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Abstract— We introduce a general model for the local obfus-
cation of probability distributions by probabilistic perturbation,
e.g., by adding differentially private noise, and investigate its
theoretical properties. Specifically, we relax a notion of distri-
bution privacy (DistP) by generalizing it to divergence, and
propose local obfuscation mechanisms that provide divergence
distribution privacy. To provide f -divergence distribution pri-
vacy, we prove that probabilistic perturbation noise should be
added proportionally to the Earth mover’s distance between the
probability distributions that we want to make indistinguish-
able. Furthermore, we introduce a local obfuscation mechanism,
which we call a coupling mechanism, that provides divergence
distribution privacy while optimizing the utility of obfuscated
data by using exact/approximate auxiliary information on the
input distributions we want to protect.

I. INTRODUCTION

Differential privacy (DP) [1] is one of the most popular
privacy notions that have been studied in various areas,
including databases, machine learning, geo-locations, and
social networks. The protection of DP can be achieved by
adding probabilistic noise to the data we want to obfuscate.
In particular, many studies have proposed local obfuscation
mechanisms [2], [3], [4] that perturb each single “point”
datum (e.g., a geo-location point) by adding controlled
probabilistic noise before sending it out to a data collector.

Recent researches [5], [6], [7] show that local obfuscation
mechanisms can be used to hide the probability distributions
that lie behind such point data and implicitly represent sensi-
tive attributes (e.g., age, gender, social status). In particular,
[6] proposes the notion of distribution privacy (DistP) as
the local DP of probability distributions. Roughly, DistP of a
local obfuscation mechanism A represents that the adversary
cannot significantly gain information on the distribution of
A’s input by observing A’s output. However, since DistP
assumes the worst case risk in the sense of DP, it imposes
strong requirement and might unnecessarily lose the utility
of obfuscated data.

In this paper, we relax the notion of DistP by gen-
eralizing it to an arbitrary divergence. The basic idea is
similar to point privacy notions that relax DP and improve
utility by relying on some divergence (e.g., total variation
privacy [8], Kullback-Leibler divergence privacy [8], [9],
and Rényi differential privacy [10]). We define the notion
of divergence distribution privacy by replacing the DP-style
with an arbitrary divergence D. This relaxation allows us to
formalize “on-average” DistP, and to explore privacy notions
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against an adversary performing the statistical hypothesis test
corresponding to the divergence [8].

Furthermore, we propose and investigate local obfuscation
mechanisms that provide divergence DistP. Specifically, we
consider the following two scenarios:

(i) when we have no idea on the input distributions;
(ii) when we know exact or approximate information on

the input distributions (e.g., when we can use public
datasets [11], [12] to learn approximate distributions of
locations of male/female users if we want to obfuscate
the attribute male/female).

For the scenario (i), we clarify how much perturbation
noise should be added to provide f -divergence DistP when
we use an existing mechanism for obfuscating point data. For
the scenario (ii), we introduce a local obfuscation mechanism
that provides divergence DistP while optimizing the utility
of obfuscated data by using the auxiliary information. Here
it should be noted that probability coupling techniques are
crucial in constructing divergence DistP mechanisms in both
the scenarios.

Our contributions. The main contributions are as follows:
• We introduce notions of divergence DistP and inves-

tigate theoretical properties of distribution obfuscation,
especially the relationships between local distribution
obfuscation and probability coupling.

• We investigate the relationships among various notions
of DistP based on f -divergences, such as Kullback-
Leibler divergence, which models “on-average” risk.

• In the scenario (i), we present how much divergence
DistP can be achieved by local obfuscation. In particu-
lar, by using probability coupling techniques, we prove
that perturbation noise should be added proportionally
to the Earth mover’s distance between the input distri-
butions that we want to make indistinguishable.

• In the scenario (ii), we propose a local obfuscation
mechanism, called a (utility-optimal) coupling mecha-
nism, that provides divergence DistP while minimizing
utility loss. The construction of the mechanism relies
on solving an optimal transportation problem using
probability coupling.

• We theoretically evaluate the divergence DistP and
utility loss of coupling mechanisms that can use ex-
act/approximate knowledge on the input distributions.

Paper organization. The rest of this paper is organized
as follows. Section II presents background knowledge. Sec-
tion III introduces notions of divergence DistP. Section IV
investigates important properties of divergence DistP, and
relationships among privacy notions. Section V shows that



in the scenario (i), an f -privacy mechanism can provide f -
divergence DistP. Section VI generalizes DistP to use ex-
act/approximate information on the input distribution in the
scenario (ii), and proposes a local mechanism for providing
DistP while optimizing utility. Section VII discusses related
work and Section VIII concludes.

II. PRELIMINARIES

In this section we recall some notions of privacy, diver-
gence, and metrics used in this paper.

A. Notations

Let R≥0 be the set of non-negative real numbers, and
[0, 1]

def
= {r ∈ R≥0 | r ≤ 1}. Let ε, ε0, ε1 ∈ R≥0,

δ, δ0, δ1 ∈ [0, 1], and e be the base of natural logarithm.
We denote by |X | the number of elements in a finite set X ,

and by DX the set of all probability distributions over a
set X . Given a probability distribution λ over a finite set
X , the probability of drawing a value x from λ is denoted
by λ[x]. For a finite subset X ′ ⊆ X , we define λ[X ′] by
λ[X ′] =

∑
x′∈X ′ λ[x′]. For a distribution λ over a finite set

X , its support is supp(λ) = {x ∈ X : λ[x] > 0}.
For a randomized algorithm A : X → DY and a set R ⊆

Y , we denote by A(x)[R] the probability that given an input
x, A outputs one of the elements of R. For a randomized
algorithm A : X → DY and a distribution λ over X , we
define A#(λ) as the probability distribution of the output
of A. Formally, the lifting of A : X → DY is the function
A# : DX → DY such that for any R ⊆ Y , A#(λ)[R]

def
=∑

x∈X λ[x]A(x)[R].

B. Differential Privacy

Differential privacy [1] is a notion of privacy guaranteeing
that we cannot learn which of two “adjacent” inputs x and x′

is used to generate an output of a randomized algorithm. This
notion is parameterized by a degree ε of indistinguishability,
a ratio δ of exception, and some adjacency relation Φ over
a set X of data. The formal definition is given as follows.

Definition 1 (Differential privacy): A randomized algo-
rithm A : X → DY provides (ε, δ)-differential privacy (DP)
w.r.t. an adjacency relation Φ ⊆ X ×X if for any (x, x′) ∈ Φ
and any R ⊆ Y ,

Pr[A(x) ∈ R] ≤ eε Pr[A(x′) ∈ R] + δ

where the probability is taken over the random choices in A.
Then the protection of DP is stronger for smaller ε and δ.
DP can be achieved by a local obfuscation mechanism or

privacy mechanism (illustrated in Fig. 1), namely a random-
ized algorithm that adds controlled noise probabilistically to
given inputs that we want to protect.

C. Extended Differential Privacy (XDP)

The notion of DP can be relaxed by incorporating a metric
d over the set X of input data. In [13] Chatzikokolakis et al.
propose the notion of “d-privacy”, an extension of (ε, 0)-DP
to a metric d on input data. Intuitively, this notion guarantees
that when two inputs x and x′ are closer in terms of d, the

Input data

x (∼ λ)

Perturbed output data

y (∼ A#(λ))

Obfuscater A- -

Fig. 1: A local obfuscation mechanism A perturbs input data
x and returns output data y. Then the underlying probability
distribution λ can also be seen to be obfuscated.

output distributions are less distinguishable1. Here we show
the definition of this extended DP equipped with δ.

