
Implementation of a Fail-Safe ANSI C Compiler
安全な ANSI Cコンパイラの実装手法

Doctoral Dissertation
博士論文

Yutaka Oiwa
大岩 寛

Submitted to Department of Computer Science,
Graduate School of Information Science and Technology,

The University of Tokyo on December 16, 2004
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Abstract

Programs written in the C language often suffer from nasty errors due to dangling
pointers and buffer overflow. Such errors in Internet server programs are often ex-
ploited by malicious attackers to “crack” an entire system, and this has become a
problem affecting society as a whole. The root of these errors is usually corruption
of on-memory data structures caused by out-of-bound array accesses. The C lan-
guage does not provide any protection against such out-of-bound access, although
recent languages such as Java, C#, Lisp and ML provide such protection. Never-
theless, the C language itself should not be blamed for this shortcoming—it was
designed to provide a replacement for assembly languages (i.e., to provide flexible
direct memory access through a light-weight high-level language). In other words,
lack of array boundary protection is “by design.” In addition, the C language was
designed more than thirty years ago when there was not enough computer power
to perform a memory boundary check for every memory access. The real prob-
lem is the use of the C language for current casual programming, which does not
usually require such direct memory accesses. We cannot realistically discard the
C language right away, though, because there are many legacy programs written in
the C language and many legacy programmers accustomed to the C language and
its programming style.

To alleviate this dilemma, many approaches to safe implementation of the C
language have been proposed and put into use. To my knowledge, however, none
of these support all the features of the ANSI C standard and prevent all unsafe
operations. Some, such as StackGuard by Cowan, perform an ad hoc runtime
check which can detect only specific kinds of error. Others, such as Safe C, accept
only a small subset of the ANSI C standard. CCured, by Necula, comes closest to
providing a solution in my opinion, but is not yet perfect.

This thesis proposes the most powerful solution to this problem so far. Fail-
Safe C is a memory-safe implementation of the full ANSI C language. More pre-
cisely, it detects and disallows all unsafe operations, yet conforms to the full ANSI
C standard (including casts and unions) and even supports many of the “dirty
tricks” common in many existing programs which do not strictly conform to the
standard. In this work, I also propose several techniques—regarding both compile-
time and runtime—to reduce the overhead of runtime checks. By using the Fail-
Safe C compiler, programmers can easily make their programs safe without heavy
rewriting or porting of their code. In the thesis, I also discuss a demonstration of

i

how exploitation of existing security holes in well-known programs can be pre-
vented.

The key ideas underlying Fail-Safe C are

1. a special memory block representation which supports run-time checking of
block boundaries and types,

2. object-oriented representations of memory blocks with access handler meth-
ods associated with each block; these support safe execution of untyped op-
erations such as pointer casts,

3. a special notion of memory addressing, called virtual offset, which con-
tributes to the safety of cast operations and solves compatibility issues for
many legacy programs,

4. a sophisticated representation of pointers (and integers), which records
whether a pointer was cast, to manage both the safety of cast operations
and the efficiency of normal pointer operations.

Whenever values in a program are used as a pointer to access memory data (except
when the Fail-Safe C compiler deduces that it is safe to omit the checks), these
values are checked against the boundary and type information kept in the referred
memory block. If the pointer refers to memory beyond the block boundary, a run-
time error is signaled and the program execution is safely stopped. If the type
of the pointer conflicts with the type of the referred block, the memory access is
processed via access handler methods to maintain the safety of the program exe-
cution. Otherwise, the memory block is accessed directly to ensure high execution
performance. The cast information on the pointers is carefully maintained by the
compiler to accelerate the type check of the pointers. In addition, the virtual offset
notion hides all tricks from the running program; programs will find no differences
between the usual compiler and the Fail-Safe C compiler, except that the program
is immediately killed when an unsafe event occurs. This makes it possible to run
many programs which include safe “dirty-tricks” without modifying their source
code, and ensures the safety of such programs.

ii

論文概要

C言語で書かれたプログラムは、迷子ポインタやバッファ溢れなどによる厄

介なバグの影響を受けがちであることはよく知られている。とりわけ、イン

ターネット上のサーバプログラムにおけるそのようなバグは、悪意の攻撃者

によってシステム全体を乗っ取るための攻撃の対象となりがちで、最近では

社会的な問題にすらなっている。このような厄介なバグは元をたどれば、メ

モリ上の配列の境界を越えたアクセスにより、データ構造が破壊されること

である。最近の言語、例えば Java、C#、Lisp、MLなどの言語はこのような

境界を越えたアクセスに対して保護機構を用意しているが、C言語にはその

ような機構はない。しかし、これは C言語のデザイン上の欠陥とは言えない。

なぜなら、C言語は元々アセンブラ言語の置き換えとして、つまりは柔軟で

直接的なメモリ操作を高級言語で記述するためにデザインされたものだから

である。言い替えれば、このような保護機構の欠如は「わざと」導入された

ものである。また、C言語がデザインされた 30年前には、当時の計算機能力

に対して、このような保護機構を導入するのが現実的でなかったという点も

ある。過ちとされるべきはむしろ、そのような C言語を現代の日常のプログ

ラミング言語として、実際には直接的なメモリアクセスが必要とされない場

合にも用いていることにある。けれども今日において、C言語を直ちに放棄

してしまうことは現実的ではない。C言語で書かれた既存のプログラムは多

く存在し、また C言語やそのプログラミングスタイルに慣れ親しんだ「既存

のプログラマ」も数多いからである。

このようなジレンマを解決するために、C言語を安全に実装する多くの試

みが提案され実際に実装されてきた。しかし、我々の知る限りそれらのすべ

ては、危険な操作の全てを拒否し、同時に全ての ANSI Cのプログラムを処

理できるという目標を達成していない。Cowanによる StackGuardに代表され

る実装のグループは、場当たり的な検査手法でプログラムに出現する特定の

iii

形の誤りを検出するだけのものであるし、他方 SafeCに代表されるグループ

は、C言語の仕様の一部分のみを入力として受け付けるものである。Necula

によって提案されている CCuredが、我々の知る限りでは現時点でもっとも目

標に近いものであるが、これも完璧であるとはいえない。

本論文は、この問題に対するもっとも強力な解を提案する。本論文で述

べられている Fail-Safe Cは、メモリ安全な ANSI Cの完全な実装である。こ

の実装は、全ての危険な操作を禁止しつつ、キャストや共用体を含む全ての

ANSI C標準に準拠し、かつ ANSI Cの範囲を越えたプログラムに頻出するい

わゆる「汚いトリック」の多くをも許容する。同時に、本実装は、コンパイ

ル時と実行時双方で行なわれるさまざまな最適化によって、実行時検査の負

荷の削減をはかっている。Fail-Safe Cコンパイラを用いることで、プログラ

マは簡単に、自らの書いたプログラムに変更を加えることなしに、また移植

作業をすることなしに、安全に実行することが可能となる。論文中では、実

在する有名なプログラムに存在するセキュリティー上の脆弱性を用いて、実

際に Fail-Safe Cを適用して安全性を保証する実験を例示している。

この論文で述べられているいくつかの重要なアイディアは以下の通りで

ある。

1. メモリブロックの特殊な表現により、動的な境界検査と型検査を実現す

ること、

2. オブジェクト指向の概念を用いてメモリブロックを表現し、全てのメモ

リブロックにアクセスメソッドを付加することにより、ポインタのキャ

ストなどの静的型によらないアクセスの安全な実行をサポートすること、

3. 「virtual offset」と名付けたメモリのアドレスづけの特殊な方法により、

既存のプログラムの互換性の向上とキャスト操作の安全性を同時に実現

していること、

4. そして、ポインタがキャストされているかどうかを自らに記録するよう

な、ポインタ (と整数)の賢い表現により、安全にキャストを実装すると

同時に通常のポインタの高速な使用を実現したこと。

Fail-Safe Cの環境下では、プログラム中の値がポインタとして参照に用いら

れるたびに、参照先ブロックのサイズと型との整合性を検査される (コンパイ

iv

ラが検査を省いても安全であることを確実に判定できた場合を除く)。ポイン

タが参照先ブロックのサイズを超過したメモリを参照している場合、実行時

エラーが報告されプログラムは直ちに停止される。ポインタの型と参照先ブ

ロックの型が整合しない場合は、アクセスハンドラメソッドが参照に用いら

れ、プログラムの実行の安全性を保証する。どちらでもない場合は、プログ

ラムが直接メモリを参照することで、高速な実行を実現する。ポインタがキャ

ストされたか否かの情報は、コンパイラによって正確に維持され、ポインタ

の型整合の判定を高速に行なえるようにしている。また、virtual offsetの概念

は、先に述べた一連の動作をプログラムから隠し、「舞台裏でこっそり行なわ

れるもの」にする。つまり、実行中のプログラムは、Fail-Safe Cの監視下で

実行されているということを認知することは、安全でないプログラムが突然

終了させられることを除いてはできない。このことは、さまざまな「汚いト

リック」を用いたプログラムがそのままプログラムを変更せずに動かせるこ

とを可能にし、また同時にそのようなプログラムが安全に動作することを示

唆している。

v

Acknowledgements

I express my deepest gratitude to Dr. Eijiro Sumii, one of the best friends and re-
search partners one could hope to have. His sharp but constructive suggestions have
made the design of the Fail-Safe C system very solid regarding both the theoretical
aspects and the implementation details.

I am very thankful to Dr. Tatsurou Sekiguchi for sharing his very deep knowl-
edge regarding compiler construction techniques. He is without question most
knowledgeable of my partners regarding conventional compilers, and he has been
contributed greatly to the design and implementation of the generic part of my
compiler, such as the handling of the intermediate representation of programs and
various internal transformations.

I am deeply grateful to my thesis supervisor Professor Akinori Yonezawa for
his continuous strong support in this research. He has provided me with many
great opportunities for presenting this work to top-level researchers and discussing
it with them.

I thank Profs. Naoki Kobayashi, Kenjiro Taura, and Hidehiko Masuhara, for
both valuable technical suggestions but also for invaluable support during the dif-
ficult points of my research life. Without their continuous encouragement, I might
not have been able to continue my efforts to complete this work.

I am also thankful for various suggestions given to me by Prof. George Necula,
Prof. Benjamin Pierce, Dr. Yoshihiro Oyama, Mr. Toshiyuki Maeda, Prof. Ken
Wakita, Dr. Akira Tanaka, Mr. Norifumi Gotoh and many others.

Finally, I express my heartfelt appreciation to my parents for supporting and
encouraging me throughout my research endeavors.

Part of this research has been supported by research fellowships of the Japan
Society for the Promotion of Science for Young Scientists.

vi

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Design goals . 2
1.3 Very brief introduction to the Fail-Safe C system 3
1.4 Clalifications: matters not handled by Fail-Safe C 6
1.5 Outline . 8
1.6 Term definitions and prerequisites 8

2 Background 10
2.1 Typical causes of memory-related security holes 10
2.2 Existing countermeasures to security holes 13

2.2.1 Buffer-overflow detection using Canary words 13
2.2.2 Unexecutable stack area 15
2.2.3 Memory management using a live-object table 16
2.2.4 Various safe languages 16
2.2.5 Variants of safe C-like languages 17
2.2.6 CCured . 17

3 Basic Concepts 19
3.1 Value representation . 19

3.1.1 Fat pointer and cast flag 19
3.1.2 Fat integers . 21

3.2 Typed memory blocks . 23
3.2.1 Virtual offsets . 23
3.2.2 Access methods . 24
3.2.3 Memory operations . 25

3.3 Memory management . 26
3.3.1 Temporal properties of local variables 26

3.4 Structures and unions . 26
3.5 Functions . 29

3.5.1 Variable arguments . 29
3.5.2 Function pointers . 31

3.6 Theoretical aspects of the system design 32

vii

3.6.1 Invariant conditions and safety 32
3.6.2 Partial compatibility with native compilers 35
3.6.3 Completeness (full compatibility) 36
3.6.4 Future extension: certifying/certified compilation 37

4 Advanced Features 39
4.1 Features on memory block . 39

4.1.1 Additional base storage area 39
4.1.2 Remainder data area . 41

4.2 Fast checking of cast flags . 43
4.3 Determining types of blocks . 43
4.4 Interfacing with external libraries 48

4.4.1 Generic structure of wrappers 49
4.4.2 Handling raw data in wrappers 51
4.4.3 Implementing abstract types 53
4.4.4 Implementing magical memory blocks 54

5 Experiments 55
5.1 Examples of memory overrun detection 55

5.1.1 Integer overflow in the command-line argument parsing
routine of Sendmail . 55

5.1.2 Buffer overflow in a GIF decode routine in XV 56
5.2 BYTEmark benchmark test . 59
5.3 Effectiveness of fast cast-flag checking 62
5.4 Other preliminary tests . 63

6 Conclusion and Future Work 64
6.1 Summary of the dissertation . 64
6.2 Relation to other work . 65
6.3 Future Work . 66

A Implementation Details 68
A.1 Runtime system . 68

A.1.1 Structures inside memory blocks 68
A.1.1.1 Common structure and block header 68
A.1.1.2 Value representation in structured data area . . . 71

A.1.2 Type information and access methods 71
A.1.3 Memory management 76

A.2 Generated code . 78
A.2.1 Encoding for primitive types 79
A.2.2 Encoding of typenames and other identifiers 80
A.2.3 Translating body of functions 82

A.2.3.1 Variables and control flow 82
A.2.3.2 Arithmetics 82

viii

A.2.3.3 Cast operations 84
A.2.3.4 Taking address of variables 84
A.2.3.5 Memory accesses 88
A.2.3.6 Invoking functions directly 90
A.2.3.7 Invoking functions via pointers 90
A.2.3.8 Receiving varargs arguments 90

A.2.4 Generating type-related data and methods 94
A.2.4.1 Pointer types 94
A.2.4.2 Struct types 94

A.2.5 Generic entry points and stub blocks for functions 97
A.2.6 Layout static data onto memory 101
A.2.7 Dynamic initializations 104

A.3 Summary of the current standard library 104
A.4 Result of preliminary micro-benchmarks 110

A.4.1 Fibonacci . 110
A.4.2 Quick sorting . 114
A.4.3 Knapsack problem . 117

A.5 Further extensions to the implementation 119
A.5.1 Local optimization . 119
A.5.2 Global optimization . 122

A.5.2.1 Value analysis 122
A.5.2.2 Temporal analyses 123

A.5.3 True support for separate compilation 123
A.5.4 Multi threading . 124
A.5.5 Compiling to more low-level language than C 127

B Perspectives on derived research 130
B.1 Language extensions . 130

B.1.1 Recovery from failure 130
B.1.2 Incorporation with high-level security mechanisms 131

B.2 Altering semantics . 131
B.2.1 Fail-Soft C—partial remediation of buffer-overrun problems 131
B.2.2 Fail-Safe C on Java (or Scheme) 132

ix

List of Figures

1.1 An example of function pointer casts. 4
1.2 An example of a variable-sized structure technique. 5

2.1 An example of loose handling of an input buffer using gets() . . 11
2.2 Buffer-overrun protection using canary-words 14

3.1 Arithmetic and cast on fat pointers 20
3.2 Representations of pointers, integers, and floating numbers 20
3.3 Arithmetics and cast on fat integers 22
3.4 An example of the representation of a struct 27
3.5 Handling of varargs in a native compiler 30
3.6 Handling of varargs in Fail-Safe C 31
3.7 The structure of function stub blocks. 32

4.1 The representation of additional base area for primitive types . . . 40
4.2 The representation of additional base area for (non-continuous)

structs . 41
4.3 Formats of remainder area . 42
4.4 Unoptimized procedure for memory access via pointers 44
4.5 Fast cast-flag check. 45
4.6 Procedure for memory access via pointers with fast access check . 46
4.7 State diagram for blocks . 47
4.8 Wrapper for puts library function. 52
4.9 Implementation of FILE object in Fail-Safe C 53

5.1 A routine containing a security hole in the Sendmail program . . . 57
5.2 An error detection report for an attempt to exploit the Sendmail

security hole . 58
5.3 An error detection report for the XV GIF decoder 60
5.4 A failed attempt to avoid buffer overflow in the original xvgif.c . 60

A.1 The structure of memory blocks and block headers. 69
A.2 Block structure for pointers and primitive types. 72
A.3 Representation of struct data blocks 73
A.4 Structure of type information blocks. 75

x

A.5 An example configuration of relationship between typeinfo blocks 77
A.6 Translation rules for arithmetic operations 86
A.7 Translation rules for casts . 87
A.8 Translation rule for pointer address operation 88
A.9 Translation rule for pointer dereference 89
A.10 Translation rules for pointer write 91
A.11 Translation rules for direct function invocation 92
A.12 Translation rule for function invocation via pointers 93
A.13 A set of auto-generated code for char ** type. 95
A.14 Element access table for structure shown in Figure 3.4 96
A.15 A generated access method for half-word read access to struct type 98
A.16 A generated access method for word read access to a struct type . 99
A.17 Generation rule for stub entry point of functions 100
A.18 Stub entry point for the main function 101
A.19 Macros and unions used to emit global initializers 102
A.20 An example output of global initialization 103
A.21 Handling of dynamic initializer for local arrays 105
A.22 Implementation of the FILE abstract type. 106
A.23 Wrapper routines for fseek and fread functions. 107
A.24 Implementation of the errno special variable (library part) 108
A.25 Implementation of the errno special variable. (include file) 109
A.26 Two codes generated for Fibonacci on SPARC 111
A.27 Two codes generated for Fibonacci on Pentium4 112
A.28 The code generated for Fibonacci on Pentium4 with the alternative

encoding . 113
A.29 A quicksort test program. 115
A.30 A generated code composing a fat integer under the alternative en-

coding. 116
A.31 A generated code composing a fat integer under the standard en-

coding (without inline assembly code). 116
A.32 An example of boundary overflow detection in quick-sorting . . . 118
A.33 Code duplication for boundary access reduction 121
A.34 An atomic double-word memory store in IA32 architecture 128

xi

List of Tables

3.1 Comparison of several aspects of dynamically-typed languages,
statically-typed languages and Fail-Safe C 34

5.1 Results of BYTEmark benchmark tests 61
5.2 Results of tests with fast check disabled 62

A.1 Translated types for various builtin types. 79
A.2 ASCII encoding of type names 81
A.3 Name encodings in Fail-Safe C 83
A.4 Symbols used in translation rules 84
A.5 Internal operators used in translation rules. 85
A.6 Result of the Fibonacci test . 110
A.7 Result of the Quicksort test . 114
A.8 Result of the Knapsack test . 117
A.9 Preliminary result of the local optimization in Quicksort test . . . 120

xii

Chapter 1

Introduction

1.1 Overview

This thesis describes a method for safe execution of C programs which can be
applied to all programs written in conformity with the ANSI C specification [33, 2,
38].

