Muticomponent superconductivity based on multiband superconductors
(Originating from The Multilayer Cuprate Superconductor)


The newest list (leaving from AIST site)

In Japanese

Section in a textbook (In Japanese) Multilayer cuprate superconductors and others in Physics in vortex state of superconductors (Eds. K. Kadowaki (Shokabo, Tokyo, 2017)).

Review (In Japanese) Final Report of JST-CREST "Creation of Best Peformance Superconductor" Dec. 1998 - Nov. 2003.

Review (In Japanese) Fractional vortex in multi-layer cuprate superconductors, Y. Tanaka , Oyo Buturi 79 (2010) No. 1,p.0043-0047.

A short introduction (In Japanese) Recent topics in multiband superconductors, Y. Tanaka et. al. , MRS-J NEWS Vol.27 (2015) No.3 August 2015, p.4-6.

Review Implementation of Multiple Components on a Macroscopic Quantum State toward a New Quantum Phase Electronics, Y. Tanaka and A. Iyo (Preprint of "Proc. 12th Int. Conf. on Composites/Nano Engineering", Tenerife, Spain, August, 2005)

Basic Physics of Multiband Superconductor Report of AIST germination research initiative (FY2002-2004) (In Japanese)


Physics


Multi-Component Superconductor

When the interband interaction is much weaker than the intraband interaction in multiband superconductor, we can consider multi-component superconductivity emerges. We designate this superconductivity as multi-component superconductivity based on multiband superconductors. The weak interband interaction limit gives the clear outlook on new phenomena observed/expected in the multiband superconductor. The essence of this limit is there is contrast in the pair hopping strength in one superconductor and we observe several coherent groups interacting to each other weakly. The new superconducting state and its peculiarity emerged in this class of superconductivity might be common for the entire superconductor having contrasting coupling strength.

Soliton

A soliton is the hallmark of multi-component superconductor. It is considered as the phase dislocation in the quantum condensation. The conventional single band superconductor inhibits it because superconducting current rebinds the dislocation. The multi-component superconductor becomes free from such shackle.

Phase instability in multi-band superconductors, Y. Tanaka, J. Phys. Soc. Jpn. 70 (2001) 2844.
(We noticed the interband phase difference soliton in two-band superconductors and chiral instability and chiral ground state in non-generated multiband superconductors in this report.)

Soliton in Two-Band Superconductor, Y.Tanaka, Phys. Rev. Lett. 88 (2002) 017002.


Subsequent reports related to soliton

Experimental formation of a fractional vortex in a superconducting bi-layer Y. Tanaka, H. Yamamori, T. Yanagisawa, T. Nishio, S. Arisawa. Physica C online.

Emergence of an interband phase difference and its consequences in multiband superconductors. Y. Tanaka. (Review Article) Springer Series in Materials Science 261 (2017) 185-218.

Decomposition of a unit quantum and isolation of a fractional quantum by an externally injected soliton in an ultra-thin superconducting bi-layer film. Y. Tanaka, H. Yamamori, T. Yanagisawa, T. Nishio, S. Arisawa. Physica C 538 (2017) 12-19.

Voltage-less alternating current (AC) Josephson effect in two-band superconductors. Y. Tanaka, H. Yamamori, T. Yanagisawa, T. Nishio, S. Arisawa. Physica C 538 (2017) 6-11.

Current-induced massless mode of the interband phase difference in two-band superconductors. Y. Tanaka, I. Hase, T. Yanagisawa, G. Kato, T. Nishio, S. Arisawa. Physica C 516 (2015) 10-16.

Observation of quantum oscillations in a narrow channel with a hole fabricated on a film of multiband superconductors. Y. Tanaka, G. Kato, T. Nishio, S. Ariasawa. Solid State Commun. 201 (2015) 95-97.

Multicomponent superconductivity based on multiband superconductors. Y. Tanaka. (Review Article) Supercond. Sci. & Technol. 28 (2015) 034002.

Fluctuation-induced Nambu-Goldstone bosons in a Higgs-Josephson model. T. Yanagisawa, Y. Tanaka. New J. Phys. 16 (2014) 123014.

Superconducting frustration bit. Y. Tanaka. Physica C 505 (2014) 55-64.