Definition 2 (Extended differential privacy): Let d : X ×
X → R be a metric. We say that a randomized algorithm
A : X → DY provides (ε, δ, d)-extended differential privacy
(XDP) if for all x, x′ ∈ X and R ⊆ Y ,

Pr[A(x) ∈ R] ≤ eεd(x,x′) Pr[A(x′) ∈ R] + δ

where the probability is taken over the random choices in A.
To achieve XDP, obfuscation mechanisms should add

noise proportionally to the distance d(x, x′) between the two
inputs x and x′ that we want to make indistinguishable, hence
more noise is require for a larger d(x, x′).

D. Distribution Privacy and Extended Distribution Privacy

Distribution privacy (DistP) [6] is a privacy notion that
measures how much information on the input distribution is
leaked by an output of a randomized algorithm. For example,
let λmale (resp. λfemale ) be a (prior) probability distribution
of the locations of the male (resp. female) users. When
we observe an output of an obfuscation mechanism A and
cannot learn whether the input to A is drawn from λmale

or λfemale , then we say that A provides (ε, δ)-DistP w.r.t.
(λmale , λfemale). Formally, DistP is defined as follows.

Definition 3 (Distribution privacy): Let ε ∈ R≥0 and δ ∈
[0, 1]. We say that a randomized algorithm A : X → DY pro-
vides (ε, δ)-distribution privacy (DistP) w.r.t. an adjacency
relation Ψ ⊆ DX × DX if its lifting A# : DX → DY
provides (ε, δ)-DP w.r.t. Ψ , i.e., for all pairs (λ, λ′) ∈ Ψ and
R ⊆ Y , we have A#(λ)[R] ≤ eε ·A#(λ′)[R] + δ.

Next we recall an extension [6] of DistP with a metric
d as follows. Intuitively, this extended notion guarantees
that when two input distributions are closer, then the output
distributions must be less distinguishable.

Definition 4 (Extended distribution privacy): Let d : (DX
× DX ) → R be a metric, and Ψ ⊆ DX × DX . We
say that a mechanism A : X → DY provides (ε, d, δ)-
extended distribution privacy (XDistP) w.r.t. Ψ if the lifting
A# provides (ε, d, δ)-XDP w.r.t. Ψ , i.e., for all (λ, λ′) ∈ Ψ
and R ⊆ Y , we have A#(λ)[R] ≤ eεd(λ,λ′) ·A#(λ′)[R] + δ.

Analogously to XDP, noise should be added proportion-
ally to the distance d(λ, λ′).

1Compared to DP, XDP provides weaker privacy and higher utility, as it
obfuscates closer points. E.g., [14] shows the planar Laplace mechanism [3]
(with XDP) adds less noise than the randomized response (with DP).



TABLE I: Instances of f -divergence

Divergence f(t)

KL-divergence t log t
Reverse KL-divergence −t log t
Total variation 1

2 |t− 1|
χ2-divergence (t− 1)2

Hellinger distance 1
2 (
√
t− 1)2
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(a) An original distribution λ and
a target distribution µ.

γ µ
1 2 3

1 0.2
λ 2 0.1 0.2 0.2

3 0.3

(b) A coupling γ of its two
marginals λ and µ can be in-
terpreted as a transportation that
transforms λ to µ. E.g., to con-
struct µ from λ, 0.1 moves
from 2 to 1, and 0.2 moves from
2 to 3.

Fig. 2: A coupling γ that transforms λ to µ.

E. Divergence

A divergence over a non-empty set Y is a function D(·‖ ·) :
DY × DY → R≥0 such that for all µ, µ′ ∈ DY , (i) D(µ ‖
µ′) ≥ 0 and (ii) D(µ ‖ µ′) = 0 iff µ = µ′. Note that a
divergence may not be symmetric or subadditive. We denote
by Div(Y) the set of all divergences over Y .

Next we recall the notion of (approximate) max diver-
gence, which can be used to define DP.

Definition 5 (Max divergence): Let δ ∈ [0, 1] and µ, µ′ ∈
DY . Then δ-approximate max divergence between µ, µ′ is:

Dδ
∞(µ ‖ µ′) = max

R⊆supp(µ),µ[R]≥δ
ln µ[R]−δ

µ′[R] .

We recall the notion of the f -divergences [15]. As shown
in Table I, many divergence notions (e.g. Kullback-Leibler-
divergence [16]) are instances of f -divergence.

Definition 6 (f -divergence): Let F be the collection of
functions defined by:

F = {f : R+ → R+ | f is convex and f(1) = 0}.

Let Y be a finite set, and µ, µ′ ∈ DY such that for every
y ∈ Y , µ′[y] = 0 implies µ[y] = 0. Then for an f ∈ F , the
f -divergence of µ from µ′ is defined as:

Df (µ ‖ µ′) =
∑

y∈supp(µ′)

µ′[y] f
( µ[y]
µ′[y]

)
.

F. Probability Coupling

We recall the notion of probability coupling as follows.
Example 1 (Coupling as transformation of distributions):

Let us consider two distributions λ and µ shown in Fig. 2.
A coupling γ of λ and µ shows a way of transforming λ to
µ. For example, γ[2, 1] = 0.1 moves from λ[2] to µ[1].

Formally, a coupling is defined as follows.

Definition 7 (Coupling): Given λ ∈ DX0 and µ ∈ DX1, a
coupling of λ and µ is a joint distribution γ ∈ D(X0 × X1)
such that λ and µ are γ’s marginal distributions, i.e., for each
x0 ∈ X0, λ[x0] =

∑
x′1∈X1

γ[x0, x
′
1] and for each x1 ∈ X1,

µ[x1] =
∑
x′0∈X0

γ[x′0, x1]. We denote by cp(λ, µ) the set of
all couplings of λ and µ.

G. p-Wasserstein Metric

Then we recall the p-Wasserstein metric [17] between two
distributions, which is defined using a coupling as follows.

Definition 8 (p-Wasserstein metric): Let d be a metric
over X , and p ∈ R≥1∪{∞}. The p-Wasserstein metric Wp,d

w.r.t. d is defined by: for any two distributions λ, µ ∈ DX ,

Wp,d(λ, µ) = min
γ∈cp(λ,µ)

( ∑
(x0,x1)∈supp(γ)

d(x0, x1)pγ[x0, x1]
)1
p .

W1,d is also called the Earth mover’s distance.
The intuitive meaning of W1,d(λ, µ) is the minimum cost

of transportation from λ to µ in transportation theory. As
illustrated in Fig. 2, we regard the distribution λ (resp. µ)
as the set of points where each point x has weight λ[x]
(resp. µ[x]), and we move some weight in λ from a point
x0 to another x1 to construct µ. We represent by γ[x0, x1]
the amount of weight moved from x0 to x1.2 We denote by
d(x0, x1) the cost (i.e., distance) of move from x0 to x1.
Then the minimum cost of the whole transportation is:

W1,d(λ, µ) = min
γ∈cp(λ,µ)

∑
(x0,x1)∈supp(γ)

d(x0, x1) γ[x0, x1].

