Elucidation of enhancement phenomena of the sound pressure level and repetitive components when applying pressure near the sound source

Yoshiharu Soeta

National Institute of Advanced Industrial Science and Technology (AIST)
Enhancement of the SPL and repetitive components

Sound post

[Diagram showing parts labeled 1 to 10]
Enhancement of the SPL and repetitive components

SPL and autocorrelation function (ACF)

With sound post

Without sound post

Normalized ACF (NACF)
Enhancement of the SPL and repetitive components

SPL and autocorrelation function (ACF)

With sound post

Without sound post

Effective duration of the ACF, τ_e

Longer τ_e is correlated with higher clarity and intelligibility
Enhancement of the SPL and repetitive components

SPL and autocorrelation function (ACF)

SPL (L_{Aeq})

\[\begin{align*}
L_{Aeq} [\text{dB}] & \quad \tau_e \\
60 & \quad 0.5 \\
70 & \quad 1.0 \\
80 & \quad 2.0
\end{align*} \]

Vibrating string

- : With sound post
- : Without sound post
Purpose of this study

- The phenomenon can improve the SPL and speech intelligibility without additional power consumption

- Clarification of the enhancement of the SPL and repetitive components by applying pressure near the sound source
Experimental methods

- Board type and thickness
 - acrylic boards (AC: 0.5, 1 mm)
 - plastic boards (PL: 0.2, 0.3, 0.5, 1, 1.5 mm)
 - hard vinyl chloride boards (KE: 0.5 mm)
 - low foaming sheet boards (TE: 1, 2 mm)
Enhancement of the SPL and repetitive components

Autocorrelation function (ACF)

Waveform

- Sinusoidal wave
- Brain wave
- White noise

τ_e: ACF envelope 10-percentile delay
Enhancement of the SPL and repetitive components

Results for the music box (1)

SPL (L_{Aeq})

Effective duration of the ACF, τ_e

![Graph showing SPL and effective duration for different board thicknesses and materials.](image)
Results for the music box (2)

Measured SPL as a function of the 1/3 octave band center frequency
Enhancement of the SPL and repetitive components

Results for the loudspeaker and mobile phone (1)

SPL (L_{Aeq})

Effective duration of the ACF, τ_e

1-mm-thick plastic boards
Enhancement of the SPL and repetitive components

Results for the loudspeaker and mobile phone (2)

Measured SPL as a function of the 1/3 octave band center frequency
Summary

• Acrylic and plastic boards with thickness of 0.5 mm and a mid-range bending strength produced a higher SPL and longer τ_e for a music box.

• The phenomena was not well reproduced for the loudspeaker and mobile phone because of the weak contact between the board and the vibration part of the sound source.
Enhancement of the SPL and repetitive components

Thank you for your attention