
Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

StatWhy: Formal Verification Tool for Statistical
Hypothesis Testing Programs ⋆

Yusuke Kawamoto1[0000−0002−2151−9560], Kentaro Kobayashi1,2, and Kohei
Suenaga3[0000−0002−7466−8789] ⋆⋆

1 AIST, Tokyo, Japan
2 University of Tsukuba, Ibaraki, Japan

3 Kyoto University, Kyoto, Japan

Abstract. Statistical methods have been widely misused and misinter-
preted in various scientific fields, raising significant concerns about the
integrity of scientific research. To mitigate this problem, we propose a
tool-assisted method for formally specifying and automatically verify-
ing the correctness of statistical programs. In this method, program-
mers are required to annotate the source code of the statistical programs
with the requirements for these methods. Through this annotation, they
are reminded to check the requirements for statistical methods, includ-
ing those that cannot be formally verified, such as the distribution of
the unknown true population. Our software tool StatWhy automatically
checks whether programmers have properly specified the requirements
for the statistical methods, thereby identifying any missing requirements
that need to be addressed. This tool is implemented using the Why3
platform to verify the correctness of OCaml programs that conduct sta-
tistical hypothesis testing. We demonstrate how StatWhy can be used to
avoid common errors in various statistical hypothesis testing programs.

Keywords: Formal verification · Hypothesis testing · Program verifica-
tion · Why3 platform.

1 Introduction

Statistical techniques have been essential for acquiring scientific knowledge from
data in various academic fields. In particular, an increasing number of researchers
have used statistical hypothesis testing [2, 11] to derive scientific conclusions
from datasets. However, these statistical methods have been widely misused
and misinterpreted, raising significant concerns about the integrity of scientific
research [7, 24]. For example, the notion of statistical significance, assessed by
calculating p-values, has been widely misused and misinterpreted [32].

For this reason, various guidelines for statistical analyses [25,31] have been
proposed to improve the quality and reproducibility of scientific research. How-
ever, owing to the absence of a formal language to describe procedures, we need
⋆ The artifact of the paper is available at https://github.com/fm4stats/statwhy

and https://zenodo.org/records/13991312.
⋆⋆ The authors are listed in alphabetical order.

https://doi.org/10.1109/5.771073
https://github.com/fm4stats/statwhy
https://zenodo.org/records/13991312

2 Y. Kawamoto et al.

to manually refer to these guidelines, written in natural language. As a result,
the correctness of statistical analyses has not been checked automatically.

To mitigate these problems, we propose a new method for the formal specifi-
cation and automatic verification of statistical program correctness. Specifically,
programmers are required to annotate their source code with the requirements
for the statistical methods and the interpretations of the analysis results. Then,
our tool StatWhy automatically checks whether these requirements and inter-
pretations are correctly annotated. For example, StatWhy can verify whether a
p-value is correctly calculated in a program, thus preventing p-value hacking,
i.e., a technique to manipulate statistical analyses to obtain a lower p-value.

The goal of StatWhy stems from the nature of statistics: many requirements
for statistical methods cannot be proven mathematically because they are usu-
ally properties of an unknown true population that analysts seek to estimate
from sampled data. For example, many statistical hypothesis testing methods
require a population to follow a normal distribution. Since analysts cannot prove
this requirement mathematically, they are responsible for judging whether the
population appears to follow a normal distribution, possibly using their back-
ground knowledge about the population. For this reason, StatWhy asks analysts
to explicitly write down the requirements for statistical methods—typically, the
assumptions that they make about the population distributions— as an an-
notation in their source code. Then, the analysts are reminded to check these
requirements empirically and approximately using their background knowledge.

To design StatWhy, we use the framework of belief Hoare logic (BHL) [17,19]
and provide constructs to make writing statistical programs easier, as well as
libraries for the specification of various hypothesis testing methods. For the
implementation of this tool, we rely on the Why3 platform [8] to handle practical
programming languages and to automatically discharge verification conditions
using external SMT solvers.

Although the current implementation of StatWhy focuses on statistical hy-
pothesis testing, the approach is not limited to a specific branch of statistics.
Rather, it can be applied to any situation where the usage of statistical methods
in programs needs to be checked. In future versions of the tool, we will include
additional statistical methods beyond hypothesis testing.
Contributions. Our main contributions are summarized as follows:

1. We propose a new tool-assisted method for formally specifying and automat-
ically verifying statistical programs (i.e., programs that perform hypothesis
testing and calculate statistics under certain assumptions about an unknown
population). This method requires programmers to annotate their source
code with the requirements and the interpretations of statistical analyses,
which makes a statistical procedure verifiable and explainable.

2. We implemented a software tool StatWhy based on our verification method.
Given a program as input, StatWhy automatically verifies whether a pro-
grammer has correctly annotated it with the requirements for statistical
hypothesis testing and the interpretation of the test results. StatWhy is avail-
able with a range of examples and comprehensive documentation [16].

Title Suppressed Due to Excessive Length 3

3. We demonstrate how StatWhy can be used to avoid common errors in various
popular statistical hypothesis testing methods.