The C language, which was originally designed for programming early Unix
systems, allows a programmer to code flexible memory operations for high runtime
performance. It provides flexible pointer arithmetic and type casting of pointers,
which can be used for direct access to raw memory. Thus, the C language can
be easily used as a replacement for assembly languages to write many low-level
system programs such as operating systems, device drivers, and runtime systems
of programming languages.

Today, the C language remains one of the major languages for writing appli-
cation programs, including those running on various Internet servers. As require-
ments for applications have become more complex, though, programs written in the
C language have frequently been used to perform complex pointer manipulations
very frequently. This has created serious security flaws. In particular, destroy-
ing on-memory data structures through array buffer overflows or dangling pointers
makes the behavior of a running program completely different from its text. In ad-
dition, by forging specially formed input data, malicious attackers can sometimes
hijack the behavior of programs containing such bugs. Most of recently reported
security holes have been due to such misbehavior.

To resolve the current situation, I have developed a special implementation of
the ANSI C language, called Fail-Safe C, which prevents all of the dangerous mem-
ory operations that lead to execution hijacking. The Fail-Safe C compiler inserts
check code into the program to prevent operations which destroy memory struc-
tures or execution states. If a buggy program attempts to access a data structure in
a way which will lead to memory corruption, the runtime system of the Fail-Safe
C system cooperates with inserted codes to report the error and terminate program
execution. Use of the Fail-Safe C system instead of the usual C compilers thus

1

enables safe execution of existing C programs.

1.2 Design goals

The design goals set for Fail-Safe C were as follows.

(1) Complete safety protection

A program compiled with Fail-Safe C should never be affected by any memory
errors. In other words, the program should run only in the way the program is
written. This may seem an obvious requirement that hardly bears mentioning.
However, many security holes allow exploitation where outside program code is
injected into programs instructing them to execute themselves in a way contrary to
how they were originally written.

Most of the previous research has aimed at preventing exploitation of only cer-
tain subsets of the existing security holes. This has been only a partial security
solution, because if the proposed systems are applied to the majority of running
systems, attackers (who are motivated by several external incentive such as a de-
sire for money, information, and so on) will simply begin to exploit other kinds of
security holes which these systems cannot block. In contrast, Fail-Safe C provides
complete protection against exploitation based on memory corruption, which in-
cludes sequential buffer overflow as well as general memory boundary overflow,
double-deallocation, misuse of cast operations, and all other possibilities. A Fail-
Safe C user can expect the same level of security as would be the case for a program
written in Java or ML while being able to continue using C language.

(2) Full conformance to the ANSI-C specification

There are already plenty of safe languages with which secure programs. Some of
these—for example, ML, Lisp, or Haskell—use syntaxes and philosophies com-
pletely different from imperative languages, while others, like Java, use syntaxes
that slightly resembles that of C languages. There are also several languages de-
signed to be similar to the C language to make porting existing C programs to
those languages easier. Moreover, there are several safe implementations for the
proper subset of the C language. as I have personally experienced, porting from
C languages with mosr of these systems still requires a considerable effort. The
amount of the modifications required to port existing C programs varies among the
languages, but the fact remains that these languages did not successfully replace
programs written in the C language.

To overcome this problem, Fail-Safe C was designed to accept unmodified C
programs as input. Since it is difficult to define what C language programmers
expect, I used the official ISO/ANSI specification for the C language [33, 2], of-
ten called ANSI-C or the second edition of Kernighan-Ritchie book [38], as the

2

reference point in the first stage. Full-support of ANSI-C implies several compli-
cating matters: support is necessary for a very wide set of cast operations between
pointer types, bidirectional casting between pointers and integers (including in the
left direction!), a variable number of arguments (varargs), and so on. It is tough to
comply to this specification while still providing a keeping 100% safety guarantee.

(3) Possible support for many existing techniques

The above suggests that ANSI C is too permissive. At the same time, ANSI C is
so restrictive that most existing programs do not strictly comply with the ANSI C
specification. Actual programs written in C language assume many more proper-
ties than those specified in the ANSI-C specification. For example, many programs
expect that the pointer of different types to be interchangeably usable in many con-
texts without fear of representation incompatibilities. Moreover, it is often assumed
that the pointers to functions receiving different types of pointers will be compati-
ble. This kind of cast function pointer often appears in an argument of higher-order
functions like qsort (See Figure 1.1 for an example). Another instance of tech-
niques beyond the ANSI-C specification is a technique to implement variable-sized
structures (Figure 1.2). This technique assumes that the memory space is “flat” in
some sense and that the memory area allocated by malloc and other functions can
be used in any form the programmer chooses. It is not always possible to sup-
port all techniques used in existing programs, but, supporting only strictly ANSI-C
compliant programs is likely to be insufficient.

(4) Lowest possible execution overhead

Provided that all three of the above requirements are satisfied, the execution per-
formance should be as good as possible. The implementation of the Fail-Safe C
system combines several existing implementation techniques for both dynamically-
typed languages and statically-typed languages, and enhances and extends these
techniques with several new implementation tricks to enable the best possible exe-
cution performance.

In particular, the much of the design effort was aimed at providing support for
cast operations and other type-unsafe operations without sacrificing the execution
performance of type-safe operations. The implementation of the type-safe portion
of operations was designed to be very similar to that of strongly- and statically-
typed languages.

1.3 Very brief introduction to the Fail-Safe C system

Briefly, the key concepts of the Fail-Safe C system are as follows.

• Introduce size-managed, typed memory blocks to support reliable detection
of boundary overflows at runtime. Each memory blocks appears as a portion

3

The following example is taken from the source code of the Apache web server
(version 1.3.9).

An excerpt from src/modules/standard/mod_autoindex.c:

/*
* Compare two file entries according to the sort criteria. The return
* is essentially a signum function value.
*/

static int dsortf(struct ent **e1, struct ent **e2)
{

... /* compare directory entries pointed by e1 and e2 */
}

static int index_directory(request_rec *r,
autoindex_config_rec *autoindex_conf)

{
...

qsort((void *) ar, num_ent, sizeof(struct ent *),
(int (*)(const void *, const void *)) dsortf);

...
}

The type of the qsort function in the standard library is the following:

void qsort(void *base, size_t nmemb, size_t size,
int (*compar)(const void *, const void *));

A pointer to the function dsortf, which have a type different from the required
type, is cast and then passed as a fourth argument to qsort.

Figure 1.1: An example of function pointer casts.

4

The following example is taken from the source code of the GNU privacy guard
(gnupg, version 1.0.1), a program which encrypts and signs digital contents.

A type definition in g10/packet.h:

typedef struct {
byte version;
byte cipher_algo; /* cipher algorithm used */
STRING2KEY s2k;
byte seskeylen; /* keylength in byte or 0 for no seskey */
byte seskey[1];

} PKT_symkey_enc;

An excerpt of the function parse_symkeyenc in g10/parse-packet.c:

static int
parse_symkeyenc(IOBUF inp, int pkttype, unsigned long pktlen, PACKET *packet)
{

PKT_symkey_enc *k;
...
seskeylen = pktlen - minlen;
k = packet->pkt.symkey_enc = m_alloc_clear(sizeof *packet->pkt.symkey_enc

+ seskeylen - 1);
k->version = version;
k->cipher_algo = cipher_algo;
k->s2k.mode = s2kmode;
k->s2k.hash_algo = hash_algo;
if(s2kmode == 1 || s2kmode == 3) {

for(i=0; i < 8 && pktlen; i++, pktlen--)
k->s2k.salt[i] = iobuf_get_noeof(inp);

}
if(s2kmode == 3) {

k->s2k.count = iobuf_get(inp); pktlen--;
}
k->seskeylen = seskeylen;
for(i=0; i < seskeylen && pktlen; i++, pktlen--)

k->seskey[i] = iobuf_get_noeof(inp);
...

}

The array field seskey only have one byte in the declaration. However, the argu-
ment to m_alloc_clear specifies seskeylen-1 additional bytes to allocate, and
the elements of the seskey field up to (seskeylen-1)-th element is used to store
session keys.

Figure 1.2: An example of a variable-sized structure technique.

5

of the usual flat memory space to user programs, but internally manages
various forms of additional information to manage safety conditions.

• Represent every pointer as a pair consisting of a base and an offset, to support
pointer arithmetic (fat pointers). Integers are also represented in two words
for ANSI-C compatibility. These values also appear to user programs to be
the one-word values.

• Attach a set of methods which perform basic read/write operations for ev-
ery memory block (access methods). In other words, memory blocks are
abstracted in the sense of object-oriented design. This enables the use of
different internal representations for each block, while still enabling com-
patibility (or cast support).

• Reduce the overhead introduced through above abstraction by directly ac-
cessing block contents via pointers when the pointer is not cast. To achieve
this, a one-bit flag is appended to every pointer to record whether the pointer
is cast (cast flags).

The first two concepts mainly contribute to basic safety and compatibility. As
every pointer contains a base part apart from the pointer arithmetic, the boundary
of referred memory blocks can be checked however the offset is altered. Mem-
ory blocks hold the two-word fat pointers and integers, but still “pretend” to user
programs that they are holding the usual one-word values. This pretense implies
an internal translation of the offsets in memory blocks, because the change in rep-
resentation alters the size of objects in blocks. This translation is formalized as a
concept of virtual offsets.

The third and the fourth concept contribute to performance optimization. To
satisfy the fourth goal given in the previous section (especially that there be little
additional overhead for cast-free programs), it is desirable to use various mem-
ory block representations designed for each specific type in the programs. Access
methods enable such heterogeneous representation of memory blocks while pre-
serving compatibility, and cast flags enable the efficient implementation of cast-
free memory operations.

Details will be given in Chapter 3 (and in Appendix A).

1.4 Clalifications: matters not handled by Fail-Safe C

Although Fail-Safe C is a powerful solution to security problems, it does not solve
all types of safety problems, for obvious reasons. For example, if a program inten-
tionally sends user passwords to a third party, the compiler has no way to prevent
this. The intended purpose of the Fail-Safe C system is clarified in the following.

1. The definition of fail-safety

6

If a program intentionally dereferences a NULL pointer, it is impossible to
define any meaningful “correct” behavior for the program, except to aban-
don an execution. Fail-Safe C does not and cannot provide a system which
does not fail—instead, it provides a system which always remains safe even
when programs fail. Under Fail-Safe C, when a memory-related security
attack has been launched, the program is halt. It may suspend an impor-
tant network service or commercial transaction, it may abort a transaction,
or it may require a human intervention for the recovery of the whole sys-
tem. However, Fail-Safe C does not allow attackers to hijack the execution
of programs, does not allow embedding of a rootkit (which can be used for
further invasion such as the creation of backdoors, or to read of eavesdrop
on confidential data) via buffer overrun. In most Internet server programs,
users of Fail-Safe C system can resume a service by simply re-booting the
processes, without fear of severe sustained damage. Alternatively, a typical
fault-tolerant system may save all of the services, with protection against
invasions provided by the Fail-Safe C system.1

2. Security holes without memory corruptions

Although the majority of security attacks are based on memory corruption,
there are other instances of security holes. One example is an incorrect sani-
tizing of certain special characters in user inputs. For example, if a program
running with some privileges passes a user-inputted string to Unix shells
without sanitizing, attackers can gain access to the system resources by em-
bedding some of the shell’s special characters (such as >, <, ; or |). Many
similar instances are found in a huge number of web programs, such as in-
correct handling of URL-encoded strings or cross-site scripting problems.

These problems, which are bugs based on the correct behavior of programs,
cannot be dealt by Fail-Safe C. The program compiled by Fail-Safe C runs
the algorithm written by the programmer correctly and, faithfully, reproduces
the bugs. These are outside of the scope of this thesis.

There are many proposed methods for analyzing and preventing such bugs.
Fail-Safe C can work with these methods, most of which assume some kind
of safe language or the safe implementation of languages as their basis. If
these methods are directly applied to the C language, the properties which
these methods assume are not assured if buffer overflow or other low-level
memory corruption occurs. Fail-Safe C can overcome this limitation: if these

1The word fail-safe is borrowed from the engineering field of critical systems. Some systems
have a natural direction for handling in emergency situations that prevents further damage. A fail-
safe system is defined as one which may fail, but whose failure always occurs in the direction that
does not leads to catastrophic failures. For example, a train signal system that has been designed
mechanically to show only red signals in the event of failure is fail-safe. However, an airplane
controller that turned off all engines in the event of a failure would be the opposite of a fail-safe
system.

7

methods are (correctly) applied on Fail-Safe C, it can to ensure that the de-
sired safety properties hold completely during the entire program execution.

1.5 Outline

Chapter 1 is this introduction. Chapter 2 discusses various topics regarding recent
security holes and related research. Chapters 3 and 4 explain the concept of Fail-
Safe C and applied safety management methods. In Chapter 5, some benchmarking
results are shown, and some interesting instances of the detection of unsafe pro-
gram behavior are described. Chapter 6 concludes this dissertation, and discusses
possible paths this research may take in the future.

The appendix contains supporting information: Appendix A contains detailed
description of the current Fail-Safe C implementation. It also describes additional
ways to enhance higher performance and real-world compatibility. Some perspec-
tives for future work in this research area are discussed in Appendix B.

1.6 Term definitions and prerequisites

Throughout this dissertation, the term word size refers to the size (the number of
bytes in the representation) of the pointers. On some architectures, the size of int
type might not be equal to the word size. Terms such as word alignment, word
boundary, and so on refer to this word size.

The system assumes the following conditions for the underlying hardware ar-
chitecture and C language environment used as a back-end code generator. These
conditions are satisfied in most modern architectures, including i386-Linux and
SPARC-Solaris.

• Signed integer arithmetic is based on two’s complement.

• All integer and pointer sizes must be some power of 2.

• The size of one byte must be 8 bits.

• Pointers and int type must be at least 32 bits.

• Pointers must be word-aligned. Hardware protection for this restriction is
allowed, but not required.

• All pointer types must have the same size and representation.

• There must be an integer type whose size is equal to the word size.

• The natural alignment of integers larger than or equal to the word size must
be at least the same as the word alignment.

8

• At least the word-sized access to the memory must be done atomically.2

• Byte order can be either little endian or big endian.

• Memory addressing must be flat in some sense: at least the pointer arithmetic
and integer arithmetic must be compatible in the usual sense.

The current implementation does not care about integer and floating number types
that are larger than twice the word size (including long double). Extending the
implementation to support these types is straight forward.