E.g., in Fig. 2, when the cost function d is the Euclid distance
over X (e.g., d(2, 1) = |2 − 1| = 1), the transportation γ
achieves the minimum cost 0.1 · 1 + 0.2 · 1 = 0.3.

Let Γp,d the set of all couplings achieving Wp,d ; i.e.,

Γp,d(λ, µ) = argmin
γ∈cp(λ,µ)

( ∑
(x0,x1)∈supp(γ)

d(x0, x1)pγ[x0, x1]
)1
p .

Then γ ∈ Γ1,d(λ, µ) can be efficiently computed by the
North-West corner rule [18] when d is submodular 3.

III. DIVERGENCE DISTRIBUTION PRIVACY

In this section we introduce new definitions of distribution
privacy generalized to an arbitrary divergence D. The main
motivation is to discuss distribution privacy based on f -
divergences, especially Kullback-Leibler divergence, which
models “on-average” risk.

A. Divergence DP and Divergence XDP

To generalize distribution privacy notions, we first present
a generalized formulation of point privacy parameterized
with a divergence D. Intuitively, we say that a randomized
algorithm A provides (ε,D)-DP if a divergence D cannot
distinguish the input to A by observing an output of A.

2The amount of weight moved from a point x0 in λ is given by
λ[x0] =

∑
x′1∈X γ[x0, x′1], while the amount moved into x1 in µ is given

by µ[x1] =
∑

x′0∈X γ[x′0, x1]. Hence γ is a coupling of λ and µ.
3d is submodular if d(x0, x1) + d(x′0, x

′
1) ≤ d(x′0, x1) + d(x0, x′1).



Definition 9 (Divergence DP w.r.t. adjacency relation):
For an adjacency relation Φ ⊆ X × X and a divergence
D ∈ Div(Y), we say that a randomized algorithm A : X →
DY provides (ε,D)-DP w.r.t. Φ if for all (x, x′) ∈ Φ, we
have D(A(x)‖A(x′))≤ε and D(A(x′)‖A(x))≤ε .

Note that some instances of divergence DP are known in
the literature. In [8], (ε,Df )-DP is called ε-f -divergence
privacy, (ε,DKL)-DP (KLP) is called ε-KL-privacy, and
(ε,DTV)-DP is called ε-total variation privacy. Further-
more, (ε,Dδ

∞)-DP is equivalent to (ε, δ)-DP, since it is
known that (ε, δ)-DP can be defined using the approximate
max divergence Dδ

∞ as follows:
Proposition 1: A randomized algorithm A : X → DY

provides (ε, δ)-DP w.r.t. Φ ⊆ X ×X iff for any (x, x′) ∈ Φ,
Dδ
∞(A(x) ‖ A(x′)) ≤ ε and Dδ

∞(A(x′) ‖ A(x)) ≤ ε.
Next we generalize the notion of extended differential

privacy (XDP) to an arbitrary divergence D as follows.
Definition 10 (Divergence XDP): Let d : X × X → R

be a metric, Φ ⊆ X × X , and D ∈ Div(Y). We say that a
randomized algorithm A : X → DY provides (ε, d,D)-XDP
w.r.t. Φ if for all (x, x′) ∈ Φ, D(A(x) ‖ A(x′)) ≤ εd(x, x′).

These notions will be used to define (extended) divergence
distribution privacy in the next section.

B. Divergence DistP and Divergence XDistP
In this section we generalize the notion of (extended)

distribution privacy to an arbitrary divergence D. The main
aim of generalization is to present theoretical properties of
distribution privacy in a more general form, and also to
discuss distribution privacy based on the f -divergences.

Intuitively, we say that a randomized algorithm A pro-
vides (ε,D)-distribution privacy w.r.t. a set Ψ of pairs of
distributions if for each pair (λ0, λ1) ∈ Ψ , a divergence D
cannot distinguish which distribution (of λ0 and λ1) is used
to generate A’s input value.

Definition 11 (Divergence DistP): Let D ∈ Div(Y), and
Ψ ⊆ DX × DX . We say that a randomized algorithm
A : X → DY provides (ε,D)-distribution privacy (DistP)
w.r.t.Ψ if the lifting A# provides (ε,D)-DP w.r.t. Ψ , i.e., for
all (λ, λ′) ∈ Ψ ,

D(A#(λ) ‖ A#(λ′)) ≤ ε.
As with the generalization of DP to f -divergence [8], D-

DistP expresses privacy against an adversary performing the
hypothesis test corresponding to the divergence D. When D
involves averaging (e.g., D = DKL), D-DistP formalizes
“on-average” privacy, which relaxes the original DistP.

Next we introduce XDistP parameterized with a diver-
gence D. Intuitively, XDistP with a divergence D guarantees
that when two input distributions λ and λ′ are closer (in
terms of a metric d), then the output distributions A#(λ)
and A#(λ′) must be less distinguishable (in terms of D).

Definition 12 (Divergence XDistP): Let d be a metric
over DX , D ∈ Div(Y), and Ψ ⊆ DX × DX . We say that
a randomized algorithm A : X → DY provides (ε, d,D)-
extended distribution privacy (XDistP) w.r.t. Ψ if the lifting
A# provides (ε, d,D)-XDP w.r.t. Ψ , i.e., for all (λ, λ′) ∈ Ψ ,

D(A#(λ) ‖ A#(λ′)) ≤ εd(λ, λ′).
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Fig. 3: Two kinds of sequential compositions � and •.

IV. PROPERTIES OF DIVERGENCE DISTRIBUTION
PRIVACY

In this section we show useful properties of divergence
distribution privacy, such as compositionality and relation-
ships among distribution privacy notions.

A. Basic Properties of Divergence Distribution Privacy

In Tables II and III we summarize the results on two kinds
of sequential compositions � (Fig. 3a) and • (Fig. 3b), post-
processing, and pre-processing for divergence DistP and for
divergence XDistP, respectively. We present the details and
proofs for these results in Appendices D, E, and F.

The two kinds of composition have been studies in
previous work (e.g., [19], [6]). For two mechanisms A0

and A1, the composition A1 � A0 means that an identical
input value x is given to two DistP mechanisms A0 and
A1, whereasA1 • A0 means that independent inputs xb
are provided to mechanisms Ab. Note that this kind of
composition is adaptive in the sense that the output of A1 can
be dependent on that of A0. Hence the compositonality does
not hold in general for f -divergence, whereas we show the
compositionality for KL-divergence in Tables II and III. For
non-adaptive sequential composition, the compositionality
of divergence DistP/XDistP is straightforward from [20],
which show the compositionality of popular f -divergences,
including total variation and Hellinger distance.

As for pre-processing, we use the following definition of
stability [6], which is analogous to the stability for DP.

Definition 13 (Stability): Let c ∈ N, Ψ ⊆ DX ×DX , and
W be a metric over DX . A transformation T : DX → DX
is (c, Ψ)-stable if for any (λ0, λ1) ∈ Ψ , T (λ0) can be
reached from T (λ1) at most c-steps over Ψ . Analogously,
T : DX → DX is (c,W )-stable if for any λ0, λ1 ∈ DX ,
W (T (λ0), T (λ1)) ≤ cW (λ0, λ1).

B. Relationships among Distribution Privacy Notions

In Fig. 4 we show the summary of the relationships among
notions of divergence XDP and divergence XDistP. See
Appendices B and G for details and proofs.