To the best of our knowledge, StatWhy appears to be the first tool to automat-
ically verify the requirements for the appropriate use of hypothesis tests. This
work represents the first step in building a framework for specifying and verifying
the integrity of scientific conclusions based on statistical analyses.
Related Work. Logic for Statistics. Several studies on modal logic have been
proposed to express statistical properties [13, 18]. The work on statistical epis-
temic logic (StatEL) [13–15] is the first attempt to construct a modal logic
to describe statistical properties of hypothesis testing. They introduce a belief
modality weaker than S5 and interpret it in a Kripke model where an acces-
sibility relation is defined using a statistical distance between possible worlds.
However, these logics cannot reason about the procedures of statistical methods.
Belief Hoare Logic. Belief Hoare logic (BHL) [17,19] is a program logic with an
epistemic modality for statistical belief. Using this logic, we can derive the cor-
rectness of a hypothesis testing program (Sect. 2). Our verification tool, StatWhy,
uses BHL as its theoretical foundation to produce a proof tree for the correct-
ness of hypothesis testing programs within the tool. To develop StatWhy, we
implemented several constructs specific to BHL using the WhyML language—
the intermediate language used within Why3 framework. This allows verification
conditions generated by StatWhy to be discharged by off-the-shelf SMT solvers.
Program Verification Tools. Various tools used for specifying the preconditions
and postconditions of each function and statically verifying their correctness; for
example, Frama-C [6] for C programs; Dafny [22] for imperative programs that
compile to Boogie [21]; ESC/Java [9] and KeY [1] for Java programs. To the best
of our knowledge, no attempt has been made to apply these tools for verifying
the correct usage of statistical methods in programs.
The Verification Frameworks Used in Our Tool. StatWhy is implemented as an
extension of Cameleer [29], a verifier for OCaml programs built on top of the
Why3 framework [8]. Cameleer works as a translator from OCaml to the sim-
ple functional programming language WhyML. The translated WhyML code is
then verified by Why3. StatWhy extends Cameleer to verify the correctness of
hypothesis testing programs written in OCaml by incorporating the constructs
and inference rules of BHL.
Verification of Statistical Algorithms. From a broader perspective, a number of
studies have investigated the numerical accuracy of statistical algorithms [23],
the formal verification of randomized algorithms [20, 26], and the PAC verifica-
tion [10,28] for approximately checking the correctness of statistical algorithms.
Furthermore, formal methods have been used to verify a certain guarantee of the
correctness of statistical machine learning models [30]. However, no prior work
has provided a formal method tool for specifying or verifying the correct usage
of statistical methods rather than the correctness of statistical algorithms.
Plan of the paper. The rest of the paper is organized as follows. In Sect. 2,
we review basic notions in hypothesis testing and belief Hoare logic (BHL). In
Sects. 3 and 4, we present StatWhy’s design and implementation, respectively.

4 Y. Kawamoto et al.

In Sect. 5, we show examples of StatWhy being applied to common errors in
hypothesis testing. In Sect. 6, we present our final remarks.

2 Background

Statistical hypothesis testing [2, 11] is a method for inferring information about
an unknown population x from a dataset y that has been sampled from the
population x. In a hypothesis test, the null hypothesis φ0 is a claim that we
wish to test, while the alternative hypothesis φ1 is a claim that we will accept
if the null hypothesis is rejected. The goal of a hypothesis test is to determine
whether we have sufficient evidence to reject the null hypothesis φ0 in favor of
the alternative hypothesis φ1.

Example 1 (t-test for a population mean). For a population x following a normal
distribution with an unknown mean, the t-test for the population mean is a
hypothesis test to check whether the unknown mean mean(x) differs from a
certain value µ0 specified in the null hypothesis.

In the t-test, we want to show the alternative hypothesis φ1
def
= (mean(x) ̸=

µ0) by rejecting the null hypothesis φ0
def
= (mean(x) = µ0). First, we calculate

the t-test statistic from a dataset y: t(y) := mean(y)−µ0
s/

√
n

where n is the sample size

of y and s is a sampled standard deviation, i.e., s def
=

√∑n
i=1(yi−mean(y))2

n−1 . This
statistic is compared to Student’s t-distribution with n − 1 degrees of freedom
(i.e., the distribution of the t-statistic t(y) when y is normally distributed).
Specifically, we calculate the p-value: Prd∼N (µ,σ2)n [|t(d)| > |t(y)|] under the
null hypothesis φ0. For a smaller p-value, the dataset y is far from what we
expect under the null hypothesis that mean(x) = µ0. Hence, in the t-test, if
the p-value is smaller than a certain threshold (e.g., 0.05), we reject the null
hypothesis φ0 and accept the alternative hypothesis φ1, i.e., mean(x) ̸= µ0.

We remark that this t-test requires that the population x should follow a
normal distribution. If this requirement is not satisfied, the use of the t-test
is inappropriate and its result may be incorrect. Therefore, analysts need to
check this requirement in some way. Since they cannot mathematically prove this
requirement on the unknown population x, they use their background knowledge
about the population x and check approximately whether the dataset y at hand
(rather than the unknown population x itself) follows a normal distribution.

Belief Hoare logic (BHL) [17,19] is a program logic equipped with epistemic
modal operators for the statistical beliefs acquired via hypothesis testing. The
epistemic modal logic used in BHL is defined by:

φ ::= η(u1, . . . , un) | ¬φ | φ ∧ φ | Kφ | K≤ϵ
y,A φ

for a predicate symbol η, terms u1, . . . , un, a dataset y, a hypothesis test A,
and a p-value ϵ. The knowledge modality K is defined in the S5 modal logic
system with axioms T, 4, and 5. Intuitively, Kφ represents that we know φ. The

Title Suppressed Due to Excessive Length 5

epistemic possibility P is defined as usual by Pφ
def
= ¬K¬φ. K≤ϵ

y,A φ represents
that by a hypothesis test A on a dataset y, we believe φ with a p-value α ≤ ϵ.