Fail-Safe C has been designed so that it does not depend on any specific setting
for word size (especially 32 bits and 64 bits) and alignment requirements as long
as the above conditions are met. However, the current implementation still has a
non-substantial dependence on the 32-bit architecture in some cases (for example,
term selection for field names: byte – half-word – word – double-word for 1, 2,
4, and 8 bytes, respectively). Many of the figures in this dissertation are drawn
assuming a 32-bit architecture in either big or little endian byte-ordering to avoid
extra complexity. For example, since Figure 3.4 is drawn assuming a big-endian
32-bit architecture, the given values of offsets and padding sizes will differ from
those for a 64-bit architecture, or the order of base and offset fields will be swapped
in little-endian architectures.

2Currently not strictly required, but needed for future support of multi-threading.

9

Chapter 2

Background

2.1 Typical causes of memory-related security holes

Several kinds of “typical” memory-related program bugs can create exploitable
security holes. The following is a list of well-known patterns of vulnerabilities.
Of course, the complete set of exploitable vulnerabilities are not limited to what is
listed here.

1. Sequential-access buffer overrun

Bugs of this kind are generally noticeable, appear frequently, and are easily
exploited by attackers.

A long input data sent to a victim program by attackers will be written to an
array. If the length of the input exceeds the length expected by the program-
mer, and if the programmer forgot or failed to check the length properly, the
data will not fit into the target array and will flood over it. The overflowed
data are then written to the memory area immediately beyond the array. If
important data are written in such areas, these data are compromised.

The simplest (easiest for an attack) cases of buffer overrun are overflows of
local variables. If the array being attacked is a local variable in a function,
it will be located inside a native stack, and return addresses of the currently-
running functions will be stored in the area after such a local variable. If
the return address is overwritten by a buffer overflow, the execution does not
properly return to the caller of the function, but is transferred to an address
arbitrarily chosen by attackers; i.e., the entire execution can be hijacked.
Buffers in a dynamically-allocated heap area are slightly harder to use for
such exploitation, but there are many known security holes in such buffers;
e.g., a security hole found in Sun’s implementation of cachefsd [16, 22].

Unfortunately, managing buffer boundaries properly at all required locations
in programs is very tricky in C language. Worse, this kind of error has been
ignored for many years, which means exploitable security holes of this type

10

(An excerpt from vdcomp.c in Xv version 3.10a)

char inname[1024],outname[1024];

...

int get_files(host)
int host;
{
short shortint;
typedef long off_t;

if (inname[0] == ’ ’) {
printf("\nEnter name of file to be decompressed: ");
gets (inname);

}
...

}

Figure 2.1: An example of loose handling of an input buffer using gets()

have spread quietly among existing programs. This historical recklessness
regarding buffer overflow problems can be seen even in the interface de-
signs of many library routines which have a priori problems of this kind
(e.g., gets() in a standard library). These functions are always vulnerable
to a large data input because the interface lacks a maximal allowed input
length. (See Figure 2.1 for an example.)

2. Random-access buffer overflow

This is another kind of buffer overflow, but is slightly more complicated.
The target of this attack is an array indexed by some integer values. By
crafting exploitable inputs, attackers overwrite a single (or a small number
of) word(s) in the memory in victim programs by instructing victims to write
to an index outside of the array boundary. If the contents of the overwritten
memory are used to control the behavior of programs (e.g., return addresses),
the execution will be hijacked. Attack attempts through this kind of flaw
are slightly more difficult than those through sequential-overflows, but these
attacks more powerful because the overwritten data is not limited to data
adjacent to the victim arrays and the bugs are more difficult to find.

This kind of security holes is often related to the overflow of integers. Care-
less programmers often forget about the nature of integers in a computer, in
that integers have a limited range of values and wraparound to either 0 or a
negative value when they exceed the value range. Even if the algorithm of a
program is correct under theoretically infinite value range, the program may
fail in an actual environment. An example of this kind of bug, found in the

11

Sendmail mail server, is described in more detail in Section 5.1.1 (Page 55).

Note that this kind of bug is sometimes called an “integer overflow security
hole”. This is inappropriate: the integer overflow itself is not a security threat
at all;1 in fact, Fail-Safe C as well as the implementations of many other safe
languages (e.g., Objective Caml [56] and Java [26]) do not prevent integer
overflows. The real cause of vulnerability is an inappropriate implementa-
tion of boundary checking, which is triggered by integer overflow problems.
Thus, it should be called a “buffer overflow vulnerability caused by integer
overflow”. Fail-Safe C correctly detects this kind of bug.

3. Format-string vulnerability

A library function printf and related functions take an argument encoded to
a string which describes both the number and the types of input data as well
as the desired output format. The string is usually called a “format string”.
For example, a string "%s" specifies that a string (a pointer to a character
array) is expected as an argument, "%d" specifies that an integer is expected,
and "%s: %d" specifies that a string and an integer are expected. The user
can implement custom functions taking arguments similar to those functions
by using functions like “vprintf” and “vfprintf”.

The format-string vulnerability is caused by misuse of these functions. If
a format string does not contain any conversion specifiers denoted by “%”,
these functions output exactly the same string. Thus, these functions can
also be used to output simple fixed messages. For example, the invoca-
tion printf("Hello\n"); works in the same way as the invocation of the
simpler function, fputs(stdout, "Hello\n");. However, if the strings
to be output are externally supplied, this method should not be used (like
“printf(s);”), but the correct conversion specifiers should be used instead
(“printf("%s", s);”). If the first form is used, it will misbehave when the
string contains the % character. As no real arguments corresponding to the
conversion specifier are supplied to these functions, these functions will read
unexpected memory locations to fetch arguments. In addition, the output
size can be made arbitrarily long to cause buffer overflow when functions
sprintf and vsprintf are used. Furthermore, there is a “%n” specifier
which requests that a number of output characters be written to the address
specified as an argument, and this can be used for an attack in a way similar
to how the random-access buffer overflow is used.

1Of course, integer overflow behavior is not intended by programmers in most cases, and is usu-
ally the cause of a bug. For debugging purposes, it may be desirable to also prevent integer overflow.
Recently the GNU compiler (gcc) optionally detects overflow conditions in integer arithmetic. Fail-
Safe C can also be modified to detect such errors, but note that overflow on unsigned integers is
defined to be handled on a “modulo upper-bound” basis under ANSI-C specification; thus, it is valid
for user programs to utilize such integer overflows behavior (for example, a loop for (i = 1; i
!= 0; i <<= 1) {...} to scan all bits in unsigned integers).

12

An instance of this kind of security hole has been found in ISC DHCPD,
a server program for dynamic configuration of IP addresses in a local
LAN [15, 13, 65]. Many security holes of this kind have also been found
in several other programs.

4. Early memory deallocation, or deallocation of already deallocated blocks.

It is a common mistake to use the contents of memory blocks after they have
been deallocated by a free() standard library function [24], or to request deal-
location of an already deallocated block [14, 17, 62]. Errors of this kind are
generally hard to find because the behavior after such errors usually changes
greatly depending on the states of the memory management routines, which
depend on almost all previous execution statuses. However, many attacks
occur for both types of errors. For the first type, an attacker cunningly leads
victim programs into allocating a new block in the same memory location as
for previously deallocated memory blocks, and into writing an attack data to
the location where the victim program thinks another kind of data is stored.
An attack exploiting the second type of error is more complicated and dif-
ficult, but there is a known exploitation technique (published in a mailing
list) which cunningly leads the memory manager in the standard library to
misbehave in a predictable way [23].

The recent trend in security attacks seems that attacks exploiting complicated
security holes, such as buffer overflow caused by integer overflows or double- deal-
location are increasing nowadays, mainly because many simple buffer over- run
problems have been identified and solved.

2.2 Existing countermeasures to security holes

As the fear of security vulnerabilities continues to grow, several countermeasures
to prevent security compromises have been proposed. In this section, some of
these systems are discussed. First three subsections discusses the systems which
can be applied to existing C programs. These system prevent a limited kind of se-
curity holes, or have some loopholes in security, though. The last three subsections
discuss various existing language systems which provide a complete guarantee of
memory safety will be discussed. Most of these systems, though, do not support
existing C programs.

2.2.1 Buffer-overflow detection using Canary words

The “canary word” technique is a well-known technique to avoid simple kinds
of sequential-access buffer overflows.2 Figure 2.2 illustrates the basic usage of

2The name “canary” is taken from the caged canaries once brought into mines by miners to detect
poisonous gases or a lack of oxygen. Being more sensitive to such conditions, canaries were affected
before the humans, thus giving the miners a chance to escape.

13

Stack growing direction

Return Address

frame pointer

Prev. Frame Ptr.

Canary Word.

Return Address

Prev. Frame Ptr.

Canary Word.

Return Address

Prev. Frame Ptr.

Canary Word.

Memory Address

Local Variables

Local Variables

Local Variables

C
u

rren
t F

ram
e

P
aren

t F
ram

e
G

ran
dP

aren
t F

ram
e

Figure 2.2: Buffer-overrun protection using canary-words

14

canary-based protections. A randomly-generated integer value, called a canary
word, is inserted into the every stack frame between local variables and execution-
controlling data such as return addresses and saved frame pointers. If any local
variables in the stack suffers from a sequential buffer overflow, and if the important
execution-controlling data are affected, the canary word is also overwritten. The
epilogue code of each function checks the value of canary words before using the
execution-controlling data to transfer execution to its callers. If the canary word is
modified, the program execution is halted by the system reporting a buffer overflow
condition. The randomness of the canary words is important because if an attacker
can guess the original canary value, they can prevent buffer-overflow detection by
overwriting the canary with the known original value.

This idea has been implemented for a long time. Protection on stack buffers is
provided by StackGuard [20] and many recent implementations. Recent versions of
the Microsoft Visual C compiler have includes the /GS compile option which has a
similar function on the Windows operating system platform [11]. Gray Watson has
implemented “dmalloc, debug malloc library” [73], which is a drop-in replacement
for memory management routines in the system library that provides canary-based
boundary protection for heap-allocated data (along with several forms of debug
support for memory problems such as memory leaks).

The benefits of the canary-based technique are its low overhead and high com-
patibility with existing systems. These systems only modify the structure of stack
frames and at the unreferenced area between global variables, both of which are
not usually accessed directly by user programs. Furthermore, the runtime cost of
introducing canary words is only a few words for each stack frame and up to tens
of additional instructions for the prologue and epilogue code of each function.

The limitation of this approach is obvious: it can only prevent sequential-
access buffer overflow that is used to directly attack execution-controlling data,
and cannot prevent even buffer overflow based on random accesses. If the
execution-controlling data is overwritten directly without modifying the canary
words (e.g., by random-access overflow and other exploits), the system is inef-
fective.

2.2.2 Unexecutable stack area

Until recently, all addresses in the virtual memory space accessible from processes
were marked “executable” by many operating systems. This setting has been ef-
fectively used to exploit many existing security flaws. An attacker attempting to
exploit a stack buffer overflow security hole will send a malicious input string with
a program code to be executed at the top part of a string, put data to be written over
execution-controlling data after that, and send the attack string to victim programs.
The data that replaces the execution-controlling data instructs the victim program
to transfer its execution to the code embedded at the top of the attack string, which
is in the stack area. In this way, a successful attack can instruct the victim to exe-
cute virtually any code the attacker chooses. A variant of this type of attack is to

15

place an attack code within the environmental variables of a Unix system, which
are usually placed at the bottom of the execution stacks.

To prevent this kind of attacks, many operating systems now forbid execution
of program code in the stack area. For example, the Solaris operating system by
Sun Microsystems forbids stack execution by default from version 9 onwards [68].
Implementation of this feature is difficult in the Intel IA32 architecture, though,
because of a shortcoming in the page-based protection design of this architecture.
However, both AMD and Intel have recently extended the CPU architecture to sup-
port such protection (called NX bits [1, 19]) and Windows XP SP2 has introduced
a feature to enable such protection [3].

Still, this protection improves security only slightly. The use of stack-placed
execution code for execution hijacking is done only because it is convenient, not
because it is required for attacks. If stack execution is forbidden, attackers will
simply start to use a different method. There are many means of attack without
using stack execution (for example, that described in [28]).

2.2.3 Memory management using a live-object table

Several implementations check for buffer overflows and other forms of memory
access dynamically by using a table of live objects maintained during program ex-
ecution. Loginov et. al. [41] proposed a method to ensure pointer safety by adding
a 4-bit tag to every octet in the working memory. “Backward-compatible bounds
checking” by Jones and Kelly [36] modifies the GNU C compiler (gcc) to insert
bounds-checking code that uses a table of live objects. Their approach makes it im-
possible to access a memory which is exterior to any objects (e.g., function return
addresses in the stack), but any data in the memory can still read and modified by
forging pointer offsets. Jones and Kelly claim their method detects pointer offset
forging, but it does not seem to work when pointers stored on memory are over-
written by integers.

Safe-C [5] can detect all errors caused by early deallocation of memory regions.
However, they do not mention anything about cast operations and it seems to be not
trivial to extend their work to support unlimited cast operations. for the same reason
as that of Jones and Kelly’s work. Patil and Fischer [53] proposed an interesting
method to detect memory misuses. In their method, boundary checking is done in
a separate guard process program slice techniques are used to reduce the runtime
overhead. However, there are limitations regarding the source and destination types
of cast operations.

2.2.4 Various safe languages

First, of course, there are already plenty of languages which ensure complete
memory safety. Plenty of dynamically-typed languages (Common Lisp, Scheme,
SmallTalk and so on) have been implemented securely. These languages have been
used to implement many real-world services. A number of general-purpose script-

16

ing languages (e.g., Perl, Python and Ruby), as well as many domain-specific lan-
guages (such as PHP) are used for web services on the Internet. As long as they
are correctly implemented, the implementation of these languages is memory safe
because of the nature of the design principle for dynamically-typed languages.

There are also many safe implementations of statically-typed languages. For
example, Haskell ([25] for example) and ML and its variants (for example, Stan-
dard ML [66, 58] and Objective Caml [56]) have been used to implement various
large applications. The design and implementation of these languages not only
provide protection against runtime memory corruption, but also help programmers
reduce the occurence of conceptual errors in programs through the highly sophis-
ticated design of the type systems. The syntaxes of these languages are designed
according to a concept completely different idea from that underlying imperative
languages such as C.

There are also imperative strongly-typed safe languages. Among these avail-
able safe languages, Java [26] is used for the vast majority of applications. It is used
for many stand-alone programs (such as Eclipse), and for many web-based appli-
cations on both the host-side (Java Servlets) and the client-side (Java Applets).

These languages have many advantages over the C language for writing new
programs. The design of many current languages is more advanced than that of
the C language, whose design was essentially fixed in more than 30 years ago
intentionally at low level. Recent improvements in the implementation of lan-
guages, along with the rapid increase in computing power, now make it practical
to run production-level programs in those languages. Regrettably, though, these
languages can contribute only a little to countermeasures to block security holes.
Many programmers are reluctant to change over to those new languages, and the
cost of porting existing C programs to other languages is significant.

2.2.5 Variants of safe C-like languages

Some other safe imperative languages resemble the C language. For example, Cy-
clone [27, 35] is designed to ease the porting of C programs so that they become
type-safe. For common C programs to conform to Cyclone, however, about 10% of
the program code must be rewritten, which is a considerable task, At the extreme,
Java and (the type-safe portion of) C# can also be considered examples of such lan-
guages, but of course porting C programs to these languages is more burdensome.

2.2.6 CCured

Necula et al. has designed and implemented CCured [49, 18], a sound type sys-
tem which can support C programs including cast operations. The approach of
CCured is to analyze the entire program and then split the program into two parts:
the “type-safe part” which does not use cast operations, and the “type-unsafe part”
which can be contaminated by cast operations. However, to the best of my knowl-
edge, the designers did not focus on perfect source-level compatibility with existing

17

programs, and in fact the system supports only a subset of the ANSI-C semantics.
The reported amount of required rewriting code is less than 1% of the source code,
which is much smaller than Cyclone, but still a significant amount. Fail-Safe C
was designed with a greater focus on complete compatibility with the ANSI-C
specification, and on the highest possible compatibility with existing programs.

The main technical difference between CCured and Fail-Safe C is that CCured
is mainly based on static analysis of cast operations, while Fail-Safe C treats dy-
namic handling as its main tool. This difference in the main design concept leads to
several differences between these two systems. A more detailed comparison made
in Section 6.2 after the methods of Fail-Safe C are described in detail.

18

Chapter 3

Basic Concepts

This chapter gives an overview of the design concepts of the Fail-Safe C system.

3.1 Value representation

3.1.1 Fat pointer and cast flag

To access various information about blocks (e.g., block size and content type) re-
gardless of the pointer arithmetic, Fail-Safe C internally represents all pointers
using fat-pointer representations: the pair consisting of a base and an offset. The
base parts of a fat pointer always keeps the address of the top of a block and the
offset part keeps the relative position of the element referred to by the pointer from
the top of the block. Values stored in the offset parts are virtual offsets, which will
be described below (Section 3.2). A special value of 0 can be used as a base part
representing “null pointers”; i.e., pointer values which do not point to any objects.

