrite f (δ) as
a function of δ̃:

f (δ̃) = max
x

δ̃ ⋅ ψ̃x + δ(d0)ψx(d0)

= max
x

δ̃ ⋅ ψ̃x + (1− δ̃ ⋅ 1)ψx(d0)

= max
x

δ̃ ⋅ (ψ̃x − ψx(d0)1)+ ψx(d0)
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So it is sufficient to show that f (δ̃) is minimized on δ̃
∗.

In the following, we use the fundamental concept of subgradients from convex analysis, which
generalize gradients for non-differentiable functions. A vector v is a subgradient of a possibly
non-differentiable convex function g ∶ S → R at x0 ∈ S iff

g(x)− g(x0) ≥ v ⋅ (x − x0) for all x ∈ S .

It is well-known that g has a global minimum on x0 iff the 0 vector belongs to the set of subgradients of
g at x0 (this generalizes the fact that differentiable convex functions have zero gradient on their global
minimum). Recall also that g(x) = x ⋅ v + c has a single subgradient v, while for g(x) = maxi gi(x),
any subgradient of gi for any branch i giving the max, is also a subgradient of g. Finally, the set of
subgradients is convex, so any convex combination of them is also a subgradient.

Hence, the subgradients of f (δ̃) are ψ̃x − ψx(d0)1, for any x giving the maximum, as well as their
convex combinations. Our goal is to show that on δ̃

∗ these include the zero vector.
We finally arrive to the second important symmetry of the password checker. Let ρ be a

permutation of the set {1, . . . , n} of password bits. Such a permutation could be seen both as a
permutation on X (i.e. ρ(x) = xρ(1)..xρ(n); note that ρ(x) has the same number of 0s and 1s as x),
as well as a permutation on D (a bit checking order d is itself a permutation of bits, so we can set
ρ(d) = ρ ◦ d). Since all low bits of a0 are the same, applying ρ to both x and d does not change the
outcome of the algorithm, that is Cda0 = C

ρ

ρ(d)a0
.

Intuitively, if d is selected uniformly, then the attacker cannot distinguish x from ρ(x) since they
produce the same output with the same probability. More concretely, let x ∼ x′ denote that x′ = ρ(x)
for some bit permutation ρ. Due to the aforementioned symmetry we have that ψx and ψx′ have the
same number of 1s which means that δ

∗ ⋅ ψx = δ
∗ ⋅ ψx′ . Now, let x∗ ∈ argmaxxδ

∗ ⋅ ψx. We have that all
x ∼ x∗ also give the max, hence all vectors

ψ̃x − ψx(d0)1 x ∼ x∗ (A2)

are subgradients of f on δ̃
∗. Finally, for any d, d′ there is a bit permutation ρ such that d′ = ρ(d). Since

ψx(d) = ψρ(x)(ρ(d)) we have that (∑x∼x∗ ψx)(d) = k (for some integer k) independently from d. Hence,
letting c = ∣{x ∣ x ∼ x∗}∣ and averaging all subgradients of (A2) we get that

1
c ∑

x∼x∗
(ψ̃x − ψx(d0)1) = 1

c (k1− k1) = 0

is also a subgradient, which concludes the proof.

Appendix B. Properties of binary versions of channel operators

In this section we derive some relevant properties of the binary versions of the hidden and visible
choice operators. We start with results regarding each operator individually.

Proposition B.1 (Properties of the binary hidden choice). For any channels C1 and C2 of the same type,
and any values 0 ≤ p, q ≤ 1, the binary hidden choice operator satisfies the following properties:

a) Idempotency: C1 p⊕ C1 = C1
b) Commutativity: C1 p⊕ C2 = C2 p⊕ C1
c) Associativity:

C1 p⊕ (C2 q⊕ C3) = (1/q ⋅ C1 p⊕ C2) q⊕ p ⋅ C3

if q ≠ 0.
d) Absorption:

(C1 p⊕ C2) q⊕ (C1 r⊕ C2) = C1 (pq+qr)⊕ C2.