The semantics of this epistemic logic is based on a Kripke model [17,19]. The
satisfaction of an epistemic formula φ in a possible world w is denoted by w |= φ
and is defined straightforwardly in a Kripke model where each possible world is
equipped with a test history that is updated by performing hypothesis tests.

In the framework of BHL, we express a procedure for hypothesis testing as a
program C using a programming language. Then, we use epistemic modal logic
to describe the requirements for the hypothesis tests as a precondition formula,
e.g., ψpre

def
= y ⇝N (µ0, σ

2) ∧Pφ1 ∧ κ∅, where the atomic formula y ⇝N (µ, σ2)
represents that a dataset y is sampled from the population that follows a normal
distribution N (µ, σ2) with an unknown mean µ and an unknown variance σ2.
The modal formula Pφ represents that, before conducting the hypothesis test,
we have the prior belief that the alternative hypothesis φ may be true. The
formula κ∅ represents that no hypothesis test has been conducted previously.

The statistical belief we acquire from the hypothesis test is specified as a
postcondition formula, e.g., φpost

def
= K≤0.05

y,A φ1, representing that by a hypothesis
test A on the dataset y, we believe φ with a p-value α ≤ 0.05. Since the result of
the hypothesis test may be wrong, we use the statistical belief modality K≤0.05

y,A

instead of the knowledge modality K.
Finally, we combine all the above and describe the whole statistical inference

as a judgment Γ ⊢ {ψpre} C {φpost}, representing that whenever the precondition
ψpre is satisfied, the execution of the program C results in the satisfaction of the
postcondition φpost. By deriving this judgment using derivation rules in BHL, we
conclude that the program C for the statistical inference results in the statistical
belief φpost whenever the requirement ψpre is satisfied.

BHL has been applied only to pen-and-paper analyses of a few simple ex-
amples of statistical hypothesis testing in previous work [17,19] and has not yet
been used to build a computer-aided verification tool.

3 The Design of StatWhy

3.1 Running Examples let p = exec_ttest_1samp t_n 1.0 d Two
(*@ requires sampled d t_n

ensures (World (!st) interp) |= StatB p fmlA *)

Fig. 1: An OCaml program that calls a t-test
command for a mean of a population.

Simple Example. We present
the main idea of our formal
specification and automated
verification method using the
program in Fig. 1. This program shows an OCaml source code that executes a
command exec_ttest_1samp for the one-sample t-test (Example 1 in Sect. 2)
with an alternative hypothesis fmlA (e.g., representing mean(t_n) != 1.0).

To specify the requirements and the interpretation of this t-test command, a
programmer writes the precondition in the requires clause and the postcondi-
tion in the ensures clause using the specification language Gospel [5].

6 Y. Kawamoto et al.

val exec_ttest_1samp (p:population) (mu:real) (y:dataset (list real)) (alt:alternative):real
...
requires {
match p with
| (NormalD _ _) -> sampled y p /\ ... /\

match alt with
| Two -> (World !st interp) |= Possible ((mean p) <' (const_term mu)) /\

(World !st interp) |= Possible ((mean p) >' (const_term mu)) ...
}
ensures {
pvalue result /\
let h = match alt with

| Two -> (mean p) $!= (const_term mu) ...
end in !st = Cons ("ttest_1samp", h, Eq result) !(old st)
}

Fig. 2: The specification of exec_ttest_1samp

In this code, sampled is a predicate defined in WhyML, and the precondition
sampled d t_n expresses that the dataset d has been sampled from a popula-
tion that has a normal distribution type t_n with an unknown mean and an
unknown variance. In the WhyML implementation of BHL, a dataset is imple-
mented as a record with a field storing the distribution type of the population.

The postcondition (World (!st) interp) |= StatB p fmlA represents the
interpretation of the result of the hypothesis test. Specifically, we obtain a sta-
tistical belief —denoted by the logical formula StatB p fmlA—that an alterna-
tive hypothesis fmlA holds with a p-value p, in the possible world (World (!st)
interp) equipped with the record st of all hypothesis tests executed so far. This
postcondition encodes the satisfaction of the epistemic formula w |= K≤p

y,A fmlA
in the world w in the Kripke model addressed in Sect. 2.

By applying StatWhy to this source code, the program verification fails be-
cause other requirements are missing in the precondition. However, since Why3
finds the failure to discharge the verification conditions corresponding to such
requirements, the tool user can easily find out the missing requirements.

We remark that the specification of exec_ttest_1samp is defined in StatWhy
using WhyML so that it (1) checks the requirements for the hypothesis test in
the precondition, (2) asserts the conclusion implied by the hypothesis test in the
postcondition, and (3) updates the test history st with the test result (Fig. 2).

In the requires-clause, the two-tailed (TWO) t-test requires the prior belief
that both tails mean(p) < µ and mean(p) > µ are possible. In the ensures-
clause, the test result consisting of the test name, the hypothesis h, and the
p-value result is added to the test history st. This specification of the two-
tailed t-test encodes an instance of the following inference rule in BHL [17,19]:

Γ |= ψ → (ϖ ∧PφL ∧PφU)

Γ ⊢ {ψ ∧ κ∅} α := fA(y) {ψ ∧ κy,A ∧Kα
y,A(φL ∨ φU)}

(Two-HT)

where the precondition ψ includes the assumption ϖ on the population distri-
bution and the prior beliefs on the two tails PφL and PφU; the postcondition
updates the empty test history κ∅ to the history κy,A recording the test result.