Experimental observation of a possible first-order phase transition below the superconducting transition temperature in the multilayer cuprate superconductor HgBa2Ca4Cu5Oy, Y. Tanaka, A. Iyo, S. Itoh, K. Tokiwa, T. Nishio, and T. Yanagisawa. J. Phys. Soc. Jpn. 83 (2014) 074705.

Unlocking interband phase difference in multiband superconductors, Y. Tanaka, T. Yanagisawa, T. Nishio. Physica C 485 (2013) 64-70.

Fluctuation-assisted gap evolution in frustrated multiband superconductors. Y. Tanaka, T. Yanagisawa, T. Nishio. Physica C 483 (2012) 86-90.

Phase fluctuation in multiband superconductors. Y. Tanaka. Physics Procedia 27 (2012)17-20.

Vortices and chirality in multi-band superconductors. T. Yanagisawa, Y. Tanaka, I. Hase, K. Yamaji. J. Phys. Soc. Jpn. 81(2012)024712.

Domains in multiband superconductors. Y. Tanaka , T. Yanagisawa, A. Crisan, P.M. Shirage, A. Iyo, K. Tokiwa, T. Nishio, A. Sundaresan and N. Terada. Physica C 471 (2011) 747-750.

Ginzburg-Landau theory of multi-band superconductivity and applications to Fe pnictides. T. Yanagisawa, Y. Tanaka, I. Hase and K. Yamaji. Physica C 471 (2011) 675-678.

Exotic Vortex Matter: Pancake Vortex Molecules and Fractional-Flux Molecules in Some Exotic and/orTwo-Component Superconductors, A. Crisan, Y. Tanaka, A. Iyo. J. Supercond. Nov. Magn. 24(2011)1-6.

Chiral state in three-gap superconductors. Y. Tanaka,T. Yanagisawa, Solid State Communications 150 (2010) 1980.

Chiral Ground State in Three-Band Superconductors, Y. Tanaka,T. Yanagisawa, J. Phys. Soc. Jpn. 79 (2010) 114706.

Absence of an Appreciable Iron Isotope Effect on the Transition Temperature of the Optimally Doped SmFeAsO1-y, P. M. Shirage et. al. Phys. Rev. Lett. 105 (2010) 037004.

Topology of two-band superconductors, Y. Tanaka, A. Iyo, K. Tokiwa, T. Watanabe, A. Crisan, A. Sundaresan, N. Terada. Physica C 470 (2010) S966.

Topological structure of the inter-band phase difference soliton in two-band superconductivity. Y. Tanaka, A. Iyo, K. Tokiwa, T. Watanabe, A. Crisan, A. Sundaresan, N. Terada Physica C 470 (2010) 1010.

Disappearance of Meissner Effect and Specific Heat Jump in a Multiband Superconductor, Ba0.2K0.8Fe2As2. Y. Tanaka, P. M. Shirage, A. Iyo. J. Supercond. Nov. Magn.23 (2010) 253.

Phase diagram of a lattice of pancake vortex molecules, Y. Tanaka, A. Crisan, D. D. Shivagan, A. Iyo, P. M. Shirage, K. Tokiwa, T. Watanabe, N. Terada, Physica C 469 (2009) 1129.

Vortex molecule, fractional flux quanta, and interband phase difference soliton in multi-band superconductivity and multi-component superconductivity. Y. Tanaka, A. Crisan, D. D. Shivagan, A. Iyo, P. M. Shirage, K. Tokiwa, T. Watanabe, N. Terada. J. Phys.: Conf. Ser. 150 (2009) 052267.

Time-reversal symmetry-breaking in two-band superconductors. Y. Tanaka, P. M. Shirage, A. Iyo. Physica C 470 (2009) 2023.

Isotope Effect in Multi-Band and Multi-Channel Attractive Systems and Inverse Isotope Effect in Iron-Based Superconductors. T. Yanagisawa et. al. J. Phys. Soc. Jpn. 78 (2009) 094718.

Inverse Iron Isotope Effect on the Transition Temperature of the (Ba,K)Fe2As2 Superconductor. P. M. Shirage et. al. Phys. Rev. Lett. 103 (2009) 257003.