V. LOCAL MECHANISMS FOR DIVERGENCE
DISTRIBUTION PRIVACY

In this section we present how much degree of diver-
gence DistP/XDistP can be achieved by local obfuscation.
Specifically, we show how f -divergence privacy contribute



TABLE II: Summary of basic properties of divergence DistP.

Sequential composition � (DKL) Ab is (εb,DKL)-DistP
⇒ A1 �A0 is (ε0 + ε1,DKL)-DistP

Sequential composition • (DKL) Ab is (εb,DKL)-DistP
⇒ A1 •A0 is (ε0 + ε1,DKL)-DistP

Post-processing A0 is (ε,Df )-DistP ⇒ A1 ◦A0 is (ε,Df )-DistP
Pre-processing (by c-stable T ) A is (ε,D)-DistP ⇒ A ◦ T is (c ε,D)-DistP

TABLE III: Summary of basic properties of divergence XDistP.

Sequential composition � (DKL) Ab is (εb,W1,d ,DKL)-XDistP
⇒ A1 �A0 is (ε0 + ε1,W1,d ,DKL)-XDistP

Sequential composition • (DKL) Ab is (εb,W1,d ,DKL)-XDistP
⇒ A1 •A0 is (ε0 + ε1,W1,d ,DKL)-XDistP

Post-processing A0 is (ε,W ,Df )-XDistP⇒A1◦A0 is (ε,W ,Df )-XDistP
Pre-processing (by c-stable T ) A is (ε,W , D)-XDistP⇒A ◦ T is (c ε,W , D)-XDistP
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Fig. 4: Relationships among divergence XDistP notions.

to the obfuscation of probability distributions. To prove those
results, we use the notion of probability coupling.

A. Divergence DistP by Local Obfuscation

We first show that f -divergence privacy mechanisms pro-
vide Df -DistP. To present this formally, we recall the notion
of the lifting of relations as follows.

Definition 14 (Lifting of relations): Given a relation Φ ⊆
X × X , the lifting of Φ is the maximum relation Φ# ⊆
DX × DX such that for any (λ0, λ1) ∈ Φ#, there exists a
coupling γ ∈ cp(λ0, λ1) satisfying supp(γ) ⊆ Φ.

Intuitively, when λ0 and λ1 are adjacent w.r.t. the lifted
relation Φ#, then we can construct λ1 from λ0 according to
the coupling γ, that is, only by moving mass from λ0[x0]
to λ1[x1] where (x0, x1) ∈ Φ (i.e., x0 is adjacent to x1).
Note that by Definition 7, the coupling γ is a probability
distribution over Φ whose marginal distributions are λ0

and λ1. If Φ = X × X , then Φ# = DX × DX .
Now we show that every f -divergence privacy mechanism

provides Df -DistP as follows. (See Appendix A for the
proof.)

Theorem 1 ((ε,Df )-DP ⇒ (ε,Df )-DistP): Let Φ ⊆ X×
X . If a randomized algorithm A : X → DY provides
(ε,Df )-DP w.r.t. Φ, then it provides (ε,Df )-DistP w.r.t. Φ#.

Intuitively, the f -divergence privacy mechanism A makes
any pair (λ0, λ1) of input distributions in Φ# indistinguish-
able in terms of Df up to the threshold ε.

B. Divergence XDistP by Local Obfuscation

Next we investigate how much noise should be added for
local obfuscation mechanisms to provide divergence XDistP.

We first consider two point distributions λ0 at x0 and λ1

at x1, i.e., λ0[x0] = λ1[x1] = 1. Then an (ε, d ,Df )-XDP
mechanism A satisfies:

Df (A#(λ0)‖A#(λ1)) = Df (A(x0)‖A(x1)) ≤ εd(x0, x1).

Hence the noise added by A should be proportional to the
distance d(x0, x1) between x0 and x1.

To generalize this observation on point distributions to ar-
bitrary distributions, we need to employ some metric between
distributions. As the metric, we could use the diameter over
the supports, which is defined by:

diam(λ0, λ1) = max
x0∈supp(λ0),x1∈supp(λ1)

d(x0, x1),

or the ∞-Wasserstein metric W∞,d , which is used for
XDistP [6]. However, when there is an outlier in λ0 or
λ1, then diam(λ0, λ1) and W∞,d(λ0, λ1) tend to be large.
Since the mechanism needs to add noise proportionally to the
distance diam(λ0, λ1) or W∞,d(λ0, λ1) to achieve XDistP,
it needs to add large amount of noise and thus loses utility
significantly.

To have better utility, we employ the Earth mover’s
distance (1-Wasserstein metric) W1,d as a metric for Df -
XDistP mechanisms. Given two distributions λ0 and λ1

over X , we consider a transportation γ from λ0 to λ1 that
minimizes the expected cost of the transportation. Then the



minimum of the expected cost is given by the Earth mover’s
distance W1,d(λ0, λ1).

Now we show that, to achieve Df -XDistP, we only have to
add noise proportionally to the Earth mover’s distance W1,d

between the input distributions. To formalize this, we define
a lifted relation Φ#

Wp
as the maximum relation over DX s.t.

for any (λ0, λ1) ∈ Φ#
Wp

, there is a coupling γ ∈ cp(λ0, λ1)
satisfying supp(γ) ⊆ Φ and γ ∈ Γp,d(λ0, λ1).

Theorem 2 ((ε, d ,Df )-XDP ⇒ (ε,W1,d ,Df )-XDistP):
Let d : X ×X → R be a metric. If a randomized algorithm
A : X → DY provides (ε, d ,Df )-XDP w.r.t. Φ then it
provides (ε,W1,d ,Df )-XDistP w.r.t. Φ#

W1
.

See Appendix A for the proof. Since the Earth mover’s
distance is not grater than the diameter or∞-Wasserstein dis-
tance, Df -XDistP may require less noise than D∞-XDistP.

VI. LOCAL DISTRIBUTION OBFUSCATION WITH
AUXILIARY INPUTS

In this section we introduce a local obfuscation mechanism
which we call a coupling mechanism in order to provide
distribution privacy while optimizing utility. Specifically, a
coupling mechanism uses (full or approximate) knowledge
on the input probability distributions to perturb each single
input value so that the output distribution gets indistinguish-
able from some target probability distribution. To define the
mechanism, we calculate the probability coupling of each
input distribution and the target distribution.

A. Privacy Definitions with Auxiliary Inputs

We first extend the definition of divergence DistP so that
a local obfuscation mechanism A can receive some auxiliary
input (e.g. context information) ranging over a set S, which
might be used for A to apply different randomized algorithms
in different situations or to different input distributions.

Definition 15 (Divergence DistP with auxiliary inputs):
Let ε ∈ R≥0, D ∈ Div(Y), and Ψ ⊆ (S ×DX )× (S ×DX ).
We say that a randomized algorithm A : S × X → DY
provides (ε,D)-distribution privacy w.r.t.Ψ if for all pairs
((s, λ), (s′, λ′)) ∈ Ψ ,

D(A#(s, λ) ‖ A#(s′, λ′)) ≤ ε.
In this definition, the auxiliary input over S typically

represents contextual information about where the obfusca-
tion mechanism A is used or what distribution an input is
sampled from. Such information may be useful to customize
A to improve utility while providing distribution privacy in
specific situations. For example, assume that each auxiliary
input s represents the fact that an input x is sampled from
a distribution λs. If a local mechanism A uses this auxiliary
information to always produce a distribution µ of outputs4,
it can prevent the leakage of information on the input
distribution λs. We elaborate on this in the next sections.