Title Suppressed Due to Excessive Length 7

let ex_hack trial1 trial2 =
let p1 = exec_ttest_1samp ppl_new 1.0 trial1 Two in
let p2 = exec_ttest_1samp ppl_new 1.0 trial2 Two in
let p = min p1 p2 in (* This is INCORRECT *)
(p1, p2, p)

(*@ (p1, p2, p) = ex_hack trial1 trial2
requires

is_empty (!st) /\ sampled trial1 ppl_new /\ sampled trial2 ppl_new /\
(World (!st) interp) |= Possible h_new_l /\ (World (!st) interp) |= Possible h_new_u

ensures
(Leq p = compose_pvs h_new !st

&& (World !st interp) |= StatB (Leq p) h_new) *)

Fig. 3: An OCaml program that performs the p-value hacking.

P -Value Hacking. Fig. 3 is another example presenting how StatWhy detects
an error in the code conducting the p-value hacking (a.k.a. data dredging), a
technique to manipulate statistical analyses to obtain a lower p-value.

In this program, we execute a t-test exec_ttest_1samp on a dataset trial1
and another on another dataset trial2. Given the p-values p1 and p2 for these
two t-tests, we should report p1+ p2 as the p-value of these experiments. How-
ever, this program reports only the experiment showing the lower p-value (i.e.,
min p1 p2) by ignoring the other showing higher p-value. By ensuring that all
hypothesis tests are described in the program, StatWhy can automatically check
whether the p-values are correctly calculated, thus preventing p-value hacking.

We remark that in the precondition, the atomic expression is_empty (!st)
with the dereference operator ‘!’ represents that the test history st is empty; i.e.,
no hypothesis test has performed before. The expression sampled trial1 ppl_new
represents that the dataset trial1 is sampled from a population ppl_new. For
specific predicates such as is_empty and sampled, we can use abbreviated ex-
pressions where “(World !st interp) |= ” is omitted for the sake of simplicity.
In the postcondition, compose_pvs h_new !st obtains the correct p-value from
the test history st, which is found to be different from the p-value p incorrectly
calculated in this program.

3.2 More Details on Specifications

The latest version of StatWhy can automatically verify the correctness of specifi-
cations written in the WhyML language [8]. It can also verify programs written in
the subset of OCaml supported by Cameleer [29], a verifier for OCaml programs.
Specifically, Cameleer covers the core OCaml language except for several fea-
tures, including object-oriented programming, generalized algebraic data types
(GADTs), and polymorphic variants.

StatWhy requires minimal modifications to the source code. Programmers
need to insert annotations into the OCaml program to describe the requirements
and interpretations for hypothesis testing. More specifically, a requirement (re-
spectively, interpretation) for a hypothesis testing command is expressed as a
logical formula written in the Gospel language [5], representing a precondition
(respectively, postcondition) for the command.

8 Y. Kawamoto et al.

use ocamlstdlib.Stdlib
let function p =

[@vc:white_box]
(begin

requires { sampled d t_n }
returns { p -> (World (!st) interp) |= (StatB p fmlA) }
exec_ttest_1samp t_n 1.0 d Two

end)

Fig. 4: A WhyML program calling a t-test command for a mean of a population.

To describe these annotations in Gospel, we introduce types for terms, atomic
formulas, and logical formulas of belief Hoare logic (BHL) as follows.

type term = RealT real_term | PopulationT population | ...
type atomic_formula = Pred psymb (list term)
type formula = Atom atomic_formula | Not formula

| Conj formula formula | Disj formula formula
| Possible formula | Know formula | StatB pvalue formula | ...

where a term can express a real number and a population; an atomic formula
consists of a predicate symbol (e.g., is_normal) and a list of terms; a formula
is built using Possible, Know, and StatB, each corresponding to the modal
epistemic operators P, K, and K≤ϵ

y,A, respectively, shown in Sect. 2.
In the WhyML grammar, an atomic expression is of the form World (!st)

interp |= formula representing that the formula formula is satisfied in the
possible world equipped with the test history st (i.e., the record of all hypoth-
esis tests executed so far) and the interpretation interp of private-variables in
the Kripke model for BHL [17, 19]. For the non-modal formulas using only spe-
cific predicates (e.g., is_empty or sampled), we allow an abbreviation that can
omit “World (!st) interp |=” from an expression. We can also use function
symbols (e.g., mean and ppl) to simplify expressions.

For clarity in hypothesis testing specifications, programmers can use ab-
breviation operators. Since hypothesis testing programs often involve repeated
comparisons among multiple groups of data, StatWhy provides a set of folding
operations to simplify the repetition of similar conditions in specifications. In
particular, folding operators can be used to briefly describe the iteration of the
hypothesis tests that compare all combinations of groups in multiple comparison.

3.3 Verification of Statistical Programs

To verify a given OCaml program, StatWhy first transforms it into a program
written in the WhyML language [8]. This preprocessing is performed using our
extension of Cameleer [29], a static verifier for OCaml. For example, the OCaml
program in Fig. 1 is transformed into the WhyML program in Fig. 4.

Next, StatWhy proves the correctness of a WhyML program using the Why3
platform [8]. Specifically, the tool internally synthesizes a proof tree using the
proof rules of Belief Hoare logic and derives the verification condition for the pro-
gram. Then, it automatically discharges these conditions by using external SMT

Title Suppressed Due to Excessive Length 9

solvers, e.g., cvc5 [3] or Z3 [27]. If the verification succeeds, StatWhy outputs a
proof tree that attests to the correctness of the program. If the verification fails
or times out, the tool reports the failure. Even in that case, the tool users can
identify any missing or incorrect requirements and interpretations for statistical
methods so that they can re-specify the requirements and interpretations..