Vortex-molecule Dynamics in Hg-1245 Multilayer Superconductor. D. D. Shivagan, P. M. Shirage, A. Crisan, Y. Tanaka, A. Iyo, K. Tokiwa, T. Watanabe, and N. Terada. Proceedings of the 53 DAE Solid State Physics Symposium, 53 (2008) 943-944. Book Title : Solid State Physics. Editors : Meenakshi Sunder, A. K. Rajarajan & G. P. Kothiyal. December 16-18, 2008. DAE-BRNS India (Department of Atomic Energy- Board of Research in Nuclear Science). ISBN : 978-81-8372-044-1.

Vortex molecule and i-soliton studies in multilayer cuprate superconductors. D. D. Shivagan, A. Crisan, P. M. Shirage, A. Sundaresan, Y. Tanaka, A. Iyo, K. Tokiwa, T. Watanabe, N. Terada. J. Phys.: Conf. Ser. 97 (2009) 012212.

Ambiguity in the statistics of single-component winding vortex in a two-band superconductor. Y. Tanaka and A. Crisan, Physica B 404 (2008) 1033.

Phase diagram of a lattice of vortex molecules in multicomponent superconductors and multilayer cuprate superconductors. Y. Tanaka et. al. Supercond. Sci. Technol. 21 (2008) 085011.

Anomalous AC Susceptibility Response of (Cu,C)Ba2Ca2Cu3Oy: Experimental Indication of Two-Component Vortex Matter in Multi-Layered Cuprate Superconductors. A. Crisan et. al. Jpn. J. Appl. Phys. 46 (2007) L451.

Interpretation of Abnormal AC Loss Peak Based on Vortex-Molecule Model for a Multicomponent Cuprate Superconductor. Y. Tanaka et. al. Jpn. J. Appl. Phys. 46 (2007) 134.

i-soliton, fractional flux and breakdown of time reversal symmetry in multi-band superconductor. Y. Tanaka et. al. Physica C 388 (2003) 70.


Sustained High Tc in Over-doped region

The multi-layer cuprate superconductor has multiple CuO2 planes in one unit cell. Among those of planes, inner planes being far from the charge reservoir layer, maintain the constant doping level (in the case of 4-layer system). Outer planes being neighbor of the charge reservoir layers absorb redundant holes. It is due to electrostatic potential. This sustained high Tc in over-doped region is common for 4-layer system and useful for power application. There is no need to tune the doping level precisely to achieve the high Tc.

Hall effect of superconducting copper oxide, Cu-1234. M. Ogino, T. Watanabe, K. Tokiwa, A. Iyo, H. Ihara. Physica C 258 (1996) 384-388.**

Transport properties of Cu-1234 superconductors. T. Watanabe, M. Ogino, T. Hashizume, T. Nishizawa, A. Iyo, K. Tokiwa, H. Ihara. Czech. J. Phys. 46 (1996) 1373-1374.

Hall effect measurement on Cu-1234 superconductors,T. Watanabe & M. Ogino et. al, Superlattices Microstruct. 21 (1997) 15-18.


Selective Doping

Multi-layer cuprate superconductor has more than three CuO2 plane in one unit cell. There are crystallographically inequivalent. Each CuO2 plane its own doping level. It leads sustained high Tc in over-doped region, emergence of two Tc and co-existence of antiferromagnetic order and supercondcutivity.

Electronic band structures of CuBa2Can-1CunO2n+2 and CuBa2Can-1CunO2n+1F (n=3-5), N. Hamada and H. Ihara, Physica C@357(2001)108-111

Electronic band structure of CuBa2Ca3Cu4O10+x (x=0, 1), N. Hamada and H. Ihara, Physica B@284(2000)1073-1074

Selective-over-doping in Cu-1234 (CuBa2Ca3Cu4O12-y) system with high Tc>116 K and low superconducting anisotropy 1.6, H. Ihara, A. Iyo, Y. Tanaka, N. Terada, K. Tokiwa, T. Watanabe, Y. Tokunaga, Y. Kitaoka and N. Hamada, Physica B@292(2000)238-240

NMR study of carrier distribution and superconductivity in multilayered high-T-c cuprates, H. Kotegawa, J. Phys. Chem. Solids 62 (Jan.-Feb. 2001) 171-175.