In addition, a Boolean flag, called a cast flag, is added to every pointer. This
flag indicates whether the pointer can be used for normal accesses or the access
methods must be used for memory accesses. The value of the fat pointers will
hereafter be given as (b,o)f , where b is the base part, o is the offset part, and
f is the cast flag. The cast flag embedded into the base part is placed to the bit
which correspond to the word size (i.e., third lowest bit in 32-bit architectures)
(Figure 3.2), to enable fast checking of cast flags described in Section 4.2.

During program execution, the following conditions are maintained for all cast
flags in the pointers.

• The cast flag of a pointer must be set to 1 if the type of the memory block
referred to by the pointer different from that expected from the pointer type
(i.e., when the pointer is cast). (As an exception, the cast flag of null pointers
can be 01.)

1The reasons to allow null pointer with cast flag of 0 are

1. Static initializers for zeros (or null pointers) in an array can be omitted in the C language. If

19

Pointer creation:

&x −→ (bx,0)0 where bx is the base address of x

Pointer arithmetics:

(b,o) f︸ ︷︷ ︸
T ∗

± y︸︷︷︸
integer

−→ (b,o± y · s) f where s is the size of type T

Pointer casts:

(T ′)(b,o) f −→ (b,o) f ′ (f ′ is recalculated from b and o for type T′)

Figure 3.1: Arithmetic and cast on fat pointers

base virtual offsetpointers

int (word integers) base value

c 00

(c = cast flag)

short value

char v.

float IEEE float

double IEEE float

Figure 3.2: Representations of pointers, integers, and floating numbers

20

• The cast flag of a pointer must also be set to one if the offset field of the
pointer is not a multiple of the virtual size of the element type.

Note that the second condition, as well as the first condition, is required for correct
access to data inside memory blocks. To meet above conditions, a cast flag is re-
calculated whenever a value is cast to a pointer type (including pointer-to-pointer
casts). Speaking abstractly, the cast flag does not need to be modified when pointer
arithmetic operations are performed, because these operations always add or sub-
tract offsets which are multiples of the element size. However, integer overflow
conditions might violate the second condition on pointer arithmetics in an actual
implementation, when the size of the element type are not a power of 2 (See Sec-
tion A.2.3.2 for further details). Figure 3.1 summarizes the behavior of fat pointers
and cast flags in related operations.

The main reason for introducing a cast flag is to improve performance: al-
though the access methods associated with each memory block can support all
kinds of memory accesses perfectly, for either cast pointers and non-cast point-
ers, these also introduce a heavy execution overhead (equal to about 10 times of
the execution time). The cast flags serve as a binary switch embedded in every
pointer to selectively provide shortcuts around slow access methods. Introducing
cast flags means that all memory-related operations not related to a cast pointer can
be served in a similar way and with the same order of execution overhead for sev-
eral statically-typed safe languages (e.g., Java and ML). A slightly similar concept
that mixes both type-universal accesses and type-specific accesses in one system
is used by CCured [49, 18]. However, the choices of two semantics in CCured is
static (compile time), while in Fail-Safe C is dynamic (execution time) for every
pointer. In CCured, if a pointer is statically determined as “possibly cast” (called
“wild” in CCured), all values possibly indirectly referred from the pointer must
also be determined as “wild” data. This “infection” effect of a cast does not occur
in Fail-Safe C. Thanks to the cast flag and the existence of access methods, the bad
effect caused by a cast operation only infects the pointer itself, not all subsidiary
data. Data referred from the pointer can still use the usual efficient representations
of data, and this enables faster operations.

3.1.2 Fat integers

ANSI-C requires that integers whose size is larger than or equal to the size of
pointers should be able to hold any pointer values. Integer values which were
originally pointers can be cast back to corresponding pointer types if the value

the null pointers must have cast flag set to 1, all elements of uninitialized fat pointer arrays
must be translated to explicit initializers ((4,0) on 32-bit architectures).

2. Future versions of Fail-Safe C will implement an analysis to find some pointer variables which
do not point to differently typed objects. Because null pointers frequently appear even on
those pointers, they should be included into the set of “well-typed” pointers. Otherwise, the
effectiveness of these analysis will decrease.

21

Integer creation:
i (constant) −→ [0, i]

Integer arithmetics:

[b,v]� [b′,v′] −→ [0,v� v′] (� may be any operator)

Casts between integers and pointers:

(int)(b,o) f −→ [b,b+ o]

(T∗)[b,v] −→ (b,v−b) f (f is recalculated from b and v−b for type T∗)

Figure 3.3: Arithmetics and cast on fat integers

is not modified while they are integers. To implement this behavior, the usual
one-word representation of the integers is of course insufficient because we cannot
distinguish those integers (valid as pointers) from arbitrary integers. Therefore,
Fail-Safe C uses two-word representation for integers also, which are called fat
integers.

Conceptually, the same representation as for the fat pointers can be used for fat
integers. However, to enable more efficient implementation of integer arithmetic
operations, the current design of Fail-Safe C uses the representation that slightly
differs from that of the fat pointers. A fat integer in Fail-Safe C is internally handled
as a pair consisting of the base and a value (or virtual address), hereafter written as
[b,v]. The virtual address is defined to be equivalent to the sum of the base and the
offset. This mapping provides an injective map from the in-boundary fat pointer
values to integers2 (ignoring cast flags); i.e., the virtual addresses of two different
elements in any memory block (including the elements of different blocks) are
different.

All arithmetic operations on integers ignore the bases of operands and only op-
erate on the value parts. Arithmetic result always have base part of 0, correspond-
ing to a null pointer. A cast operation between pointers and integers converts the
representations according to the above-defined mapping. Figure 3.3 summarizes
the behavior of fat integers on related operations.

Integer types that are narrower than the pointer size (e.g. char and short in
typical 32-bit architectures) cannot have any pointer value: thus, the representa-
tions the same as native ones are used in Fail-Safe C.

2The mapping from all fat pointers (including out-of-boundary pointers) to a virtual address is
surjective rather than injective.

22

3.2 Typed memory blocks

Every memory access operation in Fail-Safe C must ensure that the offset and the
type of a pointer are valid. To check this property at runtime, the system must
know the boundary and the type of contents for every memory block. The runtime
of Fail-Safe C keeps track of these by using custom memory management routines.

A memory block is an atomic unit of memory management and boundary over-
flow detection in Fail-Safe C. Each block consists of a block header and a data
area. A block header contains information on the block’s size and its dynamic
type, which we call the data representation type. The actual layout and represen-
tation of the data stored in a block may depend on its data representation type: a
different representation can be used for each representation type. This allows the
implementation to utilize several different representations for each types appearing
in user programs. Basically, an array of values in the same representation as scalar
values is used in the data area. For example, the system basically uses a simple
array structure identical to that of conventional compilers for data of type double,
and a packed array of two-word encoded pointers for data of pointer types (e.g.
char *). The actual representations used in the memory blocks of various data
representation types will be described in detail in Section A.1.1.

3.2.1 Virtual offsets

Several method can be used to indicate a specific element in a memory block.
The usual methods used in conventional language implementations uses one of the
memory addresses of elements, the index count of elements from the top of the
block (sometimes called the word offset), or the difference between the memory
address and the address of the block top (the byte-offset). For most implementa-
tions, some or all or all three of these will work.

The situation is more complicated in Fail-Safe C, though, because there is a
cast operation which needs to be implemented safely and consistently. The method
using real addresses or offsets of real addresses creates a safety problem (although
these are used for many existing systems aimed at making the C language secure):
if a pointer is cast to char * type, the pointer will point to every byte of the internal
representations of several data including pointers. If the internal information of
pointers required to check the boundary condition of memory blocks (i.e., the base
parts of fat pointers) are compromised through these cast pointers, the safety of
the system is no longer ensured. Several proposed systems including Safe-C and
BCC seems to suffer from this problem. CCured [49, 18] solves the problem by
maintaining a bit-array for each memory block indicating whether each word in
the block can be used as a valid pointer to the top of block; however, the handling
is rather complex and not intuitive.

The element index does not have a similar problem for primitive types if align-
ment requirements are equal to the size of the corresponding type. However, this
complicates the implementation of cast operations, and also makes it impossible

23

to properly represent a cast pointer to data types having alignment requirements
smaller than the element size (e.g. structs); i.e., the specification allows pointers
not aligned to elements.

As a consequence, another method of addressing had to be created for Fail-
Safe C. The addressing used in the Fail-Safe C system is called virtual offset,
which corresponds to a program-visible size (hereafter called the virtual size) of
elements, not the actual size of representations altered to implement security mech-
anisms. For example, the virtual size of a natural-sized integer in Fail-Safe C will
be equal to the native word size—although these values uses two-word represen-
tation internally—because its value range visible to the running user program will
still correspond to one word. The virtual size of pointers will also be one word,
and floating numbers and smaller integers will have virtual sizes equivalent to the
real sizes. In other words, the virtual size of every type will be the real size of the
equivalent data type in the native implementation of the C language. This defini-
tion of virtual offsets does not lead to the problems that arise with the other two
methods: a cast pointer temporarily points to the middle of elements can be prop-
erly cast back to its original type, and specifying only the base part of fat pointers
is not possible because there is no way to point to only the base part of pointers.

Another important consequence of this representation is the possibility of con-
sistent definition for memory accesses performed via cast pointers. Although the
ANSI-C standard does not support memory accesses via cast pointers, an ill-typed
memory access is sometimes safe (e.g., when reading the first byte of a pointer).
Actually, C programmers are often skilled at using this sort of access and find it
useful. The Fail-Safe C system allows use of ill-typed memory access as far as
possible unless it collapses runtime memory structures, since such accesses appear
frequently in most application programs. Because the virtual sizes in Fail-Safe C
correspond to real sizes in native implementation, the semantic mapping from a
Fail-Safe C representation of data to the corresponding native representation can
be defined. For example, the four bytes read from inside one integers (assuming a
32-bit architecture) via a cast pointer can be defined in a way that the concatenation
of four 8-bit values (as binary numbers) constitutes a 32-bit value equivalent to the
original integer, as is usual in the native implementation.

3.2.2 Access methods

As the actual representation of data in a memory block differs from that of con-
ventional compilers, some methods to support memory access via a cast pointer
must be provided for every combination of a pointer type and a block representa-
tion type. Fail-Safe C uses an object-oriented implementation technique for this
purpose.

In the header of each block, there is a typeinfo field which contains a pointer to
a block containing several items of information about its representation type. One
type-information block is generated one for each representation type that appears
in a user program. Furthermore, a method table similar to that usually used in C++

24

implementation is stored in the type-information blocks.
Methods stored in method tables (access methods) implements a generic in-

terface for read/write block contents in various sizes—such as byte or word, re-
gardless of the type of block. A read method receives a virtual offset and returns
a corresponding content in a data area as a fat integer3 if given virtual offset falls
inside the block boundary. The write method receives a virtual offset and a value to
be written as a fat integer. These methods will signal a runtime error if the virtual
offset is outside the block boundary.

3.2.3 Memory operations

The dereferencing of a pointer is not trivial. We need to know if a pointer refers
to a valid region and if the type of the target value is correct. The basic memory
dereferencing method used in the Fail-Safe C system is as follows.

1. Check if the pointer is NULL (i.e., base = 0). If so, generate a runtime error.

2. If the cast flag is not set, compare the offset with the size of the referred
memory block. If it is inside the boundary, read the content in the memory.
Otherwise, generate a runtime error.

3. If the cast flag is set, get the pointer to the handler method from the type
information block of the referred block, and invoke it with the pointer as an
argument. The value returned from the handler method is converted to the
expected result type.

If a pointer is non-null, our invariant conditions regarding the pointer value
shown in Section 3.1.2 ensure that the value in the base field always points to a
correct memory block. Therefore, the data representation type and the size of the
referred block is always accessible even if the pointer has been cast.

In step 2, if the cast flag of a non-NULL pointer is not set, the invariants ensures
that the referred region has the data representation type expected for the static type
of the pointer. Thus, exactly one storage format can be assumed. However, if the
cast flag is set, the actual representation of the block may differ from the statically
expected one. In this case, the code sequence delegates the actual memory read
operation to the handler method associated with the block.

Store operations to the memory are performed with almost the same sequence.
If a pointer has ever been cast, its handler method performs appropriate cast oper-
ations to preserve the invariant conditions regarding its stored value.

The actual implementation, however, is more complicated to enable higher per-
formance and higher compatibility. The diversion from the simple semantics de-
scribed here is discussed in Sections 4.1.2, Section 4.1.1, and Section 4.2.

3Returned values will be narrow (native) integers if the access size is smaller than the word size.

25

3.3 Memory management

Fail-Safe C utilizes a garbage-collection technique, as is used in almost all im-
plementations of safe languages, to prevent fatal misbehavior related to the early
deallocation of memory blocks. When a user program requests deallocation of a
memory block, the runtime system will not immediately release the block, but only
forbids further access to the block.4 The garbage collector will later checks if there
are no pointers pointing to the block, and then releases the memory block.

3.3.1 Temporal properties of local variables

A pointer to a local variable is slightly problematic for the Fail-Safe C system.
Such a pointer may escape its scope by being assigned to a global variable or other
external data structure, and continue to exist even after the execution of the func-
tion containing the local variable ends. However, such a local variable is usually
allocated in the call stack and will disappear unconditionally when the function ex-
ecution finishes. The solution applied by the Fail-Safe C system is simple: all local
variables whose address is taken are allocated in the heap area, and the garbage
collector will take care of deallocation. A code allocating memory blocks for these
variables is inserted at the top of functions along with the value initializations.

3.4 Structures and unions

A struct(ure) value in ANSI-C language is a kind of first-class value: although it
has an internal structure, the value can be assigned to variables like other scalar
values, or it can be passed to functions as an argument or returned as a result, none
of which can be done for arrays. Fail-Safe C maps each struct declared in a user
program to another struct that has basically a same set of elements, each of which is
translated to its corresponding value representation. As the representations inside
translated structs become non-uniform and change for every structs declared, the
type information and access methods have to be automatically generated during
compilation. An example of a translated structures is shown in Figure 3.4. The
size of a translated representation for the a struct will not exceed twice the size of
the corresponding native struct (including any padding), because each element of
the native struct can be placed at the offset which is twice of the original offset in
the translated representation in the worst case. This upper bound is important for
the handling of heap-allocated structure, described in Section 4.3.

On the memory blocks of struct types, only one block header is added to the
top of a block, but not for each elements of the blocks. As a consequence of this
and the rule of cast flags explained in Section 3.1.1, every pointer pointing to an

4This behavior differs slightly from that of most safe languages because user programs are sup-
posed to call free() function to declare explicitly that memory blocks are no longer intended to be
used.

26

struct {
double d;
char c;
float f;
char *p[3];

} s[2];

Native representation:

d p[0] p[1]

s[0]

0 8 12 16 24 28 32offset

c

9 20

f p[2]pad
[3b]

pad
[4b]

Translated representation:

base offset
d

p[0]

base offset

p[1]

s[0]

0 8 12 16 24 28 32
0 8 16 40 4812 20 36 44

c pad
[3b]

9 20

pad
[4b]

9 24 28 32

f
base offset

p[2]

virtual offset:
real offset:

1. The representation shown is for a big-endian 32-bit machine which requires double-
word alignment for double type.

2. A 3-byte padding labeled “pad[3b]” aligns field f to the a word boundary in both
virtual/real addressing.

3. A 4-byte paddings labelled “pad[4b]” aligns the whole structure to a double-word
boundary (which is required by field d) in the virtual addressing.

4. A 4-byte paddings at the last word of the translated representation aligns the whole
structure to a double-word boundary in the real addressing. This padding is invisible
to the user program.

Figure 3.4: An example of the representation of a struct

27

individual element of a struct must have its cast flag set, even if there is no cast
in the original program. The accesses through these pointers will be handled by
access methods, which creates some runtime overhead. As current Fail-Safe C
implements all accesses to arrays through pointer arithmetic, all accesses to array-
type elements inside structs are done through access methods. This is a current
limitation of Fail-Safe C. The main reason for not adding headers corresponding
to the elements is that if will leads to two different pointer representations both
of which point to the same element of a struct (one through the outer header to
the struct, and one through the inner header to the element). Because the inner
header requires a memory space and some types have larger real sizes than virtual
sizes, the virtual addresses, or the integer equivalents, of these two pointers will
be differ, which will complicate the semantics and confuse both the programs and
users. For C programs, finding a complete solution to this problem is likely to be
difficult. I plan to reduce this unwanted overhead through program analysis and
better handling of array accesses.