The verification process using StatWhy guarantees the following correct-
ness. If StatWhy successfully verifies a program, for any function f defined as
let f d1 ... dn = e, annotated with a precondition ψpre and a postcondition
φpost, the judgment {ψpre} [v1/d1, . . . , vn/dn] e {φpost} holds for any value vi of
type di, assuming the soundness of the Why3 framework. By the soundness of
BHL, if the expression e is evaluated under the environment satisfying the pre-
condition ψpre, then the resulting environment satisfies the postcondition φpost.

We remark that StatWhy focuses on automatically verifying the procedure
and the annotations in a statistical program by assuming the correctness of the
implementation of each hypothesis testing method used in the procedure as a
subroutine. In other words, our automated verification tool only checks that a
program correctly uses hypothesis testing functions. Technically, StatWhy checks
whether the preconditions and the postconditions of hypothesis testing functions
are satisfied when the program calls these functions as subroutines. By using
StatWhy, programmers are encouraged to pay attention to the requirements, the
interpretations, and the choices of hypothesis testing methods.

We also remark that StatWhy verifies a statistical program only under the
assumption that all requirements about an unknown true population are satisfied
(e.g., a population follows a normal distribution). Thus, such an assumption
needs to be checked externally; for instance, the analysts are responsible for
judging whether the population appears to approximately follow the normal
distribution4, possibly using background knowledge about the population.

4 The Implementation of StatWhy

In this section, we explain and discuss the implementation of the StatWhy tool.
More details on the tool is available in the user documentation [16].

4.1 The Architecture of StatWhy

Fig. 5 shows the architecture of StatWhy. To specify the requirements and inter-
pretations of hypothesis tests as preconditions and postconditions, StatWhy has
modules for real number arithmetic, basic statistics, and individual hypothesis
testing commands (e.g., t-test) that cover most of the popular hypothesis test-
ing methods [12]. To reason about the interpretation of hypothesis testing, the
tool also has modules for BHL [17, 19], an epistemic logic with statistical belief
explained in Sect. 2, and for the record of the hypothesis tests performed so far.
4 There are hypothesis testing methods for checking the normality approximately.

Such tests are applied to the dataset (instead of the actual population) and cannot
prove the normality of the population mathematically.

10 Y. Kawamoto et al.

Pre-cond.:
Req. for
stat.

Main
program

Post-cond.:
Interp. of
stat.

OCaml code
StatWhy

Cameleer

Mod. for
stat. & logic

Why3 Platform

Mod. for epis-
temic logic

Mod. for hypothesis
test commands

(Z-test, T-test, . . .)

SMT solvers
(Z3, CVC5, . . .)

Trans. to
WhyML

Discharge
VCs

input

Proof
output

Fig. 5: The architecture of the StatWhy tool.

Since the goal of our ver-
ification tool is to ensure the
correct usage of the hypothe-
sis testing methods in programs,
the StatWhy tool reasons about
p-values in hypothesis testing,
which requires basic reasoning
about probabilities. Specifically,
we extended Cameleer so that it
can access the real number arith-
metic formalized in Why3 standard library, and added basic statistics functions
(e.g., mean) and their lemmas. To reason about p-values appearing in epistemic
formulas in simplifying verification conditions, we added Why3 lemmas about
the composition of p-values under multiple-tests and about the comparisons be-
tween p-values. With these lemmas in the StatWhytool, we avoid the need for
SMT solvers to handle probability computations, while maintaining the sound-
ness and correctness in the statistical context.

To accept OCaml programs as input, StatWhy internally calls our extension
of Cameleer [29] to translate an OCaml program to a WhyML program. Then
the tool verifies a WhyML program by using the Why3 platform.

4.2 Extension of Cameleer

The programs given to StatWhy share several peculiar features. For example,
StatWhy specifications often involve repeated comparisons among multiple groups
of data, which are expressed using folding operations. Furthermore, the programs
often involve the array structure of records of hypothesis tests executed so far.
We have found that SMT solvers often get stuck if we try to discharge the
verification conditions that involve such folding operations.

To improve the performance of StatWhy, we implemented a custom proof
strategy—a combination of proof tactics and transformations—that exploits
these characteristics of hypothesis testing programs to accelerate the proof search.
Our strategy first applies Why3’s default proof strategies (e.g., split_vc for
splitting conjunctive verification conditions into smaller ones and compute_in_goal
for applying computations and simplifications to proof goals). These invocations
of the proof strategies are interleaved with calls to SMT solvers, whose timeouts
are set to small values. If these applications of the default proof strategies fail
to discharge the VCs, then we apply aggressive transformation strategies that
unfold the definitions of the functions and predicates defined in StatWhy.

These extensions are implemented as follows. We added WhyML modules
for StatWhy to the standard library of Why3 at the installation of our extension
of Cameleer. We also extended Cameleer so that Uterm, the module for OCaml
untyped terms, and Why3ocaml_driver, the module for translation from OCaml
to WhyML, can handle floating-point numbers. We also extended the Why3
plugins provided by Cameleer by adding plugin/cameleerBHL.ml and modifying
plugin/plugin_cameleer.ml to handle the algebraic data types in StatWhy.