4If A can use no auxiliary information but wants to produce µ, then the
output value needs to be independent of the input, hence very poor utility.

B. Coupling Mechanisms

In this section we introduce a new local obfuscation
mechanism, which we call a coupling mechanism. The aim of
the new mechanism is to improve the utility while protecting
distribution privacy when we know the input distribution
fully or approximately. Intuitively, a coupling mechanism
uses (full or partial) information on the input distribution
λ ∈ DX and produces an output value following some
identical distribution µ ∈ DY , which we call a target distri-
bution. More specifically, given some auxiliary information
s about λ, a coupling mechanism A : S × X → DY
probabilistically maps each input value x to some output
value y so that y is distributed over the target distribution µ.

The simplest construction of a coupling mechanism would
be to randomly sample a value y from µ independently of
the input x. However, this mechanism provides very poor
utility, since the output y loses all information on x.

Instead, we construct a mechanism by calculating a cou-
pling γ ∈ D(X×Y) that transforms λ to µ with the minimum
loss. We explain this using a simple example below.

Example 2 (Coupling mechanism): A coupling γ of two
distributions λ and µ (Fig. 2b) shows a way of transforming
λ to µ by probabilistically adding noise to each single input
value drawn from λ. More specifically, γ[2, 1] = 0.1 means
that 0.1 (out of λ[2] = 0.5) moves from 2 to 1, and γ[2, 3] =
0.2 means that 0.2 moves from 2 to 3. Based on this coupling
γ, we construct the coupling mechanism C that maps the
input 2 to the output 1 with probability 20%(= 0.1/0.5),
and to the output 3 with probability 40%(= 0.2/0.5). By
applying this mechanism C to the input distribution λ, the
resulting output distribution C #(λ) is identical to µ.

Formally, we assume that for each auxiliary input s ∈ S,
we learn that the input distribution is approximately λ̂s ∈
DX while the actual distribution is λs ∈ DX . Then we define
the coupling mechanism C as follows.

Definition 16 (Coupling mechanism): Let µ ∈ DY . For
each s ∈ S , let λ̂s ∈ DX be an approximate input
distribution, and γs ∈ cp(λ̂s, µ) be a coupling of λ̂s and
µ. Then a coupling mechanism w.r.t. µ is defined as a
randomized algorithm C : S × X → DY such that given
s ∈ S and x ∈ X , outputs y ∈ Y with the probability:

C (s, x)[y] =γs[x,y]

λ̂s[x]
.

When C can access the exact information on λs (i.e., λ̂s is
identical to the actual distribution λs from which inputs are
sampled), then C provides (0, D)-DistP for any divergence
D, i.e., no information on the input distribution is leaked by
the output of C . However, we often obtain only approximate
information on the input distribution. In this case, C still
provides strong privacy as shown in the next section.

C. Distribution Privacy of Coupling Mechanisms

In this section we evaluate the DistP and utility of
coupling mechanisms. (See Appendix C for the proof.)

Theorem 3 (DistP of the coupling mechanism): Let Ψ ⊆
(S ×DX )× (S ×DX ) such that each element of Ψ is of the



form (s, λs) for some s ∈ S. Let C be a coupling mechanism
w.r.t. a target distribution µ. Assume that for each s ∈ S, the
approximate knowledge λ̂s is close to the actual distribution
λs in the sense that D∞(λ̂s ‖ λs) ≤ ε and D∞(λs ‖ λ̂s) ≤ ε.
Then C provides:

1) (2ε,D∞)-DistP w.r.t. Ψ ;
2) (2ε eε,DKL)-DistP w.r.t. Ψ ;
3) (eεf(e2ε),Df )-DistP w.r.t. Ψ .
This theorem implies that when the mechanism C learns

the exact distribution, i.e., λ̂s = λs, then by ε = 0 it provides
(0,D∞)-DistP, hence there is no leaked information on the
input distributions. For ε ≈ 0, we have ε eε ≈ ε(1 + ε) ≈ ε,
hence C provides approximately (2ε,DKL)-DistP .

D. Utility-Optimal Coupling Mechanisms

In this section we introduce a utility-optimal coupling
mechanism. Here we assume that there is some metric d over
X ∪Y . Then the notion of utility loss of a local obfuscation
mechanism is defined as follows.

Definition 17 (Expected utility loss): Given an input dis-
tribution λ ∈ DX and a metric d over X ∪ Y , the expected
utility loss of a randomized algorithm A : X → DY is:∑

x∈X ,y∈Y
λ[x]A(x)[y]d(x, y).

The utility loss of a coupling mechanism depends on
the choice of the coupling used in the mechanism. Given
an Euclid distance d and an input distribution λ̂s, the
expected utility loss of a coupling mechanism w.r.t. a tar-
get distribution µ using a coupling γs is represented by∑

(x0,x1)∈supp(γs)
d(x0, x1)γs[x0, x1].

Now we define the coupling mechanism that minimizes
the expected utility loss as follows.

Definition 18 (Utility-optimal coupling mechanism):
Let µ ∈ DY . A utility-optimal coupling mechanism w.r.t.
µ is a coupling mechanism w.r.t. µ that uses a coupling
γs ∈ Γ1,d(λs, µ) for each s ∈ S.

Proposition 2 (Loss of the coupling mechanism): For
each s ∈ S, the expected utility loss of a utility-optimal
coupling mechanism w.r.t. a target distribution µ ∈ DY is
given by the Earth mover’s distance W1,d(λ̂s, µ).

The proof is straightforward from the definition of the
Earth mover’s distance. Note that as mentioned in Section II-
G, the coupling γs ∈ Γ1,d(λs, µ) can be efficiently calculated
by the North-West corner rule when d is submodular.

Analogously, we could define a coupling mechanism that
minimizes the maximum loss by using a coupling γs ∈
Γ∞,d(λs, µ) for each s ∈ S. Then the worst-case utility loss
is given by the ∞-Wasserstein metric W∞,d(λ̂s, µ).

VII. RELATED WORK

Since the seminal work of Dwork [1] on differential
privacy (DP), a lot of its variants have been studied to
provide different types of privacy guarantees [21]; e.g.,
d-privacy [13], f -divergence privacy [20], [8], mutual-
information DP [9], concentrated DP [22], Rényi DP [10],
Pufferfish privacy [23], Bayesian DP [24], local DP [2],

personalized DP [25], and utility-optimized local DP [26].
All of these are intended to protect single input values instead
of input distributions.

A few researches have explored the privacy of distribu-
tions. Jelasity et al. [5] propose distributional DP to protect
the privacy of distribution parameters θ in a Bayesian style
(unlike DP and DistP). Kawamoto et al. [6] propose the
DistP notion in a DP style. Geumlek et al. [7] propose
profile-based privacy, a variant of DistP that allows the
mechanisms to depend on the perfect knowledge of input
distributions. However, these studies deal only with the
worst-case risk, and neither relax them to the average-
case risk (with divergence) nor allow them to use arbitrary
auxiliary information (in spite that available information on
input distributions is often approximate only).

There have been many studies (e.g., [27]) on the DP
of histogram publishing, which is different from DistP as
follows. Histogram publishing is a central mechanism that
hides a single record x ∈ X and outputs an obfuscated
histogram, e.g., µ ∈ DY , whereas a DistP mechanism is
a local mechanism that aims at hiding an input distribution
λ ∈ DX and outputs a single perturbed value y ∈ Y . As
explained in [6], neither of these implies the other.

