
Research Center for Information Security (RCIS)
National Institute of Advanced Industrial Science and Technology (AIST)

Fail-Safe C: the solution for preventing
security holes in C programs

C language and security

Fail-Safe C: a powerful solution for
security problems in C

100% ANSI-C upper-compatible
100% memory safe

Safety comparable to Java, C#, Lisp or ML

Supporting various C idioms
Not all programs are strictly ANSI-C compatible, sigh.

Incurs as small overhead as possible

Implementation Techniques
(1) Typed memory blocks & Access Methods

Every memory blocks are “objects”: it knows
How many elements it contains
what is the type of its contents
how to read/write its contents

Even if a pointer is cast, memory accesses are safe
using access methods associated to the referred block.

Research collaborations
Fail-Safe C to Java (Kamijima @ Tohoku Univ.)

See also his poster presentation in this session!

VitC (FSC with information flow analysis, Furuse et al. @ U. Tokyo)

Yutaka OIWA (Research Team for Software Security, RCIS, AIST)

Designed for early Unix systems
Simple, fast language
Flexible raw memory access using pointers
(to replace assembly languages)

Causes many security holes
Lack of language-level memory safety
Lack of high-level support for complex data structures

>50% of CERT-reported security holes are caused by pointer misuses

Raw memory flexibility is not important for
many programs.
Safety is very important for current Internet-
related programs.

In year 2006:

In 1970s:

Project page: http://www.rcis.aist.go.jp/project/FailSafeC-en.html or http://failsafec.jp/
Developers/researchers preview release will be available within this fiscal year (Dec. 2006 or Jan. 2007, hopefully).

* This project is partially supported by “New-generation Information Security R&D Program” from the Ministry of Economy, Trade and Industry (METI),
Japan. A part of library implementation is done as a joint research with Lepidum, Co. Ltd.

(2) Smart pointers & Cast flags
Each pointer (represented in 2 words) remembers

which blocks it points to
whether it is cast or not (i.e. type-valid pointer or not)

If a pointer is not cast, memory accesses are fast.
– Access block contents directly, without access methods.
– Implementation trick used to reduce the access cost.

» No additional cost for cast flag checking.
» The same as that for Java and ML (in theory).

Other features
Support for various uses of malloc()

Deferred type decision for dynamically-allocated blocks
Supports accesses for “remainder” area

– For “buffer at struct tail” idioms.

Type-safe linker supports safe separate compilation
It detects all type mismatch between modules.
Archive files are also supported.

Current status:
Compiler and linker are available

Now support 100% of ANSI-C features
Easy-to-use: just type “fscc” instead of gcc.

– As usual, users just see *.c, *.o, *.a, a.out files.

“Safe” standard library implementations partly available
Custom “wrappers” implemented for 226/1108 functions

Supports various existing programs

OpenSSL, BIND9 (named), thttpd
with almost no source file modification

Performance overhead: vary from x1.06 to x10 times.
Measured using BYTEmark2 and OpenSSL
Static optimizations/analysis will reduce them in future.

Related work
CCured [Necula et al. 2002]

Compile-time analysis for “wild” (cast) pointer
Assumes all objects pointed by wild pointer as wild
⇒ many objects may be “polluted” by one wild pointer

b2 o2(int *)b0 o0 b1 o1 b2 o2 b3 o3 b4 o4 b5 o5int *
size = 24

Access methods
for int * blocks

Type-independent accesses

Base cf Offset

Base 0 Offset

Base 1 Offset

0 Value

Base 1 Offset

0 Value

Pointers Integers

Valid address, valid type

Valid address, invalid type

Invalid address

allocation

integer constant etc.

cast cast

cast

cast

arithmetic operations

NULL constant etc.

• Only boundary check needed

• Use access methods for type safety

• Dereference forbidden

	Fail-Safe C: the solution for preventing security holes in C programs