Title Suppressed Due to Excessive Length 11

let cmp_with_existing_drugs d_new d_drug1 d_drug2 =
let p_drug1 = exec_ttest_ind_eq ppl_new ppl_drug1 (d_new, d_drug1) Up in
let p_drug2 = exec_ttest_ind_eq ppl_new ppl_drug2 (d_new, d_drug2) Up in
p_drug1 +. p_drug2
(*@ p = testing d_new d_drug1 d_drug2

requires
is_empty (!st) /\ non_paired d_new d_drug1 /\ non_paired d_new d_drug2 /\
sampled d_new ppl_new /\ sampled d_drug1 ppl_drug1 /\ sampled d_drug2 ppl_drug2 /\
(World (!st) interp) |= Possible h_new_drug1 /\
(World (!st) interp) |= Not (Possible h_new_drug1_c) /\
(World (!st) interp) |= Possible h_new_drug2 /\
(World (!st) interp) |= Not (Possible h_new_drug2_c)

ensures
(Leq p) = compose_pvs (Disj h_new_drug1 h_new_drug2) !st &&
(World !st interp) |= StatB (Leq p) (Disj h_new_drug1 h_new_drug2) *)

Fig. 6: An OCaml program that performs multiple comparison.

Table 1: The execution times (sec) for verifying hypothesis testing programs with
practical numbers of disjunctive (OR) and conjunctive (AND) hypotheses.

#hypotheses 2 3 4 5 6 7 8 9 10

OR 8.77 8.89 8.84 8.94 9.01 9.01 9.04 9.16 9.23
AND 8.82 8.72 8.86 8.98 8.95 9.03 9.11 9.17 9.46

5 Case Studies on Common Errors in Hypothesis Testing

We present examples to demonstrate how StatWhy can be used to avoid common
errors in a variety of popular hypothesis testing programs.
Multiple Comparison Problems. Analysts occasionally make mistakes in
computing the p-value in comparing more than two groups, which is called a
multiple comparison problem [4].

Let us consider an experiment comparing the efficacy of a new drug with
that of two existing drugs drug1 and drug2. We conduct two one-tailed t-tests:
one comparing the new drug with drug1 and another with drug2. Then the
alternative hypotheses h_new_drug1 and h_new_drug2 for these tests represent
that the new drug has a better efficacy than drug1 and drug2, respectively.
For the p-values p1 and p2 of these two tests, the p-value p for the combined
test with the disjunctive hypothesis h_new_drug1 ∨ h_new_drug2 satisfies p ≤
p1 + p2, which is known as Bonferroni correction. In contrast, the p-value p for
the conjunctive hypothesis h_new_drug1∧h_new_drug2 satisfies p ≤ min(p1, p2).

StatWhy can automatically check that the program in Fig. 6 correctly calcu-
lates the p-value of the disjunctive hypothesis Disj h_new_drug1 h_new_drug2.
Scalability of StatWhy We evaluated the scalability of the performance of the
program verification using StatWhy to (i) the complex hypotheses and (ii) the
larger number of compared groups. For the evaluation, we conducted experiments
on a MacBook Pro with Apple M2 Max CPU and 96 GB memory using the
external SMT solver cvc5 1.0.6.

12 Y. Kawamoto et al.

Table 2: The execution times (sec) for various multiple comparison meth-
ods. #groups (respectively, #comparisons) represents the (practical) number
of groups (respectively, combinations of groups) compared in the testing.

#groups

Test methods Metric 2 3 4 5 6 7

Tukey’s HSD test Times (sec) 0.37 9.09 9.33 9.81 15.27 16.39
#comparisons 1 3 6 10 15 21

Dunnett’s test Times (sec) 0.48 8.98 9.17 9.61 9.62 9.77
#comparisons 1 2 3 4 5 6

Williams’ test Times (sec) 0.48 8.90 9.04 9.16 9.23 9.58
#comparisons 1 2 3 4 5 6

Steel-Dwass’ test Times (sec) 0.44 9.05 9.43 9.76 15.10 16.24
#comparisons 1 3 6 10 15 21

Steel’s test Times (sec) 0.49 8.79 8.92 9.11 9.43 9.74
#comparisons 1 2 3 4 5 6

Table 1 shows the execution times for StatWhy to verify hypothesis testing
programs for practical numbers of disjunctive/conjunctive hypotheses. These
experiments took roughly the same amount of time for a larger number of hy-
potheses. Table 2 provides the execution times for the most common multiple
comparison methods described in standard textbooks. The numbers of groups
compared in the experiments are practical but challenging, as the number of
comparisons grows rapidly with the number of groups. The verification of these
programs is efficient, since our proof strategy (Sect. 4) accelerates the proof
search for programs with folding operations and test histories.

6 Conclusion

We proposed a tool-assisted method for formally specifying and automatically
verifying the correctness of statistical programs. In particular, we presented the
StatWhy tool for automatically checking whether the programmers have properly
specified the requirements and the interpretations of the statistical methods.

In future work, we will extend StatWhy to verify the procedures for power
analyses and interval estimation and to deal with other types of statistical meth-
ods and other programming languages, e.g., a subset of Python. We also plan to
work on the formal verification of the correctness of the implementation of each
hypothesis testing function called from statistical software as a subroutine.

