Research Center for Information Security (RCIS)
National Institute of Advanced Industrial Science and Technology (AIST)

Fail-Safe C: the solution for preventing

security holes in C programs

Yutaka OIWA (Research Team for Software Security, RCIS, AIST)

m C language and security
In 1970s:

Designed for early Unix systems

= Simple, fast language

Flexible raw memory access using pointers
(to replace assembly languages)

—

®Causes many security holes
= Lack of language-level memory safety

= Lack of high-level support for complex data structures
>50% of CERT-reported security holes are caused by pointer misuses

In year 2006:

mRaw memory flexibility is not important for
many programs.

mSafety is very important for current Internet-
related programs.

m Fail-Safe C: a powerful solution for
security problems in C
E100% ANSI-C upper-compatible
E100% memory safe
Safety comparable to Java, C#, Lisp or ML
E Supporting various C idioms
Not all programs are strictly ANSI-C compatible, sigh.
EIncurs as small overhead as possible

m Implementation Techniques

(1) Typed memory blocks & Access Methods
EEvery memory blocks are “objects”: it knows
How many elements it contains
what is the type of its contents
how to read/write its contents

Even if a pointer is cast, memory accesses are safe
using access methods associated to the referred block.

(2) Smart pointers & Cast flags |

Base E” Offset |

EEach pointer (represented in 2 words) remembers
which blocks it points to

whether it is cast or not (i.e. type-valid pointer or not)

If a pointer is not cast, memory accesses are fast.

— Access block contents directly, without access methods.
— Implementation trick used to reduce the access cost.

» No additional cost for cast flag checking.
» The same as that for Java and ML (in theory).

Pointers

Base ml Offset
* Only boundary check needed

Integers

allocation
Valid address, valid type |

cast

Valid address, invalid type | Base M| Offset | Base M| Offset
.U thods f f cast)))
se access methods for type safety arithmetic operations
Invalid address | 0 ” Value |—-| 0 ” Value |
« Dereference forbidden ‘ cast

NULL constant etc.

1

integer constant etc.

Access methods) | Type-independent accesses
forint*blocks | | e
Dl r
™ int *

size — 24 |P0|00|bT|01|b2|02|b3|03|b4 |04 b5|05

m Other features

ESupport for various uses of malloc()
Deferred type decision for dynamically-allocated blocks
Supports accesses for “remainder” area
— For "buffer at struct tail” idioms.
EType-safe linker supports safe separate compilation

It detects all type mismatch between modules.
Archive files are also supported.

m Current status:

E Compiler and linker are available
Now support 100% of ANSI-C features
Easy-to-use: just type “fscc” instead of gcc.
— As usual, users just see *.c, *.0, *.a, a.out files.
B “Safe” standard library implementations partly available
Custom “wrappers” implemented for 226/1108 functions
ESupports various existing programs
OpenSSL, BIND9 (named), thttpd
with almost no source file modification
EPerformance overhead: vary from x1.06 to x10 times.
Measured using BYTEmark2 and OpenSSL
Static optimizations/analysis will reduce them in future.

m Project page: http://www.rcis.aist.go.jp/project/FailSafeC-en.html or http://failsafec.jp/

Developers/researchers preview release will be available within this fiscal year (Dec. 2006 or Jan. 2007, hopefully).

* This project is partially supported by “New-generation Information Security R&D Program” from the Ministry of Economy, Trade and Industry (METI),
Japan. A part of library implementation is done as a joint research with Lepidum, Co. Ltd.

m Research collaborations
E Fail-Safe C to Java (Kamijima @ Tohoku Univ.)

See also his poster presentation in this session!

B VitC (FSC with information flow analysis, Furuse et al. @ U. Tokyo)

mRelated work
B CCured [Necula et al. 2002]
Compile-time analysis for “wild” (cast) pointer

Assumes all objects pointed by wild pointer as wild
= many objects may be “polluted” by one wild pointer

http:/www.aist.go.jp s AIST sy

AND TECHNOLOGY (AIST)

	Fail-Safe C: the solution for preventing security holes in C programs