Unions in C language are treated as a kind of implicit cast operation in Fail-
Safe C. For example, a program

struct S1 { int x; char *y; };
struct S2 { int x; double y; };

union U1 { struct S1 s1; struct S2 s2; };

union U1 u1 = { 1, 1.0 };

int main(void) {
u1.s1.x; u1.s1.y;
u1.s2.x; u1.s2.y;

}

is translated into a program equivalent to

struct S1 { int x; char *y; }; /* size = 8 */
struct S2 { int x; double y; }; /* size = 16 */

struct U1 { struct S1 s1; char __pad[8]; };
/* __pad required for making size correct */

struct U1 u1 = { {1, 1.0}, {0} };

int main(void) {
((struct S1 *)(&u1))->x;
((struct S1 *)(&u1))->y;
((struct S2 *)(&u1))->x;
((struct S2 *)(&u1))->y;

}

at an early stage of compilation.5 Access methods perform the conversion neces-
5The translation is performed after adding padding for every vacant byte in structures, to avoid

problems arise from alignment incompatibility.

28

sary to support the various (sometimes peculiar) operations performed on union
values.

3.5 Functions

User-defined functions are translated into functions taking and returning values in
the translated representations. Direct invocations of user-defined functions (and
library functions) are simply translated into function invocations for the translated
functions. Section A.2.3 provides a detailed description of the translations of func-
tion bodies in the current implementation of Fail-Safe C.

There are two topics which requires additional handling—variable arguments
and function pointers.

3.5.1 Variable arguments

Variable arguments, or varargs, are a feature of the C language which allows the
number of arguments for a function (including a user-defined function) to change
for every invocation of the function. The most widely used instance of vararg
functions might be the printf() function in the standard library. In the usual im-
plementation of the C language, varargs are typically implemented in the following
ways6 (Figure 3.5).

• The caller puts the arguments in the reverse order of the parameter list onto
the stack. This means that the fixed arguments, which appear before variable
arguments in the parameter list, are placed at the top of the arguments in the
stack, in a fixed location relative to the frame pointer.

• The called function accesses fixed arguments through addressing relative to
the frame pointer. This works whatever the number of arguments are pushed
by the caller.

• The function calculates the address of the first variable argument, either from
the address of the last fixed argument or using implementation-provided
loopholes. For example, the GNU C compiler (gcc) provides a special
pseudo-function __builtin_va_nextarg for this purpose.

• If more variable arguments are required, the addresses of these are calculated
using the address of the previous variable argument.

Of course, this native method of vararg handling is unsafe and not directly applica-
ble to Fail-Safe C. However, Fail-Safe C should behave similarly regarding the use

6The implementation of varargs depends heavily on the underlying architecture and the ABI
definitions. For example, on the SPARC32 architecture arguments are passed in registers as long as
the number of hardware registers permits. The called varargs function first puts all register-passed
arguments at the top of the stack by itself to construct the stack format described here.

29

Stack growing direction

Return Address

stack pointer

48 (’0’)

Memory Address

Local Variables

C
u

rren
t F

ram
e

frame pointer

Prev. Frame Ptr.

"%d %x %c"

3

&p

printf("%d %x %c", 3, &p, ’0’);

scan

Figure 3.5: Handling of varargs in a native compiler

30

type: int
size: 12
varargs

[3, 0]

[&p, &p] = (&p, 0)

[0, 48] = [0, ’0’]

format:

va_p:

(, 0)

(, 0)

type: char
size: 9
constant

"%d %x %c\0"

in heap:

local variables in stack:
in static data area:

scan

Figure 3.6: Handling of varargs in Fail-Safe C

of varargs because many existing programs depend on the behavior of the above
implementation to some extent. (For example, many programs print the value of a
pointer by using printf with integer conversion specifiers like “%08x”, not using
a proper specifier for pointers “%p”.)

The Fail-Safe C implementation of varargs is as follows (Figure 3.6): all vararg
arguments are stored in a temporarily allocated block of fat integers from the first
one to the last. The address of the block is passed to functions as a hidden, addi-
tional parameter. The function will then take varargs from the block, sequentially
from the top. Comparing Figure 3.4 and 3.5, we can see that there is a natural cor-
respondence between the semantics in the two implementations. If the arguments
passed are redundant, the rest of the arguments will be silently ignored, similar
to with the native semantics. If an argument is insufficient, fetching the missing
varargs will cause a runtime error, in the same way as access violations do in nor-
mal memory blocks.

3.5.2 Function pointers

The invocation of a function via pointers is complicated, again because of the ex-
istence of a cast. If a function pointer is not cast, simply invoking the referred
function as usual is sufficient. However, if a pointer is cast, the referred function
may expect incompatible arguments7, or the pointer may not even point to a func-
tion.

Fail-Safe C solves this problem by again using an implementation technique

7Even if the interface is fortunately “compatible” in the native semantics, it may become incom-
patible in Fail-Safe C. For example, pointers to different types have incompatible representations in
Fail-Safe C. The sample code shown in Figure 1.1 is an instance affected by this incompatibility.

31

spec_entry

gen_entry

typeinfo block
kind: function
methods:
 read_*_noaccess
 write_*_noaccess

main function body

type-generic
stub entry point

call

typeinfo:
size: --

Figure 3.7: The structure of function stub blocks.

borrowed from object-oriented languages. In addition to the usual entry points
used for direct invocation of functions, Fail-Safe C generates a generic entry point
for each function, which uses a common interface unified for all functions. Generic
entry points receive all arguments in the form of varargs, as described above. There
is also a memory block generated for each function, called a function stub block.
It contains two pointers to the both entry points of functions, and is tagged with a
special mark as a block corresponding to a function. Figure 3.7 shows the structure
of a function stub block.

If a pointer to be invoked is cast, the caller checks the special mark on the re-
ferred block, takes the address of the generic entry point, and passes all arguments
as varargs. A generic entry point then takes arguments from the vararg block, con-
verts representations, and then passes them to the usual entry point of the function.
If the pointer is not cast, the caller can instead take the address of the usual entry
point and call it directly.

3.6 Theoretical aspects of the system design

In the final section of this chapter, some concepts underlying the system design of
the Fail-Safe C are explained.

3.6.1 Invariant conditions and safety

As explained in Section 3.1.1 and the following sections, valid fat pointers and fat
integers are defined as follows:

32

Definition 3.1 A fat pointer (b,o) f is valid as a pointer to type T when

1. the base b is an address of a valid memory block (a global variable, a function
block or a heap object), or 0, and

2. if the cast flag f is 0,

(a) the object at the address b has dynamic type T when b is not 0, and

(b) the offset o is a multiple of the size of type T .

Definition 3.2 A fat integer [b,v] is valid as a value of wide integer type value
when the base b is an address of a valid memory block or 0.

The key point of Definition 3.1 is that the cast flag f dynamically chooses one
of two well-known strategies to confirm the safety of programming languages. If
f is 1, a pointer is similar to a reference in dynamically-typed languages (Lisp,
Scheme, etc.). In dynamically-typed languages, any reference can point to any
valid objects in a heap area, but all dereferencing operations must first check the
type of the referred object. In contrast, a pointer with cast flag 0 is similar to a ref-
erence in statically-typed languages (ML, Haskell, etc.). In these languages, every
reference must point to an object of the corresponding types, but dereferencing op-
erations can blindly assume that the static type of the pointer are reliable. Setting
the cast flag f of all pointers to 1 causes the whole system to degenerate to one sim-
ilar to those of a dynamically-typed language, possibly becoming much slower than
the current system. In contrast, forcing all cast flags to be 0 makes the whole sys-
tem very similar to that of statically-typed language, where pointer cast operations
are forbidden. Table 3.1 summarizes the differences between dynamically-typed
and statically-typed languages and Fail-Safe C. The fat integers are, conceptually,
simply void * pointers with a lightly different representation.

Thus, we should be able to derive the proof of safety from usual proof of safety
for typed safe languages with reference cells once a complete dynamic semantics
is written down for Fail-Safe C. The usual proof of the safety for the typed safe
languages with reference cells—for example, the one shown in Chapters 13 and 14
of [55]8—follows the following steps.

1. Define a well-typed condition of a store, or the state of memory locations,
based on the definition of the well-typedness of values recursively applied to
the element in the memory state according to store types.

2. Prove the preservation property, which is defined to preserve well-typedness
of store types, as well as the types of evaluating terms and others.

3. Prove the progress, assuming the well-typedness of the current store.

8This reference concerns functional languages, but the basic principle of the proofs can also be
applied for imperative languages.

33

Table 3.1: Comparison of several aspects of dynamically-typed languages,
statically-typed languages and Fail-Safe C

dynamically-
typed
languages

statically-typed
languages

Fail-Safe C
(f : cast flag)

Pointers may
point to invalid
address

no no no

Pointers may
point to null
address

yesa yesa yes

Pointers may
point to object
of unexpected
type

yes no when f = 1

Pointers may
point to object
of expected type

yesb yes yes

Dereference
possible without
type checking

no yes when f = 0

Dereference
possible after
type checking

yes yesc yes

Runtime type
information
required

yes no yes

aIf the language provides such feature.
bIf any “expected type” is definable.
cIf runtime type information is available.

34

The well-typed condition of a store can be simply derived from the usual recur-
sive structure of definitions and our definition of the well-typedness of fat point-
ers. Structs can basically be treated like a record. The proofs of preservation and
progress basically inherit the original structures. Obviously, the main difference in
these proofs will be in the handling of cast pointers. For the preservation property,
the read from store via a cast pointer will evaluate to a value which is explicitly
coerced into the expected type (see step 3 in Section 3.2.3) if the evaluation is to
succeed without errors, which satisfies the requirement. For the progress property,
the important point of proof will be that if a read operation refers to a memory
block of a different type, the result of a one-step evaluation should be defined for
all possible types in the program if the referring pointer has a cast flag set, as in the
definition of dynamic semantics for untyped languages (this can lead to an explicit
error condition, though). The reduction of non-cast pointers dereferencing can be
a partial function, as is usual in statically-typed languages, and it corresponds to
the implementation of direct memory accesses.

The complete proof of safety will be derived in future work.

3.6.2 Partial compatibility with native compilers

The second issue of discussion is the compatibility with the semantics of native
compilers.

One design principle of Fail-Safe C is to always maintain a one-way mapping
between the state of the program running on Fail-Safe C to the corresponding state
of the program running on the native system. As implied by the cast operation
definitions given in Sections 3.1.1 and 3.1.2 and the virtual offsets in Section 3.2.1,
and many other descriptions, the intended mapping can be defined as the following
erase operator:

Definition 3.3 A base-erasing function erase(), or | · |, for scalar values and struct
values can be defined as follows:

• erase for pointers:

|(NULL,x) f | = x

|(b,o) f | = b+ o

• erase for integers:

|[NULL,v]| = v

|[b,v]| = v

• erase for objects:

|{p1, p2, . . . , pn}| = {|p1|, |p2|, . . . , |pn|}

35

After a similar definition provided for the program state and other things has
appeared in the proofs, the following rough sketch of a commutative diagram can
be imagined for the single-step evaluation of Fail-Safe C (stepFSC) and the native
semantics (stepC):

Σ = (H,S,P) erase−−−−→ |Σ| = (|H|, |S|,P)⏐⏐�stepFSC

⏐⏐�stepC

Σ′ = (H ′,S′,P′) erase−−−−→ |Σ′| = (|H ′|, |S′|,P′)
(H: state of heap store, S: state of local variables, P: evaluating program)

If this diagram holds, it roughly means the translated program will behave in the
same way as the corresponding native program does. More precisely, the following
property can be proven:

Partial Compatibility: the program behaves in the same way as usual programs,
if the Fail-Safe C system does not generate a runtime error.

|stepFSC(Σ)| = stepC |Σ| if stepFSC(Σ) �= error

The definition of stepC can be simple; for example, using the usual flat model of
a byte array (a partial map from the integer address to the byte value) to express
memory states. In the actual proof, there may be some kind of universal/existential
qualifiers around the above equation to handle indeterminism in some operations
(e.g., the addresses of allocated memory area). The main difficulty regarding these
proofs will be the handling of indeterminism appearing in both sets of semantics.

3.6.3 Completeness (full compatibility)

The final thing to prove is that a the correct ANSI-C program does not fail under
Fail-Safe C. However, it is difficult to formally define formally what is a “correct”
ANSI-C program. For example, if the pointers are represented simply by integers
corresponding to memory addresses, completeness does not hold. A counterexam-
ple is a small piece of program

char a[1];
char b[1];

char test(void) {
char *p = &a;
char *q = p + ((int)b - (int)a);
return *p;
}

which works with the simple native semantics (because q will have the valid ad-
dress of b), but fails in Fail-Safe C (because q points to a memory block of a, and

36

the address of b is outside that region). Several attempts have been made to for-
mally define the semantics of the C language, however, but none has been entirely
satisfactory. For example, Papaspyrou [51] does not provide a definition for cast
operations, thus which is insufficient for a proof regarding the semantics of Fail-
Safe C. Norrish [50] formalized the semantics of the C language in the form of
input for the HOL theorem prover, but this also seems to lack any formalization
of cast operations. It assumes that every values of every types has an equivalent
representation as a byte array, thus the same problem will arise as with the simple
definition given above.

The most natural modeling of ANSI-C semantics is likely to be one using a
partial map from a memory address to a byte value as a memory model, except that
every word in memory (and every integer) remembers whether a value points to a
specific memory region and if so which region. This will resemble a degenerated
Fail-Safe C system in which all memory blocks and all pointers use fat integers as
a representation. In Fail-Safe C, there is one-to-one mapping between fat pointers
and fat integers, except for cast flags, and all memory blocks will behave in the
same way as fat integer blocks when access methods are used, Therefore, the cor-
respondence between the degenerated system and the full Fail-Safe C system can
be easily traced.9

3.6.4 Future extension: certifying/certified compilation

Provided that the safety properties described in the previous sections are proven,
the Fail-Safe C system can contribute to the safety of the entire operating system.
If all programs are guaranteed to be compiled with Fail-Safe C and other safe
languages, the underlying operating system need not rely on a hardware-based
memory-protection mechanism. (Such mechanisms are currently used on most of
modern operating systems.)

For example, the SPIN microkernel system [7] uses Modula-3 language [30]
and a custom C-like language called Cove to ensure the safety of memory access
and system interfaces without the help of memory management units. Kernel-mode
Linux [42] enables any kind of user programs to run in a kernel mode of a Linux
system, assuming that the program safety is ensured by some means such as binary
verification using Typed Assembly Language (TAL) [45, 46, 47]. Fail-Safe C may
allow these systems to become inter-operable with general C programs.

To support dynamic loading of binary programs on these systems, the system
must have some mechanism to guarantee that the loaded program is certainly com-
piled by safe compilers. As such binaries are generated by software, digital signing
of the binaries will not work well, because it is easy to sign a forged binary pro-
gram with the same key that safe compilers use. Instead, most of these systems

9Obviously, the semantics of the degenerated system are not strictly equivalent to ANSI-C, but
they seem to include ANSI-C, which is sufficient for the completeness proof. In addition, the Fail-
Safe C does not detect some undefined behaviors in ANSI-C; for example, creation of an out-of-
bounds pointer without it ever being used.

37

use load-time program verification to ensure that the program meets required static
safety preconditions (usually well-typedness) and have correctly embedded run-
time checks required in addition to static preconditions. To use Fail-Safe C on
these systems, the program compiled by the Fail-Safe C compiler must be verifi-
able in some way. To make load-time verification of complex programs generated
by compilers practical, the compilers should add additional information that works
as an “oracle” of verification. This technique is called certifying compilation, and a
kind of Proof Carrying Code [48, 4, 29] may be useful for the Fail-Safe C system.
Another possibility might be an extended version of TAL, but a large extension
will probably needed to certify Fail-Safe C programs under TAL.

Another kind of certification technique can also be usefully applied with Fail-
Safe C system. Certified compilation ensures that the code generated from a user
program by compilers has the same operational behavior as one predefined by static
and dynamic semantics. Because the program code generated by the Fail-Safe C
compiler is complicated, such certification can be a valuable way to enhance the
effectiveness of the safety proof discussed above.

38

Chapter 4

Advanced Features

This section describes some additional ideas implemented in Fail-Safe C to im-
prove compatibility and execution performance.

4.1 Features on memory block

4.1.1 Additional base storage area

There is a small chance that fat pointers are written to the fields in memory blocks
which contain neither a fat pointer nor a fat integer. Typical cause of this might
be either the use of unions or the lazy type-decision which will be described in
Section 4.3. If such a situation happens, written fat pointer will lose its base part
and converted into a null pointer, which might cause a runtime error later.