VIII. CONCLUSION

We introduced the notions of divergence DistP and pre-
sented their useful theoretical properties in a general form.
By using probability coupling techniques, we presented how
much divergence DistP can be achieved by local obfuscation.
In particular, we proved that the perturbation noise should be
added proportionally to the Earth mover’s distance between
the input distributions. We also proposed a local mechanism
called a (utility-optimal) coupling mechanism and theoreti-
cally evaluated their DistP and utility loss in the presence of
(exact or approximate) knowledge on the input distributions.

As for future work, we are planning to develop various
kinds of coupling mechanisms for specific applications, such
as location privacy.
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[12] D. Yang, B. Qu, and P. Cudré-Mauroux, “Privacy-preserving social
media data publishing for personalized ranking-based recommenda-
tion,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 3, pp. 507–520,
2019.

[13] K. Chatzikokolakis, M. E. Andrés, N. E. Bordenabe, and
C. Palamidessi, “Broadening the scope of Differential Privacy using
metrics,” in Proc. PETS, 2013, pp. 82–102.

[14] M. S. Alvim, K. Chatzikokolakis, C. Palamidessi, and A. Pazii,
“Invited paper: Local differential privacy on metric spaces: Optimizing
the trade-off with utility,” in Proc. CSF, 2018, pp. 262–267.

[15] I. Csiszar, “Information measures of difference of probability distri-
butions and indirect observations,” Studia Sci. Math. Hungar., vol. 2,
pp. 299–318, 1967.

[16] S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann.
Math. Statist., vol. 22, no. 1, pp. 79–86, 03 1951.

[17] L. Vaserstein, “Markovian processes on countable space product
describing large systems of automata.” Probl. Peredachi Inf., vol. 5,
no. 3, pp. 64–72, 1969.

[18] A. J. Hoffman, “On simple linear programming problems,” in Con-
vexity: Proceedings of the Seventh Symposium in Pure Mathematics
of the American Mathematical Society, 1963, vol. 7, p. 317.

[19] Y. Kawamoto, K. Chatzikokolakis, and C. Palamidessi, “On the com-
positionality of quantitative information flow,” Log. Methods Comput.
Sci., vol. 13, no. 3, 2017.

[20] G. Barthe and F. Olmedo, “Beyond differential privacy: Composition
theorems and relational logic for f-divergences between probabilistic
programs,” in Proc. ICALP, ser. LNCS, vol. 7966, 2013, pp. 49–60.

[21] D. Desfontaines and B. Pejó, “Sok: Differential privacies,”
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APPENDIX

A. Local Mechanisms for Df -DistP/XDistP
We first show the proofs for the Df -DistP/XDistP

achieved by local obfuscation mechanisms.

Theorem 1 ((ε,Df )-DP ⇒ (ε,Df )-DistP): Let Φ ⊆ X×
X . If a randomized algorithm A : X → DY provides
(ε,Df )-DP w.r.t. Φ, then it provides (ε,Df )-DistP w.r.t. Φ#.

Proof: Let (λ0, λ1) ∈ Φ# and Γ
def
= cp(λ0, λ1).

Df (A#(λ0) ‖ A#(λ1))

=
∑
y A#(λ1)[y] f

(A#(λ0)[y]
A#(λ1)[y]

)
=
∑
y

∑
x1
λ1[x1] A(x1)[y] f

(∑
x0
λ0[x0]A(x0)[y]∑

x1
λ1[x1]A(x1)[y]

)
= min
γ∈Γ

∑
y,x0,x1

γ[x0, x1] A(x1)[y] f
(∑

x0,x1
γ[x0,x1]A(x0)[y]∑

x0,x1
γ[x0,x1]A(x1)[y]

)
(where (x0, x1) ranges over supp(γ))

= min
γ∈Γ

∑
y c f

(
1
c

∑
x0,x1

γ[x0, x1] A(x0)[y]
)

(where c =
∑
x0,x1

γ[x0,x1]A(x1)[y])

= min
γ∈Γ

∑
y c f

(∑
x0,x1

γ[x0,x1]A(x1)[y]
c · γ[x0,x1]A(x0)[y]

γ[x0,x1]A(x1)[y]

)
≤min
γ∈Γ

∑
y c
∑
x0,x1

γ[x0,x1]A(x1)[y]
c · f

(γ[x0,x1]A(x0)[y]
γ[x0,x1]A(x1)[y]

)
(by Jensen’s inequality and the convexity of f )

= min
γ∈Γ

∑
x0,x1

γ[x0, x1]
∑
y

A(x1)[y] ·f
(A(x0)[y]
A(x1)[y]

)
= min
γ∈Γ

∑
x0,x1

γ[x0, x1] Df (A(x0) ‖ A(x1)). (1)

Assume that A provides (ε,Df )-DP w.r.t. Φ. By Defini-
tion 14, there is a coupling γ ∈ Γ with supp(γ) ⊆ Φ. Then:

Df (A#(λ0) ‖ A#(λ1))

= min
γ∈Γ

∑
x0,x1

γ[x0, x1] Df (A(x0) ‖ A(x1)) (by (1))

≤min
γ∈Γ

∑
x0,x1

γ[x0, x1] ε

(by (x0, x1) ∈ supp(γ) ⊆ Φ and (ε,Df )-DP)
= ε.

Hence A provides (ε,Df )-DistP w.r.t. Φ#.

Theorem 2 ((ε, d ,Df )-XDP ⇒ (ε,W1,d ,Df )-XDistP):
Let d : X ×X → R be a metric. If a randomized algorithm
A : X → DY provides (ε, d ,Df )-XDP w.r.t. Φ then it
provides (ε,W1,d ,Df )-XDistP w.r.t. Φ#

W1
.

Proof: Assume that A provides (ε, d ,Df )-XDP w.r.t. Φ.
Let (λ0, λ1) ∈ Φ#

W1
. By definition, there exists a coupling

γ ∈ Γ that satisfies supp(γ) ⊆ Φ and γ ∈ Γ1,d(λ0, λ1). Then
it follows from (1) in the proof for Theorem 1 that:

Df (A#(λ0) ‖ A#(λ1))

= min
γ∈Γ

∑
x0,x1

γ[x0, x1] Df (A(x0) ‖ A(x1)) (by (1))

≤min
γ∈Γ

∑
x0,x1

γ[x0, x1] ε d(x0, x1)

(by (x0, x1) ∈ supp(γ) ⊆ Φ and (ε, d ,Df )-XDP)
= εW1,d(λ0, λ1). (by γ ∈ Γ1,d(λ0, λ1))

Hence A provides (ε,W1,d ,Df )-XDistP w.r.t. Φ#
W1

.

B. Point Obfuscation by Distribution Obfuscation

Next we show that divergence DP is an instance of
divergence DistP if an adjacency relation includes pairs of
point distributions (i.e., distributions having single points
with probability 1).

Lemma 1: Let p ∈ R≥1 ∪ {∞} and Φ ⊆ X ×X . For any
(x0, x1) ∈ Φ, we have (ηx0 , ηx1) ∈ Φ#

Wp
.

Theorem 4 (DistP ⇒ DP and XDistP ⇒ XDP): Let
ε ∈ R≥0, p ∈ R≥1 ∪ {∞}, D ∈ Div(Y), Φ ⊆ X × X , and
A : X → DY be a randomized algorithm.