Carrier distribution and superconductivity in multilayer high-T-c cuprates proved by Cu-63 NMR, Y. Tokunaga et. al., J. Low. Temp. Phys. 117 (Nov. 1999) 473-477.

Pressure effect on Hall coefficient in multilayered high-Tc cuprates. T. Watanabe, K. Tokiwa, M. Moriguchi, R. Horike, A. Iyo, Y. Tanaka, H. Ihara, M. Ohashi, M. Hedo, Y. Uwatoko, N. Mori. J. Low Temp. Phys. 131 (2003) 681-685.*

Pressure effect on Tc in (Cu,Tl)Ba2Ca2Cu3Oy superconductor. K. Tokiwa, H. Aota, C. Kunugi, K. Tanaka, Y. Tanaka, A. Iyo, H. Ihara, T. Watanabe. Physica B 284-288 (2000) 1077-1078.*

Pressure effect on Tc in in (B1-xCx)(Ba1-ySry)2Ca2Cu3Oz (x=0.3, y=0.25; x=0.35, y=0.3) and B0.8C0.2(Ba0.75Sr0.25)2Ca3Cu4Oz. C. Kunugi, S. Kuwata, K. Tokiwa, A. Iyo, T. Watanabe, H. Ihara. Physica C 307 (1998) 17-22.*

Synthesis and Physical Properties of (Cu,M)Ba2Ca3Cu4Oz (M=C,Mg,Ni,Al,Zn,Tl) T. Watanabe, H. Kashiwagi, S. Miyashita, N. ichioka, K. Tokiwa, A. Iyo, Y. Tanaka, S. K. Agarwal, H. Ihara. J. Low Temp. Phys. 117 (1999) 753-757.*

Pressure Effects on Resistive Transition in (Cu,M)Ba2Ca3Cu4Oy (M=C,Al,Tl,Mg,Zn) Superconductor. K. Tokiwa, C. Kunugi, H. Kashiwagi, T. Nibe, H. Aota, N. Ichioka, T. Watanabe, A. Iyo, Y. Tanaka, S. K. Agarwal, H. Ihara. J. Low Temp. Phys. 117 (1999) 903-907.*

Two Tc

Each CuO2 plane in the multi-layer cuprate superconductor has its own Tc. Superconductivity emerges at highest Tc among these "Tcs". However if the difference of these "Tc2" becomes large, we see vestige of the low Tc in NMR, specific heat and Raman spectrum.

Unusual magnetic and superconducting characteristics in multilayered high-T-c cuprates: Cu-63 NMR study, H. Kotegawa et. al., Phys. Rev. B 64 (Aug. 2001)064515.

Effect of carrier distribution on superconducting characteristics of the multilayered high-T-c cuprate (Cu0.6C0.4)Ba2Ca3CuO12+y: Cu-63-NMR study, Y. Tokunaga, Phys. Rev. B 61 (Apr. 2000) 9707-9710.

Specific heat study on CuxBa2Ca3Cu4Oy,Y. Tanaka et. al., J Phys. Soc. Jpn. 70 (Feb. 2001) 329-332.

Specific heat study on CuxBa2Can-1CunOy,Y. Tanaka et. al., Physica C 357 (Aug. 2001) 222-225.

The role of multiple gaps on the Raman spectrum of (CuxC1-x)Ba2Can-1CunOy,Y. Tanaka et. al., Physica C 378 (Oct. 2002)283-286.

Dynamics of multiple order parameters in the multi-band superconductor studied by Raman spectroscopy, Y. Tanaka et. al., Physica C 392 (Oct. 2003)161-165.

Anomalous vortex melting line in the two-component superconductor (Cu,C)Ba2Ca3Cu4O10+d, A. Crisan et. al, Phys. Rev. B 74 (2006) 184517.

Tc vs n Relationship for Multilayered High-Tc Superconductors, A. Iyo, Y. Tanaka, H. Kito, Y. Kodama, P. M. Shirage, D. D. Shivagan, H. Matsuhata, K. Tokiwa, T. Watanabe, J. Phys. Soc. Jpn. 76 (2007) 094711.