To remedy this problem, the Fail-Safe C system allocates an additional base
storage area for once a pointer value is written over any narrow values (Figure 4.1),
and stores the base parts into it. The real size of the storage is the virtual size of
the structured data area, rounded down for word alignment. Each word in this
area corresponds to each (virtual) word at the same virtual offset in the structured
data area. If some words in the structured data area already hold fat pointers or
fat integers, the corresponding slots of the additional base area will not be used
(Figure 4.2). Base address storages are neither modified nor read when memory
blocks are accessed via non-cast pointers.

The handling of the remainder data are has one small, almost negligible short-
coming. If a non-null fat pointer is written over some narrow data, and then a part
of the corresponding word is overwritten via well-typed pointers, then the base part
written to the additional base area at the first step is not cleared, although theoret-
ically the word should not be treated as a valid pointer. This behavior does not
break the safety of the system, and thus the current implementation of Fail-Safe C
ignores this for the sake of execution performance.1

1If users want this problem to be fixed for debugging, all direct write accesses for blocks with
additional base area can be prevented by changing the fastaccess-limit of a block to zero when an

39

header
type = double

size = 40
 addbase

d[0] d[1]

0 16 24 32
0 8 16 40real offset

virtual offset 8 40
24 32

d[2] d[3] d[4]

base0 base1

(0 16 24 328 40)

header
type = float

size = 20
 addbase

f[0] f[1]

0 8 12 16
0 8 1612 20real offset

virtual offset 4 20

f[2] f[3] f[4]

4

value value value value value

f[0] f[1]

(0 8 12 164 20)

f[2] f[3] f[4]

base base base base base

value value value value value

base0 base1 base0 base1 base0 base1 base0 base1

d[0] d[1] d[2] d[3] d[4]

124 20 28 36

Float:

Double:

Figure 4.1: The representation of additional base area for primitive types

40

base0 base1

(0 16 24 32)8

base

d

124 20 28

header
type = struct S

size = 32
 addbase base offset

d p[0]

base offset

p[1]

0 8 12 16 24 28 32
0 8 16 40 4812 20 36 44real offset

virtual offset

c pad
[3b]

9 20

pad
[4b]

9 24 28 32

f

base offset

p[2]

base

f

base

c pad
[3b]

valuevaluevalue val.v

pad
[4b]

(not used)

Figure 4.2: The representation of additional base area for (non-continuous) structs

4.1.2 Remainder data area

Sometimes C programmers allocate an memory area whose size is not a multiple
of the size of its data type, to implement a “variable-sized structure” (described in
Section 1.2(3)). In such case, Fail-Safe C allocates a “remainder area” to handle
memory operations on these surplus memory area.2

The data format in a remainder area depends on the data representation for-
mat of the main part of the block: if the representation is equivalent to the native
representation (hereafter called continuous data representation), the format of the
remainder data will also be a flat, native-compatible representation. In other words,
the main data area and the remainder data area are continuously represented in the
native-compatible format.3 An additional base storage area is used when fat values
are stored into remainder data area (Figure 4.3).

In contrast, if the representation in is not continuous, a “separate” format is
used for remainder area: the value part of data are laid out sequentially, then the
base part of values follows. If the size of remainder area is not multiple of machine
word size, the number of base addresses are truncated down. I chose this separate
format for a remainder data area because the most common use of those indivisible

additional base area is allocated for the block. This, however, sacrifices the execution performance
in a large amount.

2There will be no remainder area for any statically allocated data blocks, because such a data
structure cannot be represented statically in the syntax of the C language.

3The main reason for choosing this format is that a size of the main data area of continuous types
may be indivisible by the word size. A word in additional base area might corresponds to the word
which lays over both main data area and the remainder data area (the word base[32] in the upper case
of Figure 4.3).

41

struct S { /* continuous */
char c;
char s[6];
};
struct S *v = malloc(38);

(0 16 24 328 124 20 28

header
type = struct S

total = 38
structured = 35

 addbase

s[0-5]

0
virtual offset

c

valuev

v[0]

s[0-5]c

valuev

v[1]

s[0-5]c

valuev

v[2]

s[0-5]c

valuev

v[3]

s[0-5]c

valuev

v[4]

remainder (3bytes)

val

base

[0]

base

[4]

base

[8]

base

[12]

base

[16]

base

[20]

base

[24]

base

[28]

base

[32]

36)

1
7

8
14

15
21

22
28

29
35

38

0
real offset

1
7

8
14

15
21

22
28

29
35

38

struct S { /* non-continuous */
char *p;
float f;
};
struct S *a = malloc(22);

(0 16)8 124

header
type = struct S

total = 22
structured=16

 addbase base offset

p

0 4 8 12 22 (16 20)
0 8 1612 20 36real offset

virtual offset 16
24 30 32

f

base

f

value

a[0]

base offset

p f

value

a[1]

base

f

remai-
nder

(6bytes)

value

remai-
nder

(1word)

base

Figure 4.3: Formats of remainder area

42

data size is to put data buffer (usually in char type) after dynamically-allocated
data structures. Thus, the format of this area is optimized for raw data storage
instead of pointer storage.4 Furthermore, if the all elements of a data block are
fat values, allocating an additional base storage are only for the remainder area is
superfluous.

4.2 Fast checking of cast flags

When a fat pointer is dereferenced, three properties must be checked before directly
accessing a data area of the referred memory block: (1) that pointer is not null, (2)
that the pointer is not cast, and (3) that the virtual offset of the pointer points to an
interior part of the memory block (Figure 4.4). While (1) and (3) are common to
almost all safe languages having flat array types (e.g., Java, ML, and Lisp), Fail-
Safe C also needs (2), whose overhead of is not negligible. To avoid this overhead,
the implementation uses a clever trick.

First, every block and block header are double-word aligned so that every base
address of a block will have 0 on the bit corresponding to the cast flag. Next,
the cast flag in fat pointers are located to a bit corresponds to the word size (Sec-
tion 3.1.1), so that the base part of a cast fat pointer will have the integer value
which is larger than the corresponding block address by the word size, exactly.
Finally, each block header has an extra word which always contains a zero at just
one word after the location of fastaccess-limit. Then, as a consequence of the three
properties, if a code refers to the fastaccess-limit field of the header from some cast
pointer through offset-calculation as if it were not cast, it will read the zero stored
in the header block, instead of the fastaccess-limit field (Figure 4.5).

In other circumstances, if a null pointer is dereferenced as if it were a valid
pointer, a offset checking code which attempts to read the fastaccess-limit field will
access to very end of the address space (because of an integer wraparound). In most
operating systems, no memories are mapped to these addresses and a SIGSEGV
signal will always be raised if they are accessed. This condition can be reliably
detected by checking the address information passed to signal handlers. Thus,
those the checks can be merged into one offset check, which is necessary anyway
in a general situation, without damaging safety properties. An experiment has
shown that this reduces the program execution time in memory-heavy benchmarks
by roughly 4% to 18% (Section 5.3).

4.3 Determining types of blocks

The implementation of memory blocks in Fail-Safe C depends on the type infor-
mation associated with each memory block. However, there are many situations

4The newer specification of C language [34] (usually called C99) supports explicit declaration
for variable-size fields in the tail of structures. In future extension of Fail-Safe C to C99, the data
format for remainder data area might be changed to reflect the declared data type for that area.

43

null?

cast pointer?

offset overrun?

calculate
real offset

calculate
real offset

DONE

pick up
access method

delegate access to
access method

convert
result type

START

ERROR

Y

Y

Y

N

N

N

Success
Failure

Figure 4.4: Unoptimized procedure for memory access via pointers

44

fastaccess-limit
0

base address
referred by

an uncast pointer

block header

base address
referred by
a cast pointer

data area

Figure 4.5: Fast cast-flag check.

where the block type is not known. For example, the interface for the malloc()
function in the standard C library does not take any type information. Many exist-
ing systems assume that type inference for memory allocation is always possible,
or ensure this by introducing some explicitly-typed memory allocation syntax (like
C++’s new operator). In contrast, Fail-Safe C does not completely rely on a static
knowledge of types. Fail-Safe C delays deciding the type of dynamically-allocated
blocks if the type cannot be reliably deduced.

If an untyped block is allocated, the system will first assign a special pseudo-
type (called type-undecided) to the block. Because this pseudo-type is not equal
to any real types, the first write accesses to this block will always be forwarded to
access methods associated with the pseudo-type. Access methods for the “type-
undecided” pseudo-type will then guess the block type based on the type used for
the access. For a last resort, if the block type estimation fails, cast pointers and
access methods will maintain the compatibility and let program continue running,
where it only slows the execution.

A type-undecided blocks has basically the same structure as te usual blocks.
The real size of the allocated buffer will be about twice the requested virtual size,
as this is sufficient (see Section 3.4). More precisely, it will be [ws · (�s/ws�+
	s/ws
)] where s is the requested virtual size and ws is the word size. In some cases
the allocate memory area will be excessive, especially when the type is determined
to be a continuous type. As a special handling, if the determined type is continuous,
the runtime system will reuse unused area as an additional base area of the block.

The type information field in the header points to a specially-defined type-
information block. In addition, the size of structured data area (structured-limit) is
initialized to zero. This causes all accesses to this block to be trapped and dele-

45

offset overrun
test

calculate
real offset

calculate
real offset

DONE

pick up
access method

delegate access to
access method

convert
result type

START

ERROR

overrun, cast pointer

offset OK

Success
Failure

segmentation fault

null pointer

Figure 4.6: Procedure for memory access via pointers with fast access check

46

type: "undecided"
total_limit = t > 0
structured_limit = 0
fastaccess_limit = 0
data area cleared by 0

type: T
total_limit = t > 0
structured_limit = s < t
fastaccess_limit = s
data area initialized

type: T
total_limit = t > 0
structured_limit = s < t
fastaccess_limit = 0
data area initialized

free()

type-unknown malloc()

type-known malloc()
static allocation (global variables)
dynamic allocation (local variables)

unallocated block

normal blockuntyped block

assignment

(typing
 decision)

free()

Figure 4.7: State diagram for blocks

gated to the associated access methods. The write access methods associated with
type-undecided blocks initialize the data area according to the access type, which
is passed an additional argument to the methods (See Section A.1.2). After initial-
ization, it limit values and typeinfo field of the block’s header are reinitialized to
make the block a normal block. Finally, the method handles the write request from
a caller by delegating it to the newly-associated access methods (Figure 4.7).

Obviously, it is usually unsafe to change the block type and its limit values
during program execution. If two or more pointers points to one block, changing
its block type will cause type inconsistency. However, regarding type-undecided
blocks, this whole process is a safe operation, because the "type-undecided"
pseudo-type does not appear in the program as a static type, thus all pointers refer-
ring to a type-undecided block must have cast flag = 1.

There is a partly-unresolved problems related to type-undecided blocks. This
delayed-typing mechanism leads to the generation of too many pointers with the
cast flag set to 1, because there is no chance to remove the cast flag from a pointer
which has pointed to the block being initialized. The cast flag is retained as set
until the pointer reaches to some explicit cast operation in the user programs. Cur-
rently, the Fail-Safe C compiler inserts ad hoc checks and additional operations to
remove redundant cast flags (the same as those in cast operations) before every in-
vocation of access methods in generated code. In addition to this, the compiler tries
to generate program code which let several distinct pointers in a function to share

47

the base part of a fat pointer, to make this optimization more effective. However,
because the compiler uses a static-single-assignment form for the intermediate rep-
resentation of programs. not all instances of the same pointer will always have a
redundant cast flag removed, and the extent of the effect of redundant flag removal
may depend on the internal representation of programs in the compiler. Regard-
less, the ad hoc nature of these checks does not have affect safety.5 A Possible
alternative solution is to find pointers which may point to type-undecided blocks
through an analysis (e.g. type analysis), and then insert checks at more appropriate
points.

I also plan to implement an algorithm to guess the intended type of a block
by analyzing a cast expression whose operand is the return value of the malloc()
function.6 The guessed type is passed as a hidden argument to the function. Fur-
thermore, not only malloc() is made special: all functions returning a value of
“void *” type can be specially handled. Inside such user-defined functions, the
passed type information may be either ignored, or passed to another function re-
turning void * type (including malloc). This extension is designed to support
frequently-implemented small wrappers to malloc, that serve in the same way as
malloc, but if allocation fails these terminate the program instead of returning
NULL to callers.

4.4 Interfacing with external libraries

Almost all C programs uses externally defined routines to accomplish their task.
These routines include system calls for low-level interaction with operating sys-
tems, standard library routines for file input/output, mathematical operations and
memory allocation, or other high-level libraries such as GUI, database access, or
network communications. Fail-Safe C must support communication with these
external routines.

One possible way to provide this functionality is to compile these libraries with
the Fail-Safe C compiler along with user programs. However, this method has three
drawbacks:

• Source codes (which run with user-level privilege) are needed to compile
the library with Fail-Safe C. This cannot be done for either closed-source
libraries or system calls.

• The generated code incurs performance overhead due to the additional safety
checking done by the Fail-Safe C system. It might be beneficial to optimize
frequently called routines, though, to reduce execution overhead.

5(Future static analysis (Section A.5.1) must take this optimization into account to maintain
safety.

6The extension can be implemented alone, but because program analysis required for local opti-
mization (Section A.5.1) subsumes that for this extension, I plan to implement the extension at the
same time as other local optimizations.

48

Thus Fail-Safe C takes another approach. A set of standard library routines which
can be called from the program code generated by Fail-Safe C is implemented in
native C language. These routines are usually called wrapper routines, because they
often uses corresponding functions in the native version of the library internally;
i.e., they “wrap” the original function by adding interface code before and after it.

4.4.1 Generic structure of wrappers

Wrapper routines have two main purposes. The first one is to ensure the safety
condition required by Fail-Safe C is satisfied even after the invocation of native
routines. For example, calling the read system call with an insufficient buffer
instantly breaks any data structure on the memory beyond the buffer. To ensure
safe execution of a program on Fail-Safe C, the wrapper routine must check that
the length of the operation, which is passed to the wrapper as another argument,
must be smaller than the available number of bytes in the memory block containing
the buffer. Sometimes there is no condition that can guarantee safe execution of
a native routine in any case: for example, the gets library function may fail no
matter how large a buffer is provided to the function. Such a case cannot be handled
through a simple wrapper function.

The second purpose is to convert data formats between Fail-Safe C and na-
tive routines. Because the representations of data in Fail-Safe C differ from those
expected by native library routines, the data in a Fail-Safe C program must be
converted by wrapper routines before being passed to native libraries. The data
returned from a native function must also be converted to the Fail-Safe C represen-
tation by wrappers.

Thus, the general structure of a wrapper routines follows a sequence something
like the following.

1. Check safety preconditions, especially regarding buffer lengths.

2. Convert input data to the format accepted by the native routine.

3. Call the native function.

4. Convert output data of the native function back to the Fail-Safe C represen-
tation.

Unfortunately, there is no single universal method for such a conversion. For some
functions, there is no appropriate map at all. Back-conversion to the Fail-Safe C
representation tends to be especially difficult because so much information is lost
during the first conversion, and it is difficult to guess what data structure native
routines expect when pointer aliasing (equivalence) is important to the library.

At the same time, however, there are a few common patterns of conversion
which can be applied to the arguments of many functions. Here, I categorize the
arguments of external routines into three kinds.

49

Raw values: the first category holds values having only self-contained structures,
mainly from the perspective of the pointer’s use. All integers and floating
arguments are generally of this kind. The values used as descriptors are also
placed in this category, although they are actually an index to other array-like
data.

Many pointer values also fall into this category, especially those for system
calls. This is not just a coincidence: the pointers passed to system calls
are only used while the system call is active, and are not used afterwards,
because trusting some well-formedness of the user-space data structure while
running a user program in parallel is generally an unacceptable option for
ensuring safety of the kernel state. In addition, there is no pointer returned
from system calls pointing to the kernel space, for semi obvious reason.

Raw values are generally handled by through data-copying inside wrapper
routines, as described in the next section.

Abstract values: the second category contains pointers which are only valid as
abstract values. A file pointer (FILE *) is a good example from this cate-
gory. Many high-level libraries, including GUI libraries, numerical libraries,
or cryptographic libraries, use this kind of value to simplify the interface
between user program and libraries, and to enable internal change of the
data structure for any improvements while preserving user-level compatibil-
ity and portability.

Abstract values are encoded using the abstract data implementation de-
scribed in Section 4.4.3.

Complex values: the third category is for values which cannot be categorized into
the first two categories. This category of values allows access inside its in-
ternal data structure or those of pointer targets, and also cannot be easily
moved around memory by a user program because of pointer aliasing (data
which are pointed to by another pointer kept inside the library). At least
one instance exists: some data structures in Xlib library allow reading of
some fields of the data structure. Wrappers for functions with this kind of
arguments are generally hard to implement.