1) If A provides (ε,D)-DistP w.r.t. Φ#, then it provides
(ε,D)-DP w.r.t. Φ.

2) If A provides (ε,Wp,d , D)-XDistP w.r.t. Φ#
Wp

, then it
provides (ε, d , D)-XDP w.r.t. Φ.

Proof: We show the first claim as follows. Assume that
A provides (ε,D)-DistP w.r.t. Φ#. Let (x0, x1) ∈ Φ, and
ηx0

and ηx1
be the point distributions. By Lemma 1 and

Φ#
Wp
⊆ Φ#, we have (ηx0 , ηx1) ∈ Φ#. By (ε,D)-DistP, we



obtain D(A(x0) ‖ A(x1)) = D(A#(ηx0
) ‖ A#(ηx1

)) ≤ ε.
Hence A provides (ε,D)-DP w.r.t. Φ.

Next we show the second claim. Assume that A provides
(ε,Wp,d , D)-XDistP w.r.t. Φ#

Wp
. Let (x0, x1) ∈ Φ, and ηx0

and ηx1
be the point distributions. By Lemma 1, we have

(ηx0
, ηx1

) ∈ Φ#
Wp

. Then we obtain:

D(A(x0)‖A(x1)) = D(A#(ηx0)‖A#(ηx1))

≤ εWp,d(ηx0 , ηx1) (by XDistP of A)
= εd(x0, x1),

where the last equality follows from the definition of Wp,d .
Hence A provides (ε, d , D)-XDP w.r.t. Φ.

C. Privacy and Utility of Coupling Mechanisms

Next, we show the privacy of the coupling mechanisms.

Theorem 3 (DistP of the coupling mechanism): Let Ψ ⊆
(S ×DX )× (S ×DX ) such that each element of Ψ is of the
form (s, λs) for some s ∈ S. Let C be a coupling mechanism
w.r.t. a target distribution µ. Assume that for each s ∈ S, the
approximate knowledge λ̂s is close to the actual distribution
λs in the sense that D∞(λ̂s ‖ λs) ≤ ε and D∞(λs ‖ λ̂s) ≤ ε.
Then C provides:

1) (2ε,D∞)-DistP w.r.t. Ψ ;
2) (2ε eε,DKL)-DistP w.r.t. Ψ ;
3) (eεf(e2ε),Df )-DistP w.r.t. Ψ .

Proof: Let ((s0, λs0), (s1, λs1)) ∈ Ψ , and R ⊆ Y . When
C is applied to λs0 the output distribution is given by:

C #(s0, λs0)[R] =
∑
x∈X

λs0 [x] · γs0 [x,R]

λ̂s0 [x]

≤ eε
∑
x∈X

γs0 [x,R] (by D∞(λs0 ‖ λ̂s0) ≤ ε)

= eεµ[R].

When C is applied to λs1 the output distribution is:

C #(s1, λs1)[R] =
∑
x∈X

λs1 [x] · γs1 [x,R]

λ̂s1 [x]

≥ e−ε
∑
x∈X

γs1 [x,R] (by D∞(λ̂s1 ‖λs1) ≤ ε)

= e−εµ[R].

Hence C#(s0,λ0)[R]
C#(s1,λ1)[R]

≤ e2ε. Therefore C provides (2ε,D∞)-
DistP w.r.t. Ψ .

Next the KL-divergence is given by:

DKL(C #(s0, λs0)‖C #(s1, λs1))

= sup
y

C #(s0, λs0)[y] · ln
(

C#(s0,λs0 )[y]

C#(s1,λs1 )[y]

)
≤ eε sup

y
µ[y] ln

(
e2ε
)

≤ 2ε eε.

Therefore C provides (2ε eε,Df )-DistP w.r.t. Ψ .

Finally, the f -divergence is given by:

Df (C #(s0, λs0)‖C #(s1, λs1))

= sup
y

C #(s1, λs1)[y] · f
(

C#(s0,λs0 )[y]

C#(s1,λs1 )[y]

)
≤ eε sup

y
µ[y]f

(
e2ε
)

≤ eεf(e2ε).

Therefore C provides (eεf(e2ε),Df )-DistP w.r.t. Ψ .

D. Sequential Composition � with Shared Input

We first recall the definition of the sequential composition
� with shared input (Fig. 3a) in previous work.

Definition 19 (Sequential composition �): Given two
randomized algorithms A0 : X → DY0 and A1 : Y0

× X → DY1, we define the sequential composition of A0

and A1 as the randomized algorithm A1 � A0 : X → DY1

such that for any x ∈ X , (A1 �A0)(x) = A1(A0(x), x)).

Then we present the compositionality of DKL-DistP. Note
that since this composition is adaptive, the compositionality
does not hold in general for f -divergence.

Proposition 3 (Sequential composition � of DKL-DistP):
Let Φ ⊆ X×X . If A0 : X → DY0 provides (ε0,DKL)-DistP
w.r.t. Φ# and for each y0 ∈ Y0, A1(y0) : X → DY1 provides
(ε1,DKL)-DistP w.r.t. Φ#, the sequential composition
A1 �A0 provides (ε0 + ε1,DKL)-DistP w.r.t. Φ#.

Proof: By Theorem 4 in Appendix B, A0 provides
(ε0,DKL)-DP w.r.t. Φ, and for each y0 ∈ Y0, A1(y0)
provides (ε1,DKL)-DP w.r.t. Φ. Let (x, x′) ∈ Φ. Then:

DKL((A1 �A0)(x) ‖ (A1 �A0)(x′))

=
∑
y1

(A1 �A0)(x)[y1] ln (A1�A0)(x)[y1]
(A1�A0)(x′)[y1]

=
∑
y0,y1

A0(x)[y0] ·A1(y0, x)[y1] ln A0(x)[y0]·A1(y0,x)[y1]
A0(x′)[y0]·A1(y0,x′)[y1]

=
∑
y0

A0(x)[y0] ln A0(x)[y0]
A0(x′)[y0]

+
∑
y0,y1

A0(x)[y0]A1(y0, x)[y1] ln A1(y0,x)[y1]
A1(y0,x′)[y1]

≤ DKL(A0(x)‖A0(x′))

+ max
y0

∑
y1

A1(y0, x)[y1] ln A1(y0,x)[y1]
A1(y0,x′)[y1]

= DKL(A0(x)‖A0(x′)) + max
y0

DKL(A1(y0, x)‖A1(y0, x
′))

≤ ε0 + ε1.

Hence A1 � A0 provides (ε0 + ε1,DKL)-DP w.r.t. Φ. By
Theorem 1, A1�A0 provides (ε0+ε1,DKL)-DistP w.r.t. Φ#.

Proposition 4 (Sequential composition � of DKL-XDistP):
Let d be a metric over X , and Φ ⊆ X×X . If A0 : X → DY0

provides (ε0,W1,d ,DKL)-XDistP w.r.t. Φ#
W1

and for each
y0 ∈ Y0, A1(y0) : X → DY1 provides (ε1,W1,d ,DKL)-
XDistP w.r.t. Φ#

W1
then the sequential composition A1�A0

provides (ε0 + ε1,W1,d ,DKL)-XDistP w.r.t. Φ#
W1

.



Proof: Analogous to the proof for Proposition 3.