Acknowledgments. The authors are supported by JSPS KAKENHI Grant Number
JP24K02924, Japan. Yusuke Kawamoto is supported by JST, PRESTO Grant Number
JPMJPR2022, Japan. Kohei Suenaga is supported by JST CREST Grant Number
JPMJCR2012, Japan.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

Title Suppressed Due to Excessive Length 13

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.: De-
ductive Software Verification - The KeY Book - From Theory to Practice, Lecture
Notes in Computer Science, vol. 10001. Springer (2016). https://doi.org/10.1007/
978-3-319-49812-6

2. Arbuthnot, J.: An argument for divine providence, taken from the constant regu-
larity observ’d in the births of both sexes. Philosophical Transactions of the Royal
Society of London 27(328), 186–190 (1710). https://doi.org/10.1098/rstl.1710.0011

3. Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5: A versatile and industrial-
strength SMT solver. In: Proc. the 28th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2022), Part
I. Lecture Notes in Computer Science, vol. 13243, pp. 415–442. Springer (2022).
https://doi.org/10.1007/978-3-030-99524-9_24

4. Bretz, F., Hothorn, T., Westfall, P.: Multiple Comparisons Using R. Chapman and
Hall/CRC (2010). https://doi.org/10.1201/9781420010909

5. Charguéraud, A., Filliâtre, J., Lourenço, C., Pereira, M.: GOSPEL - providing
ocaml with a formal specification language. In: Proc. of the 24th International Sym-
posium on Formal Methods (FM 2019). Lecture Notes in Computer Science, vol.
11800, pp. 484–501. Springer (2019). https://doi.org/10.1007/978-3-030-30942-8_
29

6. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C - A software analysis perspective. In: Proc. 10th International Conference
on Software Engineering and Formal Methods (SEFM 2012). Lecture Notes in
Computer Science, vol. 7504, pp. 233–247. Springer (2012). https://doi.org/10.
1007/978-3-642-33826-7_16

7. Fernandes-Taylor, S., Hyun, J.K., Reeder, R.N., Harris, A.H.: Common statisti-
cal and research design problems in manuscripts submitted to high-impact med-
ical journals. BMC Research Notes 4(1), 304 (2011). https://doi.org/10.1186/
1756-0500-4-304

8. Filliâtre, J., Paskevich, A.: Why3 - where programs meet provers. In: Proc. of
the 22nd European Symposium on Programming (ESOP 2013). Lecture Notes in
Computer Science, vol. 7792, pp. 125–128. Springer (2013). https://doi.org/10.
1007/978-3-642-37036-6_8

9. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
PLDI 2002: Extended static checking for Java. ACM SIGPLAN Notices 48(4S),
22–33 (2013). https://doi.org/10.1145/2502508.2502520

10. Goldwasser, S., Rothblum, G.N., Shafer, J., Yehudayoff, A.: Interactive Proofs
for Verifying Machine Learning. In: Lee, J.R. (ed.) Proc. of the 12th Innovations
in Theoretical Computer Science Conference (ITCS 2021). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 185, pp. 41:1–41:19. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021). https://doi.org/10.
4230/LIPIcs.ITCS.2021.41

11. Hogg, R.V., McKean, J.W., Craig, A.T.: Introduction to mathematical statistics.
Pearson Education India (2013)

12. Kanji, G.K.: 100 statistical tests. Sage (2006)
13. Kawamoto, Y.: Statistical epistemic logic. In: The Art of Modelling Computa-

tional Systems: A Journey from Logic and Concurrency to Security and Pri-

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1098/rstl.1710.0011
https://doi.org/10.1098/rstl.1710.0011
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1201/9781420010909
https://doi.org/10.1201/9781420010909
https://doi.org/10.1007/978-3-030-30942-8_29
https://doi.org/10.1007/978-3-030-30942-8_29
https://doi.org/10.1007/978-3-030-30942-8_29
https://doi.org/10.1007/978-3-030-30942-8_29
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1186/1756-0500-4-304
https://doi.org/10.1186/1756-0500-4-304
https://doi.org/10.1186/1756-0500-4-304
https://doi.org/10.1186/1756-0500-4-304
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/2502508.2502520
https://doi.org/10.1145/2502508.2502520
https://doi.org/10.4230/LIPIcs.ITCS.2021.41
https://doi.org/10.4230/LIPIcs.ITCS.2021.41
https://doi.org/10.4230/LIPIcs.ITCS.2021.41
https://doi.org/10.4230/LIPIcs.ITCS.2021.41

14 Y. Kawamoto et al.

vacy. LNCS, vol. 11760, pp. 344–362. Springer (2019). https://doi.org/10.1007/
978-3-030-31175-9_20

14. Kawamoto, Y.: Towards logical specification of statistical machine learn-
ing. In: Proc. SEFM 2019. pp. 293–311 (2019). https://doi.org/10.1007/
978-3-030-30446-1_16

15. Kawamoto, Y.: An epistemic approach to the formal specification of statistical
machine learning. Software and Systems Modeling 20(2), 293–310 (2020). https:
//doi.org/10.1007/s10270-020-00825-2

16. Kawamoto, Y., Kobayashi, K., Suenaga, K.: User Documentation for StatWhy
v.1.2 (2025), available at https://github.com/fm4stats/statwhy

17. Kawamoto, Y., Sato, T., Suenaga, K.: Formalizing statistical beliefs in hypothesis
testing using program logic. In: Proc. KR’21. pp. 411–421 (2021). https://doi.org/
10.24963/kr.2021/39

18. Kawamoto, Y., Sato, T., Suenaga, K.: Formalizing statistical causality via modal
logic. In: Proc. JELIA’23. Lecture Notes in Computer Science, vol. 14281, pp.
681–696. Springer (2023). https://doi.org/10.1007/978-3-031-43619-2_46