One way to work around complex values is to compile a library with Fail-Safe
C compiler. There are features which provides support for safe separate compila-
tion of libraries. The compiler accepts a language extension to give a fixed name to
the encoded name of a structure (see Section A.2.2). Also, a few extended attributes
are defined by Fail-Safe C to control the generation of various internally generated
subroutines to prevent these routines being generated twice through separate com-
pilation. They also let library programmers to implement customized versions of
access methods, instead of automatically generated routines (see Section 4.4.4).

50

4.4.2 Handling raw data in wrappers

The handling of raw arguments (and return values) is relatively simple, because
these types of arguments allow the copying of data.

For simple data types, there are common patterns regarding the use of buffers.
For example, some of common usage patterns for char * type include (but are not
limited to) the following:

• Read access:

– NUL-terminated strings of unlimited length (many functions)

– NUL-terminated strings with a length limit provided by another integer
argument (printf "%.80s")

– byte arrays whose sizes are provided by another integer arguments
(write, fwrite, etc.)

• Write access

– byte arrays with a access length limited by another integer argument
(read, fread, etc.)

– byte arrays with an unlimited access length (gets, scanf)

Note that some patterns (e.g., the last pattern in the above list) must be handled
a the way other than the copy-invoke-writeback approach, because there are no
preconditions which satisfy the safety requirement for all possible inputs. These
functions are “insecure” by nature, because however large the temporary buffer al-
located for accepting input data, these functions can cause buffer overflow if a huge
amount of input data is provided. The wrapper routines for these functions must
be implemented on a one-by-one basis with carefully-inserted boundary checks
for output. For some other patterns, Fail-Safe C runtime provides several support
routines for writing wrappers using such common patterns.

The copying of the arguments is only required when the representations of
the arguments differ from native representations. As many input/output primitive
functions (and system calls) take pointer arguments to byte arrays, avoiding to
copy arguments of char * types is important to improve performance. The imple-
mentation of wrapper support subroutines checks the continuous flag in the type
information on the memory block of arguments and omits the copying if possible.7

For example, the interface for the helper function for a NUL-terminated string
is defined as follows:

char *wrapper_get_string_z(base_t b, ofs_t o,
void **_to_discard,
const char *libloc);

7A possible way to improve this optimization is to include these subroutines in the access meth-
ods, and to allow direct use of native representation data inside structures.

51

value FS_FPc_i_puts(base_t base0, ofs_t ofs)
{

void *tb0 = NULL;

char *p0 = wrapper_get_string_z(base0, ofs, &tb0, "puts");
int r = puts(p0);
if (tb0) {

wrapper_release_tmpbuf(tb0);
}
return value_of_base_vaddr(0, r);

}

Figure 4.8: Wrapper for puts library function.

The first two arguments are the fat pointer from the user program. The third ar-
gument is a pointer to the pointer variable that receives an the address of a block
which should be deallocated before returning from a wrapper function. If the block
referred to by b is continuous, the address of the element at offset o in block b is di-
rectly returned, and NULL is written to *_to_discard. Otherwise, the data starting
from virtual offset o in block b is converted to a native representation and copied
to a newly allocated temporary buffer. The address of the copied data is returned,
and the address of the temporary buffer is written to *_to_discard. In both cases,
the program is halted if the string is not terminated by NUL before reaching the
boundary of the memory block. Before exiting from the wrapper, the temporarily
allocated buffer must be deallocated. As a special case, there is a set of functions
which performs only write operations to memory blocks (e.g., read and fread).
For these functions, the contents of the original memory block do not need to be
copied to the temporary buffer. Using this helper, the wrapper for puts, for exam-
ple, can be implemented simply as is shown in Figure 4.8.

If an original function only reads the contents of buffers, the function in
the runtime library wrapper_release_tmpbuf should be called with the value
of *_to_discard if it is not NULL. The allocated temporary buffer is deallo-
cated through this helper function. If an original function writes to or updates
the contents of the buffer, the update must be propagated to the original mem-
ory block. Another helper function wrapper_writeback_release_tmpbuf re-
ceives the original fat pointer (b, o) and the address of the temporary buffer
(*_to_discard), along with an argument specifying the length of the overwrit-
ten area (e.g. for the read system call, it would be the value returned from the
original function), and writes the contents in the temporary buffer into the original
memory block with converting the representations.

52

type:FILE *
size: 4

(, 0)

stdin (global variable)

typeinfo:
size: 0

native
FILE object
for stdin
(abstract)

(native FILE*)

name: stdio_FILE
kind: special
methods:
 read_*_noaccess
 write_*_noaccess

typeinfo block

wrapper FILE object for stdin

native stdin (FILE *)

typeinfo block for FILE

Figure 4.9: Implementation of FILE object in Fail-Safe C

4.4.3 Implementing abstract types

There are some types in the standard C library (e.g., FILE type) whose internal
structures are not exposed to user programs. Instead of implementing complex con-
version routines and safety checking for every implementation of systems, simply
providing an abstract interface for such data types is both sufficient and secure, be-
cause it further prevents any accidental modification inside such data which should
not be touched by user program in any way. Fail-Safe C supports this kind of
library interfaces through abstract type mechanism.

Figure 4.9 illustrates an implementation structure for such a type (FILE is used
as an example). To define a new abstract type, firstly we should create a type in-
formation block corresponding to the type. All memory accesses to the contents of
abstract data should be forbidden by the access methods for the abstract type. Next,
we declare that type as an opaque structure inside header files, with an extension
keyword named to fix its encoded name. In the case of type FILE in the current
implementation, it is the type struct FILE with keyword stdio_FILE used for
fixed type encoding. Finally, we allocate corresponding memory blocks either stat-
ically or dynamically through some externally defined library routines. Because
the types of those blocks are opaque to user programs, and their access methods
prevent access via cast pointer, the whole data area inside the blocks can be used
in an arbitrary way by wrapper routines. For example, a wrapper object for FILE
type contains a native FILE pointer, or NULL if the corresponding native FILE is
already closed. An example code for abstract type implementation is included in
Section A.3.

Every library routine has to decode the structure described above before using

53

its value. To avoid confusing other kinds of value as an abstract data object, the
routines should first compare the type of the block against the type information
block of the expected type. In addition, whether the offset value of the pointer is
zero should be checked.8 If these checks are successful, the library routines can
take values from inside the data area of the block in a way that each library defines
for its own purposes.

4.4.4 Implementing magical memory blocks

The method described above can be further extended. For example, the errno
variable in the standard C library can change after the invocation of many library
routines. One way to pass the value of such a special variable to user programs
from native libraries is to separately defines a variable which is referred to from
user programs, and updates it through wrapper routines whenever native library
routines update it. Such an implementation and language support for the insertion
of program code for this sort of updating was recently proposed [67]. However,
this may be too cumbersome, especially when a library wrapper must be written
by hand, or when the timing of the update is complex or difficult to guess. Also,
when Fail-Safe C supports multi-threading in the future, it will become especially
difficult because errno is defined as a thread-local assignable identifier (it can be
either a variable or a macro).

These problems can be solved through an extension of the implementation of
abstract types described in the previous section. Instead of putting access methods
which forbids all accesses, specially implemented access methods can be attached
for such abstract types. Each of these will then work as a “magical” hook for
memory access to those memory regions. For example, read access methods for
the memory block for errno variable can read the native errno variable instead of
the data inside the memory block. Updating errno (resetting it to 0 is a common
practice) can also be forwarded to the native errno by the corresponding write
access methods. An example implementation is shown in Section A.3.

This method is also useful if a data type which is almost abstract (i.e., only
allocated by a small set of dedicated functions) must allow some trivial access to
fields. For such a data type, the library programmer can define a “virtual” struct
for the data structure in which the fields accessed a from user program are defined.
The allocation routines for those data returns a cast fat pointer to an instance of
the magical data type. All accesses to the defined fields are then forwarded to the
access methods of the magical type, where any kind of emulations of the behavior
can be done.

8Although ignoring the offset is completely safe, it is unnatural compared to native semantics.

54

Chapter 5

Experiments

5.1 Examples of memory overrun detection

This section describes some examples of access overrun that occur in several pro-
grams and shows that Fail-Safe C can detect such problems before they can cause
memory corruption or allow program invasion.

5.1.1 Integer overflow in the command-line argument parsing routine
of Sendmail

Sendmail [64] is the one of the most widely used Internet mail server programs.
The versions between 8.11.0 and 8.11.5 of Sendmail had a critical security hole
in the parsing routine of the debug option, which is called at a very early stage of
program execution [63, 21]. The cause of this security hole is was that it did not
correctly treat overflow condition for integer variables, which is often referred to as
an “integer overflow” security hole. This kind of security hole differs from a simple
buffer overflow (where the memory area immediately after a buffer is sequentially
overwritten) in that it directly overwrites the very specific bytes or words of the
memory area using variables located far from the victim memory area. This implies
the following points of differences with respect to countermeasures:

1. It cannot be prevented through canary techniques, which detect memory cor-
ruption by checking the memory area immediately after the buffer boundary.

2. The array used for an attack does not need to be in the stack area. In fact, an
attack on the Sendmail program uses globally allocated array to attack the
instruction pointer stored in the stack memory.

The cause of this problem lies in the tTflag function (Figure 5.1) in trace.c:
this function receives a string formatted like “12-17.5X18-19.7” and writes a
value after a period to the bytes in the range specified before the period in the global
array tTvect. In the above example, it write six 5’s to the area from tTvect[12]
to tTvect[17] and two 2’s to tTvect[18] and tTvect[19]. Unfortunately, the

55

integer parsing routine at lines 14–26 does not care about integer overflow beyond
231, thus the values in variables first and last can be negative. At lines 38–41,
an overflow condition is checked and rounded to the possible maximal value, but
an underflow condition is not checked. As a consequence, the assignment in line
45 overwrites an unexpected byte with a huge negative offset, and this is used for
an attack.

An exploit code for this security hole to gain root privileges is well-known
and available on the Internet. As an experiment, I took the unmodified source
file of trace.c (112 lines in total), and combined this with a small main routine
which invokes the problematic functions in the way the original Sendmail program
did. Thus, the same way of exploiting the hole can be used for attacking this test
program with only a small amount of modification to the offset value, which is the
offset between the overflowing array and the instruction pointer in the stack area of
a running program.1 The experiment was done on a machine running Linux 2.4.22
on a Pentium-III processor. 2

Figure 5.2 shows the output generated by a target program compiled by the
Fail-Safe C compiler that was executed with an argument to exploit the bug. The
first few lines were generated by the attacker program calculating proper values
for activating the security hole. The messages between the two rulers were are
generated by Fail-Safe C runtime. It shows that the program accessed the byte at
offset 3086701108, which is a the negative value −1208266188 in signed integer
type, of an array of 100 characters. The same value is also appeared in the output
from the attacker program and in the command line passed to the target program.
The block status field had no_dealloc flag, which means the overflowed array was
statically allocated as a global variable. The backtrace is a little hard to decode, but
says that the error is occurred inside function tTflag(char *) (the fourth line has
an encoded name of the function).

5.1.2 Buffer overflow in a GIF decode routine in XV

XV (version 3.10a) is a famous shareware program that displays files of various
graphics formats, including GIF and JPEG, for display on X window system en-
vironments. It was written before 1994 and is no longer maintained. It has an its
own implementation of a GIF decode routine, which was also used for many other

1This modification to the exploit code was provided by Dr. Yoshihiro Oyama.
2This setting is different from all other experiments. The main reason for this is that Linux kernel

version 2.4.22 configured for a symmetric multi-processor architecture with an Intel CPU changes
the starting value of the stack pointer for each program execution to avoid overwrapping of the
stack addresses which causes contention on cache lines in a Hyper-Threading (a simultaneous multi-
threading) architecture. Simple stack buffer overflows are basically unaffected by this behavior, but,
interestingly, it make the exploitation of the Sendmail security hole slightly difficult because the ad-
dress difference between tTvect and the stack area changes for each execution. The behavior of the
stack movement is almost completely predictable, though, so writing an exploit program assuming
this behavior is not very difficult. For this experiment, however, to avoid complexity I used a single
CPU environment.

56

1 void
2 tTflag(s)
3 register char *s;
4 {
5 int first, last;
6 register unsigned int i;
7
8 if (*s == ’\0’)
9 s = DefFlags;

10
11 for (;;)
12 {
13 /* find first flag to set */
14 i = 0;
15 while (isascii(*s) && isdigit(*s))
16 i = i * 10 + (*s++ - ’0’);
17 first = i;
18
19 /* find last flag to set */
20 if (*s == ’-’)
21 {
22 i = 0;
23 while (isascii(*++s) && isdigit(*s))
24 i = i * 10 + (*s - ’0’);
25 }
26 last = i;
27
28 /* find the level to set it to */
29 i = 1;
30 if (*s == ’.’)
31 {
32 i = 0;
33 while (isascii(*++s) && isdigit(*s))
34 i = i * 10 + (*s - ’0’);
35 }
36
37 /* clean up args */
38 if (first >= tTsize)
39 first = tTsize - 1;
40 if (last >= tTsize)
41 last = tTsize - 1;
42
43 /* set the flags */
44 while (first <= last)
45 tTvect[first++] = i;
46
47 /* more arguments? */
48 if (*s++ == ’\0’)
49 return;
50 }
51 }

Figure 5.1: A routine containing a security hole in the Sendmail program

57

distance from b7fb511c to b7fb5234
jump_target:[0xbfffde80]
I will overwrite 128 (80) to tTvect[3086701108 (b7fb5234)]
I will overwrite 222 (de) to tTvect[3086701109 (b7fb5235)]
I will overwrite 255 (ff) to tTvect[3086701110 (b7fb5236)]
I will overwrite 191 (bf) to tTvect[3086701111 (b7fb5237)]
calling execv("./kiridasi_sendmail.safe", ["./kiridasi_sendmail.safe",
"-d3086701108-3086701108.128X3086701109-3086701109.222X3086701110-308
6701110.255X3086701111-3086701111.191", "", NULL])

Fail-Safe C trap: access out of bounds

Address: 0x804d520 + 3086701108
Cast Flag: not set
Region’s type: char

size: 100 (FA 100, ST 100)
block status: normal, no_user_dealloc, no_dealloc

backtrace of instrumented code:
./kiridasi_sendmail.safe(fsc_raise_error_library+0x14e)[0x804b7e6]
./kiridasi_sendmail.safe[0x804b83e]
./kiridasi_sendmail.safe(write_byte_continuous+0x22)[0x804b356]
./kiridasi_sendmail.safe(FS_FPc_v_tTflag+0x3ce)[0x804a006]
./kiridasi_sendmail.safe(FG_main+0xd3)[0x804a253]
./kiridasi_sendmail.safe(main+0xaa)[0x804a5aa]
/lib/libc.so.6(__libc_start_main+0xbb)[0x4006614f]
./kiridasi_sendmail.safe(free+0x61)[0x8049a11]
(8 entries)

Abort

Figure 5.2: An error detection report for an attempt to exploit the Sendmail security
hole

58

programs, but it has a buffer overrun bug which becomes apparent through cor-
rupted input files. The decode routine exists in xvgif.c (768 lines) in a mostly
self-contained fashion; this is derived from an implementation written in 1989
by Patrick J. Naughton according to comments in the source file. I wrote a stub
routine to call the LoadGIF function and combined this with xvgif.c to make a
stand-alone command-line application. A large GIF file (443792 bytes) is was then
intentionally truncated to various random sizes and fed into the program to obtain
an instance of an input file causing a buffer-overrun condition. Eventually, an in-
stance of 109538 bytes was found to cause a buffer overflow. (Of course this was
strongly dependent on the original file.) This instance caused a segmentation fault
in the natively compiled program, and a runtime error (Figure 5.3) was issued in
the program compiled with the Fail-Safe C compiler. The message suggested that
the type of the access violation seems to be was simple sequential buffer overrun
(the failed offset (109704) matched the size of the memory area).

Further experiments on the program revealed that for this input data an over-
flowed read access occurs at up to the address 4039 bytes beyond the end of the
input file at maximal. The implementer prepared a 256-byte redundant memory
to avoid buffer overruns (Figure 5.4), but this seems to have been insufficient and
was not a good way to avoid buffer overruns. This overflow is occurred during the
reading of memory, so it is unknown whether it is directly exploitable, except for
denial of service attacks.

5.2 BYTEmark benchmark test

BYTEmark [12] is a set of ten synthesized benchmark programs which is firstly
proposed by BYTE magazine. I used seven of provided tests provided in the ver-
sion 2 of BYTEmark (originally released in 1995) to evaluate the overall perfor-
mance of the Fail-Safe C system. To perform these tests, the following changes
were made on a Linux port of BYTEmark by Uwe F. Mayer [43].

• Three tests were only slightly modified to avoid features not implemented in
the current Fail-Safe C compiler. These tests are shown under the horizontal
rule in Table 5.1.