Tc dependence on the number of CuO2 planes in multilayered Ba2Can-1CunO2n(O, F)2superconductors. A. Iyo, Y. Tanaka, Y. Kodama, H. Kito, K. Tokiwa, T. Watanabe. Journal of Physics: Conference Series 43 (2006) 333-336. *

Co-existence of anti-ferromagnetism and superconductivity

Hg-1245 has both of superconducting CuO2 plane and antiferromagnetic ordered CuO2 plane in one unit cell. These are neighborhood. Tc is 108 K and T(N) is 60 K. Both of superconductivity and antiferromagnetic order is realized in the same kind of CuO2 backbone. This coexistence should be considered to be different from the conventional magnetic superconductor, cupate superconductor having magnetic element in its charge reservoir layer and the strip type coexistence.

Synthesis of HgBa2Ca3Cu4O10+ (Hg-1234) and HgBa2Ca4Cu5O12+(Hg-1245) from oxygen controlled precursors under high pressure. K. Tokiwa, A. Iyo, T. Tsukamoto, H. Ihara. Czech. J. Phys. 46 [Suppl. 1] (1996) 1491.*

Coexistence of superconductivity and antiferromagnetism in multilayered high-Tc superconductor HgBa2Ca4Cu5Oy: Cu-NMR study, H. Kotegawa et. al., Phys. Rev. B 69 (Jan. 2004) 014501.

Magnetism of Multi-Layer HgBa2Ca4Cu5Oy Superconductor Studied by SR Measurements, K. Tokiwa et. al., Inter. J. Mod. Phys.B 17 (Aug. 2003) 3540-3543.

High pressure synthesis and properties of HgBa2Ca4Cu5Oy (Hg-1245) superconductor, K. Tokiwa et. al.,J. Low. Temp. Phys.131 (May 2003) 637-641.

Microscopic coexistence of antiferromagnetism and superconductivity in HgBa2Ca4Cu5Oy:Cu-NMR study, H. Kotegawa et. al., Physica C 388-389 (May 2003) 237-238.

Uniform Mixing of High-Tc Superconductivity and Antiferromagnetism on a Single CuO2 Plane of a Hg-Based Five-Layered Cuprate, H. Mukuda et. al., Phys. Rev. Lett. 96 (2006) 087001.

Coexistence of superconductivity and antiferromagnetism in HgBa2Ca4Cu5Oy: Multiharmonic susceptibility and vortex dynamics study, A. Crisan et al., Phys. Rev. B 76(2007) 212508

Magnetically coupled pancake vortex molecules in HgBa2Can-1CunOy (n>6), A. Crisan et al., Phys. Rev. B 77 (2008)144518

Thermal conductivity in HgBa2Ca4Cu5Oy (Hg-1245). T. Watanabe, K. Tokiwa, S. Ito, N. Urita, S. Muikusu, H. Okumoto, Y. Hashinaka, A. Iyo, Y. Tanaka. Physica C 388-389 (2003) 353-354. *




Materials


Films

Both side 1 inch Tl-1223 films on LSAT is now available. (Sundaresan_SST_2003_May) Tc is higher than 108 K. Rs is as low as 0.5 m Ohm at 10 GHz and 90 K. The microwave filter work is now undergoing.

A simple test for high Jc and low Rs superconducting thin films, A. Sundaresan et. al., Supercond. Sci. Technol. 16 (May 2003) L23-L24.

Preparation of Tl-2212 and -1223 superconductor thin films and their microwave properties, A. Sudaresan et. al., Physica C 388 (May 2003) 473-474.

Preparation of Tl-2212 and Tl-1223 superconductor thin films and their microwave surface resistance, A. Sundaresan et. al., IEEE. Trans. Appl. Supercond. 13 (June 2003) 2913-2916.

Growth of TlBa2Ca2Cu3Oy superconducting thin film on CeO2 buffered sapphire substrate,A. Sudaresan et. al., Physica C 378-381 (October 2002) 1283-1286

Effect of surface needles on microwave surface resistance in Tl(Ba,Sr)2Ca2Cu3Oy superconductor films on a LSAT substrate, A. Sundaresan et. al., Supercond. Sci. Technol. 17 (March 2004) 350-353



Toward Cu-1234 Films

Tl-1223 is one of the families of the multi-layer cuprate (multi-band superconductor).
So other multilayer cuprate is also very attractive.
These films (as well as Tl-1223 film) will also give a good platform for research of the new superconducting function like i-soliton device.
There is representative works (H. Adachi et. al.(1995), G. Balestrino et. al. ( (2001), (2006), (2003), (2000), (1999) ), D.P. Norton et. al.(1994), E. Koller et. al.(1996), H. Shibata et. al. (2006))
Here we list up our efforts toward the Cu-1234 film, which is our major target.