E. Sequential Composition • with Independent Sampling

In this section we present the compositionality with inde-
pendent sampling, which is defined as follows.

Definition 20 (Sequential composition •): Given two ran-
domized algorithms A0 : X → DY0 and A1 : Y0 × X →
DY1, we define the sequential composition of A0 and A1 as
the randomized algorithm A1•A0 : X×X → DY1 such that:
for any x0, x1 ∈ X , (A1 •A0)(x0, x1) = A1(A0(x0), x1)).

We define an operator � between binary relations Ψ0 and Ψ1:

Ψ0�Ψ1 = {(λ0×λ1, λ
′
0×λ′1) | (λ0, λ

′
0) ∈ Ψ0, (λ1, λ

′
1) ∈ Ψ1}.

Now we show the compositionality for DKL-DistP.
Proposition 5 (Sequential composition • of DKL-DistP):

Let Ψ ⊆ DX × DX . If A0 : X → DY0 provides (ε0,DKL)-
DistP w.r.t. Ψ and for each y0 ∈ Y0, A1(y0) : X → DY1

provides (ε1,DKL)-DistP w.r.t. Ψ , then the composition
A1 •A0 provides (ε0 + ε1,DKL)-DistP w.r.t. Ψ � Ψ .

Proof: Let (λ0, λ
′
0), (λ1, λ

′
1) ∈ Ψ .

DKL((A1 •A0)
#

(λ0 × λ1) ‖ (A1 •A0)
#

(λ′0 × λ′1))

=
∑
y1

(A1 •A0)
#

(λ0 × λ1)[y1] ln (A1•A0)#(λ0×λ1)[y1]

(A1•A0)#(λ′0×λ′1)[y1]

=
∑
y0,y1

A0
#(λ0)[y0]A1(y0)

#
(λ1)[y1] lnA0

#(λ0)[y0]A1(y0)#(λ1)[y1]

A0
#(λ′0)[y0]A1(y0)#(λ′1)[y1]

=
∑
y0

A0
#(λ0)[y0] ln A0

#(λ0)[y0]
A0

#(λ′0)[y0]

+
∑
y0,y1

A0
#(λ0)[y0]A1(y0)

#
(λ1)[y1] ln A1(y0)#(λ1)[y1]

A1(y0)#(λ′1)[y1]

≤DKL(A0
#(λ0) ‖ A0

#(λ′0))

+ max
y0

∑
y1

A1
#(y0)(λ1)[y1] ln A1

#(y0)(λ1)[y1]
A1

#(y0)(λ′1)[y1]

= DKL(A0
#(λ0) ‖ A0

#(λ′0))

+ max
y0

DKL(A1
#(y0)(λ1) ‖ A1

#(y0)(λ′1))

≤ ε0 + ε1.

Hence A1 •A0 provides (ε0 + ε1,DKL)-DistP w.r.t. Ψ � Ψ .

Proposition 6 (Sequential composition • of DKL-XDistP):
Let d be a metric over X , and Ψ ⊆ DX × DX . If
A0 : X → DY0 provides (ε0,W1,d ,DKL)-XDistP w.r.t.
Ψ and for each y0 ∈ Y0, A1(y0) : X → DY1 provides
(ε1,W1,d ,DKL)-XDistP w.r.t. Ψ , then the composition
A1 •A0 provides (ε0 + ε1,W1,d ,DKL)-XDistP w.r.t. Ψ �Ψ .

Proof: Analogous to the proof for Proposition 5.

F. Post-processing and Pre-processing

Next we show that divergence distribution privacy is
immune to the post-processing. For A0 : X → DY and A1 :
Y → DZ , we define A1◦A0 by: (A1◦A0)(x) = A1(A0(x)).

Proposition 7 (Post-processing): Let Ψ ⊆ DX ×DX , and
W : DX ×DX → R≥0 be a metric. Let A0 : X → DY and
A1 : Y → DZ .

1) If A0 provides (ε,Df )-DistP w.r.t. Ψ then so does the
composite function A1 ◦A0.

2) If A0 provides (ε,W ,Df )-XDistP w.r.t. Ψ then so
does the composite function A1 ◦A0.

Proof: The claim is immediate from the data processing
inequality for the f -divergence.

We then show properties of pre-processing as follows.
Proposition 8 (Pre-processing): Let c ∈ R≥0, Ψ ⊆ DX ×

DX , W : DX ×DX → R≥0 be a metric, and D ∈ Div(Y).
1) If T : DX → DX is a (c, Ψ)-stable transformation

and A : X → DY provides (ε,D)-DistP w.r.t. Ψ , then
A ◦ T provides (c ε,D)-DistP w.r.t. Ψ .

2) If T : DX → DX is a (c,W )-stable transformation
and A : X → DY provides (ε,W , D)-XDistP, then
A ◦ T provides (c ε,W , D)-XDistP.

Proof: We show the first claim as follows. Assume
that A provides (ε,D)-DistP w.r.t. Ψ . Let (λ, λ′) ∈ Ψ .
Then D((A ◦ T )

#
(λ) ‖ (A ◦ T )

#
(λ′)) = D(A#(T#(λ)) ‖

A#(T#(λ′))) ≤ cε by (c, Ψ)-stability. Therefore A ◦ T
provides (c ε,D)-DistP w.r.t. Ψ .

Next we show the second claim. Assume that A provides
(ε,W , D)-XDistP. Let λ, λ′ ∈ DX . Then we obtain:

D((A ◦ T )
#

(λ)‖(A ◦ T )
#

(λ′))

= D(A#(T#(λ))‖A#(T#(λ′)))

≤ εW (T#(λ), T#(λ′))

≤ c εW (λ, λ′) (by (c,W )-stable).

Therefore A ◦ T provides (c ε,W , D)-XDistP.

G. Relationships among XDistP Notions

Finally, we show relationships among distribution privacy
notions with different metric d and divergence D.

Proposition 9 (W1,d -XDistP ⇒ W∞,d -XDistP): Let
D ∈ Div(Y). If A : X → DY provides (ε,W1,d ,D)-
XDistP, then it provides (ε,W∞,d ,D)-XDistP.

Proof: Assume that A provides (ε,W1,d ,D)-XDistP.
Let λ0, λ1 ∈ DX . By the property of the p-Wasserstein
metric, W1,d(λ0, λ1) ≤W∞,d(λ0, λ1). Then D(µ0 ‖ µ1) ≤
W1,d(λ0, λ1) ≤W∞,d(λ0, λ1). Hence the claim follows.

Proposition 10 (D ≤ D ′ & D ′-XDistP ⇒ D-XDistP):
Let d : (DX × DX )→ R be a metric. Let D,D′ ∈ Div(Y)
be two divergences such that for all µ0, µ1 ∈ DY ,
D(µ0 ‖ µ1) ≤ D ′(µ0 ‖ µ1). If A : X → DY provides
(ε, d,D ′)-XDistP, then it provides (ε, d,D)-XDistP.

Then (ε, d,D∞)-XDistP implies (ε, d,DKL)-XDistP.
Proof: Assume A provides (ε, d,D ′)-XDistP. Let

λ0, λ1 ∈ DX . Then D ′(A#(λ0)‖A#(λ1)) ≤ εd(λ0, λ1). By
definition, D(A#(λ0)‖A#(λ1)) ≤ D ′(A#(λ0)‖A#(λ1)) ≤
εd(λ0, λ1). Thus A provides (ε, d,D)-XDistP.