Proof. We will prove each property separately.
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a) Idempotency:

C1 p⊕ C1 = p ⋅ C1 + p ⋅ C1 (def. of hidden choice)

= (p+ p) ⋅ C1

=C1 (p+ p = 1)

b) Commutativity:

C1 p⊕ C2 = p ⋅ C1 + p ⋅ C2 (def. of hidden choice)

= p ⋅ C2 + p ⋅ C1

=C2 p⊕ C1 (def. of hidden choice)

c) Associativity:

C1 p⊕ (C2 q⊕ C3)

= p ⋅ C1 + p(q ⋅ C2 + q ⋅ C3) (def. of hidden choice)

= p ⋅ C1 + pq ⋅ C2 + pq ⋅ C3

= q(p(1/q ⋅ C1)+ p ⋅ C2)+ q(p ⋅ C3)

= (1/q ⋅ C1 p⊕ C2) q⊕ p ⋅ C3 (def. of hidden choice)

d) Absorption: First note that:

(C1 p⊕ C2) q⊕ (C1 r⊕ C2)

= q(pC1 + pC2)+ q(rC1 + rC2) (def. of hidden choice)

= pqC1 + pqC2 + qrC1 + qrC2

= (pq+ qr)C1 + (pq+ qr)C2

=C1 (pq+qr)⊕ C2 (*)

To complete the proof, note that in step (*) above, pq + qr and pq + qr form a valid binary
probability distribution (they are both non-negative, and they add up to 1), then apply the
definition of hidden choice.

Proposition B.2 (Properties of binary visible choice). For any compatible channels C1 and C2, and any
values 0 ≤ p, q ≤ 1, the visible choice operator satisfies the following properties:

a) Idempotency: C1 pH C1 ≈ C1
b) Commutativity: C1 pH C2 ≈ C2 pH C1
c) Associativity: C1 pH (C2 qH C3) ≈ (1/q ⋅ C1 pH C2) qH p ⋅ C3 if q ≠ 0.

Proof. We will prove each property separately.

a) Idempotency: C1 pH C1 ≈ C1, by immediate application of Lemma A1, since every column of
the channel on each side of the equivalence can be written as a convex combination of the
zero-column extension of the channel on the other side.
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b) Commutativity:

C1 pH C2 = p ⋅ C1 ⋄ p ⋅ C2 (def. of visible choice)

≈ p ⋅ C2 ⋄ p ⋅ C1 (by Lemma A1)

= C2 pH C1 (def. of visible choice).

In the above derivation, we can apply Lemma A1 because every column of the channel on each
side of the equivalence can be written as a convex combination of the zero-column extension of
the channel on the other side.

c) Associativity:

C1 pH (C2 qH C3) = p ⋅ C1 ⋄ p(q ⋅ C2 ⋄ q ⋅ C3) (def. of visible choice)

≈ p ⋅ C1 ⋄ (pq ⋅ C2 ⋄ pq ⋅ C3) (by Lemma A1)

= q(p(1/q ⋅ C1)⋄ p ⋅ C2)⋄ q(p ⋅ C3)

= (1/q ⋅ C1 pH C2) qH p ⋅ C3 (def. of visible choice)

In the above derivation, we can apply Lemma A1 because every column of the channel on each
side of the equivalence can be written as a convex combination of the zero-column extension of
the channel on the other side.

Now we turn our attention to the interaction between hidden and visible choice operators.
A first result is that hidden choice does not distribute over visible choice. To see why, note that

C1 p⊕ (C2 qH C3) and (C1 p⊕ C2) qH (C1 p⊕ C3) cannot be both defined: if the former is defined,
then C1 must have the same type as C2 qH C3, whereas if the latter is defined, C1 must have the same
type as C2, but C2 qH C3 and C2 do not have the same type (they have different output sets).

However, as the next result shows, visible choice distributes over hidden choice.

Proposition B.3 (Distributivity of pH over q⊕ ). Let C1, C2 and C3 be compatible channels, and C2 and
C3 have the same type. Then, for any values 0 ≤ p, q ≤ 1:

C1 pH (C2 q⊕ C3) ≈ (C1 pH C2) q⊕ (C1 pH C3).

Proof.

C1 pH (C2 q⊕ C3)

= (C1 q⊕ C1) pH (C2 q⊕ C3) (idempotency of visible choice)

= p(q ⋅ C1 + q ⋅ C1)⋄ p(q ⋅ C2 + q ⋅ C3) (def. of operators)

= (pq ⋅ C1 + pq ⋅ C1)⋄ (pq ⋅ C2 + pq ⋅ C3)

≈ (pq ⋅ C1 ⋄ pq ⋅ C2)+ (pq ⋅ C1 ⋄ pq ⋅ C3) (by Lemma A1)

= q(p ⋅ C1 ⋄ p ⋅ C2)+ q(p ⋅ C1 ⋄ p ⋅ C3)

= q(C1 pH C2)+ q(C1 pH C3) (def. of visible choice)

= (C1 pH C2) q⊕ (C1 pH C3) (def. of hidden choice)
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In the above derivation, we can apply Lemma A1 because every column of the channel on each side of
the equivalence can be written as a convex combination of the zero-column extension of the channel
on the other side.
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