Characterization of electronic structure of superconducting (Cu, C)-Ba-O films by in situ photoemission spectroscopy K. Kikunaga et. al., Supercond. Sci. Technol. 20 (2007) S455-S460

Fabrication and characterization of superconducting (Cu, C)Ba2CuO4} thin films, S.Shipra et. al. Physica C466 (2007) 111-114.

Fabrication of (Cu, C)Ba2CuOy superconducting thin film by RF magnetron sputtering, H. Wakamatsu et. al. J. Phys. Conf. Ser. 43 (2006) 289.

Pulsed Laser Deposition Synthesis and Photoemission Study of Superconducting Ba-Cu-O Thin Films, K. Kikunaga,J. Phys. Conf. Ser. 43 (2006) 247.

Epitaxial growth of (Cu,C)Ba2Can-1 CunOx (n=1) film deposited on SrTiO3 substrate by rf sputtering N. Kikuchi et. al., Vacuum 74 (2004)585-590

Preparation of CuBa2Ca3Cu4Oy superlattice thin film by self-assembling epitaxy method, A. Sundaresan et. al., Physica C 357 (2001)1403-1406




Tc> 130K in Tl-1223

An intrinsic Tc of Tl-1223 superconductor is more than 133.5 K. It is comparable Tc=135 K of Hg-1223 that is currently world record of superconductor. We revealed this high-Tc and its mechanism. (Until our work, it is believed that Tc of Tl-1223 is around 120K.)

Study on enhancement of Tc (130 K) in TlBa2Ca2Cu3Oy superconductors, A. Iyo et. al.,Supercond. Sci. Technol. 14 (July 2001) 504-510

Tl valence change and Tc enhancement (>130 K) in (Cu,Tl)Ba2Ca2Cu3Oy due to nitrogen annealing, K. Tanaka et. al., Phys. Rev. B 63 (January 200) 064508.

Superconducting and magnetic characteristics in the multilayered high-Tc cuprates TlBa2Ca2Cu3O10-y with Tc>130 K probed by Cu and Tl NMR: High value for Tc, H. Kotegawa et. al., Phys. Rev. B 65 (April 2002) 184504.

Tc beyond 130 K on a high-pressure synthesized (Cu,Tl)-1223 superconductor, K. Tanaka et. al., Physica B 284-288 (July 2000) 2079-1080.

Vortex melting line and anisotropy of high-pressure-synthesized TlBa2Ca2Cu3O10-y high-temperature superconductor from third-harmonic susceptibility studies, A. Crisan et. al, Appl. Phys. Lett. 83 (July 2003) 506-508

Selective reduction for hole-doping in Cu1-xTlx-1223 (Cu1-xTlxBa2Ca2Cu3O10-y) system with Tc>132 K, H. Ihara et. al., Physica B 284-288 (July 2000) 1085-1086.

Photoemission study of chemical bond nature of (Cu,Tl)-1223 with Tc above 130 K, N. Terada et. al.,Physica B 284-288 (July 2000) 1085-1086.

Zn and Ni doping effect on anomalous suppression of Tc in an over doped region of TlBa2Ca2Cu3O9-delta. A. Iyo, Y. Tanaka, M. Hirai, K. Tokiwa, H. Ihara. J. Low. Temp. Phys.131 (May 2003) 643-646.
**
Transport properties of TlBa2Ca2Cu3Oy in an over-doped state, S. Mikusu et. al., Physica C 422 (2006) 91-96.

Enhancement of TC (~130K) in TlBa2Ca2Cu3Oy Synthesized under Ambient Pressure, S. Mikusu et. al., AIP Conf. Proc. 850 (2006) 499-500.

Neutron powder diffraction of the superconductor TlBa2Ca2Cu3O8+ with different maximum TC values (TC = 120-132 K), S. Mikusu et. al., Supercond. Sci. Technol. 21 (2008) 085014.