19. Kawamoto, Y., Sato, T., Suenaga, K.: Sound and relatively complete belief Hoare
logic for statistical hypothesis testing programs. Artif. Intell. 326, 104045 (2024).
https://doi.org/10.1016/J.ARTINT.2023.104045

20. Kozen, D.: A probabilistic PDL. J. Comput. Syst. Sci. 30(2), 162–178 (1985).
https://doi.org/10.1016/0022-0000(85)90012-1

21. Leino, K.R.M.: This is Boogie 2. manuscript KRML 178(131), 9 (2008)
22. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In:

Proc. the 16th International Conference on Logic for Programming, Artificial Intel-
ligence, and Reasoning (LPAR’16). Lecture Notes in Computer Science, vol. 6355,
pp. 348–370. Springer (2010). https://doi.org/10.1007/978-3-642-17511-4_20

23. Lesage, J.P., Simon, S.D.: Numerical accuracy of statistical algorithms for mi-
crocomputers. Computational Statistics & Data Analysis 3, 47–57 (1985). https:
//doi.org/https://doi.org/10.1016/0167-9473(85)90057-X

24. Makin, T.R., de Xivry, J.J.O.: Science forum: Ten common statistical mistakes to
watch out for when writing or reviewing a manuscript. Elife 8, e48175 (2019)

25. Moher, D., Hopewell, S., Schulz, K.F., Montori, V., Gøtzsche, P.C., Devereaux, P.,
Elbourne, D., Egger, M., Altman, D.G.: Consort 2010 explanation and elaboration:
updated guidelines for reporting parallel group randomised trials. International
journal of surgery 10(1), 28–55 (2012)

26. Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM
Trans. Program. Lang. Syst. 18(3), 325–353 (1996). https://doi.org/10.1145/
229542.229547

27. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: Proc. the 14th
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS 2008). Lecture Notes in Computer Science, vol. 4963, pp.
337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-3_24

28. Mutreja, S., Shafer, J.: Pac verification of statistical algorithms. In: Neu, G.,
Rosasco, L. (eds.) Proceedings of Thirty Sixth Conference on Learning Theory.
Proceedings of Machine Learning Research, vol. 195, pp. 5021–5043. PMLR (2023)

29. Pereira, M., Ravara, A.: Cameleer: A deductive verification tool for OCaml. In:
Proc. of the 33rd International Conference on Computer Aided Verification (CAV
2021), Part II. Lecture Notes in Computer Science, vol. 12760, pp. 677–689.
Springer (2021). https://doi.org/10.1007/978-3-030-81688-9_31

30. Seshia, S.A., Sadigh, D., Sastry, S.S.: Toward verified artificial intelligence. Com-
mun. ACM 65(7), 46–55 (2022). https://doi.org/10.1145/3503914

https://doi.org/10.1007/978-3-030-31175-9_20
https://doi.org/10.1007/978-3-030-31175-9_20
https://doi.org/10.1007/978-3-030-31175-9_20
https://doi.org/10.1007/978-3-030-31175-9_20
https://doi.org/10.1007/978-3-030-30446-1_16
https://doi.org/10.1007/978-3-030-30446-1_16
https://doi.org/10.1007/978-3-030-30446-1_16
https://doi.org/10.1007/978-3-030-30446-1_16
https://doi.org/10.1007/s10270-020-00825-2
https://doi.org/10.1007/s10270-020-00825-2
https://doi.org/10.1007/s10270-020-00825-2
https://doi.org/10.1007/s10270-020-00825-2
https://github.com/fm4stats/statwhy
https://doi.org/10.24963/kr.2021/39
https://doi.org/10.24963/kr.2021/39
https://doi.org/10.24963/kr.2021/39
https://doi.org/10.24963/kr.2021/39
https://doi.org/10.1007/978-3-031-43619-2_46
https://doi.org/10.1007/978-3-031-43619-2_46
https://doi.org/10.1016/J.ARTINT.2023.104045
https://doi.org/10.1016/J.ARTINT.2023.104045
https://doi.org/10.1016/0022-0000(85)90012-1
https://doi.org/10.1016/0022-0000(85)90012-1
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/https://doi.org/10.1016/0167-9473(85)90057-X
https://doi.org/https://doi.org/10.1016/0167-9473(85)90057-X
https://doi.org/https://doi.org/10.1016/0167-9473(85)90057-X
https://doi.org/https://doi.org/10.1016/0167-9473(85)90057-X
https://doi.org/10.1145/229542.229547
https://doi.org/10.1145/229542.229547
https://doi.org/10.1145/229542.229547
https://doi.org/10.1145/229542.229547
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-81688-9_31
https://doi.org/10.1007/978-3-030-81688-9_31
https://doi.org/10.1145/3503914
https://doi.org/10.1145/3503914

Title Suppressed Due to Excessive Length 15

31. Von Elm, E., Altman, D.G., Egger, M., Pocock, S.J., Gøtzsche, P.C., Vanden-
broucke, J.P.: The strengthening the reporting of observational studies in epidemi-
ology (strobe) statement: guidelines for reporting observational studies. Bulletin
of the World Health Organization 85, 867–872 (2007)

32. Wasserstein, R.L., Lazar, N.A.: The ASA statement on p-values: Context, process,
and purpose. The American Statistician 70(2), 129–133 (2016). https://doi.org/
10.1080/00031305.2016.1154108

https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.1080/00031305.2016.1154108
https://doi.org/10.1080/00031305.2016.1154108

	StatWhy: Formal Verification Tool for Statistical Hypothesis Testing Programs