Bulk and Single Crystal

Cu-1234 is focused materials. Main research is about polycrystals. We are also paying great effort on growth of single crystal. It requires the development of special method. We are pioneer on the study of the crystal growth on the multiple elements like cuprate superconductor under high pressure (Tokiwa_PhysicaC_1998).

High pressure synthesis and characterization of single crystals of CuBa2Ca3Cu4Oy superconductor, K. Tokiwa et. al. , Physica C 298 (1998) 209.

Crystal growth of Ba2Can-1CunO2n(O F)2 (n=3 and 4) multi-layered superconductors under high pressure, A. Iyo et. al., Supercond. Sci. Technol. 17 (January 2004) 143-147.

Preparation and superconductivity of (B1-xCx)(Sr1-yBay)2Ca2Cu3Oz, A. Iyo et. al, Physica C 311 (January 1999) 35-41.

Material synthesis of HgBa2Can-1CunOy multilayered cuprates under high pressure, A. Iyo, Y. Tanaka, H. Kito, Y. Kodama, P. M. Shirage, D. D. Shivagan, K. Tokiwa, T. Watanabe. Journal of Physics: Conference Series 108 (2008) 012046.*

High-pressure synthesis and properties of Ba2Can-1CunO2n(O,F)2 (n=2-5) superconductors. A. Iyo et. al, Physica C 366(2001) 43-50.

Apical-F cuprate superconductor (in Japanese), A. Iyo, KOTAIBUTSURI 41 (2006) 279

Vortex melting line and anisotropy of a Ba2Ca3Cu4O8(O1-yFy)(2) multilayered superconductor. D. D. Shivagan, P. M. Shirage, A. Crisan, Y. Tanaka, A. Iyo, Y. Kodama, K. Tokiwa, T. Watanabe, N. Hamada. Superconductor Science and Technology, 21 (9). 095002. (2008)

Vortex melting line and dimensional crossover in Ba2Can-1CunO2n(O1-y,F-y)(2) cuprate superconductors. D. D. Shivagan, P. M. Shirage, A. Crisan, Y. Tanaka, A. Iyo, Y. Kodama, K. Tokiwa, T. Watanabe, N. Hamada. Physica C 468 (2008) 749-742.

AC-Susceptibility study on vortex-molecule lattice in supermultilayer cuprate HgBa2Can-1CunO2n+2+ (n = 14). D. D. Shivagan, P. M. Shirage, A. Crisan, Y. Tanaka, A. Iyo, K. Tokiwa, T. Watanabe, N. Terada. Physica C 468 (2008) 1281-1286.



History of Cu-1234 and related materials

Cu-1234 is our original materials. It was found in November 1993. It became a seed of new phenomena and concepts in the superconductivity.

New High-Tc Superconductor Ag1-xCuxBa2Can-1CunO2n+3-d Family with Tc>117 K, H. Ihara et. al., Jpn. J. Appl. Phys. 33(Jan. 1994) L300-L303

New High- Tc Superconductor Family of Cu-Based Cu1-xBa2Can-1Cu nO2 n+4-d with Tc>116 K , H. Ihara et. al., Jpn. J. Appl. Phys. 33(Jan. 1994) L503-L506

How to achieve the best performance superconductor based on Cu-1234, H. Ihara, Physica C 364-365 (Nov. 2001) 289-297

New high-Tc superconductor families of Ag1-xCuxBa2Can-1CunO2n+3-y and CuBa2Can-1CunO2n+4-y with Tc>116 K, H. Ihara et. al., Physica C 235-240 (Dec. 1994) 984-982

Crystal Structure of Cu-1234

Crystal structure analysis of Cu0.6Ba2Ca3Cu4O10.8 by single-crystal X-ray diffraction method , J. Akimoto et. al., Physica C 242 (1995) 360-364.

Crystal chemistry of CuBa2Can-1CunOy( N = 4, 5, 6) superconductors, J. Akimoto et. al., Physica C 279 (Jun. 1997) 181-196.

Crystal structure and superconductivity in (Cu,Hg)Ba2Ca4Cu5Oy, J. Akimoto et. al., Physica C 281 (Aug. 1997) 237-243.





(Last Update: 3th-February-2018)

Go back to the Main Page