The sources for seven other tests as well as core parts of the program sources
were not modified at all, except for the one additional evaluation discussed
later.

• The Makefile was replaced with my own version, as the current compiler
driver interface differs from that of conventional compilers.

• A declaration mismatch bug between two source files was corrected.

• The address alignment option in the benchmark is disabled for the Fail-Safe
C test, as the method of forcing address alignments in original BYTEmark is

59

Fail-Safe C trap: access out of bounds

Address: 0x80d6020 + 109794
Cast Flag: not set
Region’s type: char

size: 109794 (FA 109794, ST 109794)
block status: normal

backtrace of instrumented code:
./xvgif.safe(fsc_raise_error_library+0x15f)[0x8062f27]
./xvgif.safe[0x8062f7e]
./xvgif.safe(read_byte_continuous+0x1f)[0x80625fb]
./xvgif.safe[0x805f4f0]
./xvgif.safe[0x805ea3d]
./xvgif.safe(FS_FPcPS2_i_LoadGIF+0x2430)[0x805d344]
./xvgif.safe(FS_FiPPc_i_main+0x1e1)[0x805acd1]
./xvgif.safe(FG_main+0x74)[0x805aeb8]
./xvgif.safe(main+0xac)[0x806023c]
/lib/libc.so.6(__libc_start_main+0xbb)[0x4006614f]
(10 entries)

Figure 5.3: An error detection report for the XV GIF decoder

133 /* the +256’s are so we can read truncated GIF files without fear of
134 segmentation violation */
135 if (!(dataptr = RawGIF = (byte *) calloc((size_t) filesize+256, (size_t) 1)))
136 return(gifError(pinfo, "not enough memory to read gif file"));
137
138 if (!(Raster = (byte *) calloc((size_t) filesize+256,(size_t) 1)))
139 return(gifError(pinfo, "not enough memory to read gif file"));

Figure 5.4: A failed attempt to avoid buffer overflow in the original xvgif.c

60

Table 5.1: Results of BYTEmark benchmark tests

Test Native Fail-Safe C Ratio (Typed) Ratio
Numeric Sort 930.96 361.36 2.593
String Sort 87.045 68.158 1.277
Bitfield 362.32 M 114.43 M 3.166
Fourier 13214 11649 1.134
IDEA 1679.3 1576.8 1.065
Huffman 1204 119.52 10.074 217.39 5.538
Neural Net 22.435 6.1386 3.660
FP Emulation 83.134 14.031 5.925 14.45 5.753
Assignment 18.436 5.4496 2.182
LU Decomp. 1088.9 — — 271.28 4.014

(Unit: iterations per second, M denotes 106)

incompatible with the strict ANSI-C semantics enforced by Fail-Safe C. The
default parameter of 8-byte address alignment is still used for the native code
evaluation, because it is the same alignment as that provided by the memory
allocator of the current Fail-Safe C implementation.

The experiment was done on a workstation running Linux 2.4.27 on a 2.8 GHz
Pentium-4 processor with 1 GB main memory.

The test results are shown in Table 5.1. There was no more than 30% of over-
head observed for the String sort, Fourier, or IDEA tests. The execution speed on
Numeric Sort, Bitfield, Neural Net, and Assignment tests are about 2 to 3.66 times
slower than the native program.

The Huffman test was exceptionally slow compared to the other tests. Further-
more, the execution time for the LU Decomp test does not converge. (BYTEmark
tries to acquire a statically reliable result by repeating the test until score con-
verges.) I have inspected the behavior of the translated program for the Huffman
test and found the main reason for this was a conflict between the handling of
type-undecided blocks returned by the untyped malloc() function (Section 4.3)
and the integer overflow handling required at pointer arithmetic (Section A.2.3.2
for details). In the Huffman test, an array of a 24-byte struct was allocated and
heavily used inside the test, while in the other six tests only primitive types are
used heavily. In the current implementation which uses lazy type decisions for all
malloc’ed blocks, the cast flags of pointers returned from malloc() are always
set at the first time, and will be removed when the pointer is dereferenced twice3.
If an array of primitive types (or a struct with the a size of some power of 2) is
used frequently inside one function, one base value is shared among all fat point-

3At the first dereference the block type is decided, and then at the second dereference the pointer,
type matches the type of its referring block

61

Table 5.2: Results of tests with fast check disabled

w/fast check w/o fast check gain
fib 2.339 s 2.339 s +0.0%
qsort 2.255 s 2.737 s +20.8%
qsort (cast) 8.144 s 8.158 s +0.2%
knapsack 1.076 s 1.118 s +3.9%

(the average of 5 trials is taken)

ers referencing that block. Thus once the cast flag is removed from one of these
pointers, memory accesses via all of those pointers will become faster. However,
if an “odd”-sized structure is involved, it is impossible to share the base part of fat
pointers between many pointers (because of the integer overflow described in Sec-
tion A.2.3.2), so the effect of the ad hoc cast flag removal in Section 4.3 decreases.
Indeed, a huge number of invocations of the access methods for the involving struct
type was observed in the Huffman test.

To avoid this problem, an additional experiment was done where a type an-
notation was added to the memory allocation code inside the Huffman test. The
result with the modified source code is shown in the column “Typed” in Table 5.1.
Although the overhead remained slightly larger than in the other eight tests, over-
head than other six tests, the performance was greatly improved. Fortunately, the
type of the allocations can be easily guessed through the algorithm proposed in
Section 4.3, and so the future versions of Fail-Safe C should be able to achieve the
improved performance without modification of the source code. Overall perfor-
mance (with typed memory allocation) is very promising, even under the fact that
no optimization have been performed yet.

5.3 Effectiveness of fast cast-flag checking

To check the performance gain obtained through fast cast-flag checking (Sec-
tion 4.2), the internal logic of the compiler that checks the possibility of omitting
cast-flag checking was intentionally blocked, and applied to a set of small test pro-
grams. The results are shown in Table 5.2.

These results show noticeable differences between several tests, which roughly
correspond to the number of direct memory accesses in the program. For a Fi-
bonacci test there was absolutely no difference in the output code, and the test on
quick-sorting test with a cast pointer showed only a small gain (possibly due to the
omission of null-pointer checks), that was mostly covered up by the overhead of
the access method invocation. The result from the knapsack test showed a moder-
ate performance improvement, while the normal quick-sorting showed a significant
improvement.

62

5.4 Other preliminary tests

In addition to the tests above, some other preliminary tests are performed as well.
The descriptions for these tests are in the appendix.

• A micro-benchmark test for deciding the representation of fat pointer and fat
integer encoded to C program (described in Section A.4).

• A preliminary test which evaluates the possible gain for future local opti-
mizations (described in Section A.5.1).

63

Chapter 6

Conclusion and Future Work

6.1 Summary of the dissertation

This dissertation has proposed Fail-Safe C, a method for implementing the full-set
of the ANSI C language in a memory-safe way. The system accepts all programs
that conform to the specification of the ANSI C language as well as many existing
programs that deviated slightly from the specification, while ensuring that no mem-
ory corruption which could lead to execution hijacking or other security holes will
occur. Fail-Safe C uses two-word representation for every pointer in programs and
object-oriented representation for every memory block to ensure safety and correct
behavior on cast operations. The representation of memory blocks in Fail-Safe
C is so powerful that it can support various tricky operations on memory data in
C programs such as variable-length structures and cast-based implementation for
variant types. The system also introduces a flag in every pointers which indicates
whether the pointer is cast, and when a pointer is not cast, the system avoids addi-
tional overhead incurred from cast support by using sophisticated representations
for both memory blocks and cast flags.

In addition, an implementation supporting most of the features of the Fail-Safe
C system has been described. The implementation incorporated several optimiza-
tion techniques proposed in this dissertation to enable efficient implementation of
Fail-Safe C.

It has been demonstrated that the Fail-Safe C system can prevent some real-
world security holes from being exploited by correctly halting the execution of
flawed programs. Benchmarking tests have shown that the execution speed of the
programs compiled by the current Fail-Safe C compiler was about 30% to five
times slower than the original C programs in most cases. These figures are roughly
comparable to many other safe languages that have been developed.

The whole system was carefully designed to provide provable safety, and a
brief outline of the safety proofs was given in this dissertation. However, the com-
plete proofs have been left as future work.

64

6.2 Relation to other work

A number of systems have been designed to make C programs safe in various ways.
These systems were briefly compared with Fail-Safe C in Section 2.2. Although
these systems are useful in practice to prevent some of existing security attacks,
most of them are incomplete with regared to either safety [5, 53, 36, 41, 20] or
compatibility [27, 35].

CCured [49, 18] is the only system, except for Fail-Safe C, that I know of
which can provide a sound semantics for a large part of C language, including cast
operations. There are several differences between CCured and Fail-Safe C, but the
most noticeable technical difference is in the handling of pointer cast operations:
CCured is almost completely based on static analysis, while Fail-Safe C is mainly
based on dynamic handling. In other words, CCured statically determines which
variables might have a cast pointer, and “quarantines” those wild parts from the
other pure parts in programs. The pure part of a program will then behave almost
like the programs of pure statically-typed languages; e.g., there will be no type
information inside. The weakness of this method is that the system cannot allow
any pointers in wilds part to point to values in the pure parts of programs. In
addition, as value types are completely determined statically, a pointer which may
point to wild values must always point to wild values; conversely, a data which may
be pointed to by such pointers must be moved to a wild part, even if that value is
used completely in a type-safe way. The relative size of the wild part in a program
is therefore likely to increase as program gets larger. Because Fail-Safe C is based
on dynamic determination of cast pointers, and because it allows every pointer to
refer to both cast values and well-typed values, no such chain of wildness pollution
will occur.

The other differences between the two systems can be summarized as follows.

• CCured has basically two kinds of type-safe pointer beside a single kind of
wild pointer: one-word “safe” pointer for values which is not the targets
of pointer arithmetic, and “seq(-uential)” pointers which are similar to the
fat pointers in Fail-Safe C. The “seq” pointers in CCured uses three-word
representation which remembers both the head and the tail of the region
accessible from the pointer. The advantage of this representation is that it
can safely point to an array inside structures, which the uncast fat pointers
in Fail-Safe C cannot. The downside is that it consumes a lot of register
resources and memory resources.

• Fail-Safe C introduces a notion of virtual offsets, which enables effective
and complete concealment of any internal data for safety management com-
pletely from user programs. In Fail-Safe C, the areas for base values and
other values are completely separated statically, although this does not con-
fuse user programs in any way. As CCured uses only native offsets, the
handling of wild values in a heap area is very complicated, as it requires an

65

additional bit array to remember whether each (native) word in a memory
block holds a value valid as the base address of a block.

• Moreover, the virtual offsets hide even the fact that a Fail-Safe C compiler is
used. The offsets visible to user programs are always identical to those used
in the usual native compilers.

On the contrary, CCured reveals representation change of pointers to user
programs: the sizes and the offsets of pointer data are those of the internal
representations, and thus these values are different from the native values.
Furthermore, the sizes of pointers will differ depending on the classification
of pointer usages by CCured, even if these have the same type in original C
programs. Under 32-bit architectures, safe pointers are 4 bytes, seq pointers
are 12 bytes, and wild pointers are 8 bytes. This fact confuses some pro-
grams and programmers, and requires program rewriting (to associate every
memory allocation to the size of the target variable, not to the type of tar-
gets).

• The design of the Fail-Safe C system makes support for separate compilation
easier than that on CCured. If the value range of a function argument is
unknown because of separete compilation, the compiler must assume every
possible value. It forces the type of the argument to be “wild” or “may be
cast” in both CCured and Fail-Safe C, respectively. However, the former has
severe penalty for both compatibility and performance, although the latter
has (practically) little overhead.

The safe pointers in CCured, which can point to an internal element as well as to
the top of a block, greatly reduced the execution overhead of CCured. By col-
lapsing two memory accesses using the same seq pointer (which require boundary
checks twice) into a cast to a safe pointer and two accesses using it (which require
boundary check only once), CCured has optimizing out overhead on many redun-
dant boundary checks. Benchmark programs compiled in CCured run less than
twice slower than the natively compiled programs. (although the result cannot be
compared directly because of the difference on expressiveness).

The static method used in CCured may also be used in Fail-Safe C for op-
timization. In particular, the CCured’s type system built on C language can be
modified and applied to the Fail-Safe C system for the global analysis required for
optimizations.

6.3 Future Work

Current Fail-Safe C uses little information about static properties of programs.
There are many forms of static analysis for program behavior (more details are
discussed in Section A.5). These can be used in combination with Fail-Safe C
system for optimization. In general, the safety property of C programs cannot be

66

wholly guaranteed in a static way; thus, both CCured and Fail-Safe C (and many
other systems) use dynamic checking. Static analysis is very valuable for those
dynamic systems to reduce the runtime overhead introduced by runtime checks.
However, the incorporation must be done carefully to avoid opening new security
holes due to such optimization, and to work well in the access methods introduced
in Fail-Safe C (see Section A.5.1).

The combination of Fail-Safe C with an operating system that relies wholly
on type-based safety management (e.g., [7, 42]) is an interesting possibility, as it
will allow many existing programs which are written in C to run on such operating
system architectures. To ensure the safety of these systems under existence of
externally provided programs, so called certifying compiler technique can be useful
in combination with the Fail-Safe C system (Section 3.6.4).

Current Fail-Safe C implementation accepts the programs which strictly con-
form to genuine specification of ANSI-C. Extending the input language (e.g., to
accept the C++ language), or extending the dynamic behavior of the programs
compiled by Fail-Safe C (e.g., to remedy programs with buffer-overrun problems
by internally extending buffers on the fly) might bring us some useful systems.
Some perspectives of future research are discussed in Appendix B in more detail.

67

Appendix A

Implementation Details

This appendix describes the details of the implementation of Fail-Safe C. First, the
organization and behavior of runtime system routines are described. Descriptions
of the code generated by the Fail-Safe C compiler follow with example fragments
of the generated code shown for explanation. These two areas are closely related
and in cooperation ensure the safe execution of programs in cooperation.

A.1 Runtime system

A.1.1 Structures inside memory blocks

A.1.1.1 Common structure and block header

A memory block is an atomic unit for memory management in Fail-Safe C. All
blocks (both in statically-allocated area and in dynamically-allocated heap area)
which may be referred to by any pointers have appropriate block headers to main-
tain proper boundary checking. Figure A.1 shows the structure of a memory block
and its associated block header. All blocks are double-word aligned (by using
GCC’s __aligned__ extension) (Section 4.2).

A block header contains the following fields.

typeinfo_ptr A pointer to the type information block described later. This field
determines the storage format of the structured data area of the associated
block.

runtime_flags A set of flags about runtime information of the block. The follow-
ing information is stored:

• Kind: a kind of block, one of the following: a normal block, an active
block for passing varargs, a finished block for passing varargs (va_end
called), and a released block.

68

typeinfo_ptr

fastaccess_limit

0

structured_limit

total_limit

magic_number
(only for assertion)

runtime_flags

structured
data area

(structured_limit
virtual bytes)

remainder
data area
(optional)

bl
oc

k
h

ea
de

r

The base address
of this block

ptr_additional_base

additional
base storage

area
(optional)

Figure A.1: The structure of memory blocks and block headers.

69

• No-deallocation: a block with this flag should never be deallocated in
any way. Statically allocated blocks such as global variables, function
stubs, type informations have this flag set.

• No-deallocation-by-user: a block with this flag should not be an
operand of free() function. In addition to the block with no-
deallocation flag, temporary blocks for varargs and local variables, and
blocks allocated by system library (e.g. FILE object) have this flag set.

• Out-of-use: a block with this flag cannot be accessed any more, be-
cause it is deallocated. blocks which are already released by free(),
or temporary blocks (e.g., blocks for local variables) whose lifetime
is finished have this flag set.1 Actual deallocation of these blocks are
performed by the garbage collector.

fastaccess_limit A number of virtual bytes which can be directly accessed with
well-typed pointers.

0 Single zero is stored in this field for fast check of cast flags described in Sec-
tion 4.2.

structured_limit A number of virtual bytes in the structured data area.

total_limit A number of whole virtual bytes in this block, including both struc-
tured and remainder area.

ptr_additional_base An optional pointer to the additional base storage area (see
Section 4.1.1). If an area is not allocated for this block, 0 (NULL) is stored.

The three limit values are used for different purpose to optimize runtime op-
erations. Total-limit and structured-limit determine the size and the structure of
the data areas. Fastaccess-limit has one of two possible values: that equal to the
structured-limit in normal blocks, or zero for blocks which need special attentions
(e.g., already unallocated blocks). Throughout the program execution, those val-
ues must meet the following constraints:

1. The structured-limit must be a multiple of the element size of the data type,
and must not be greater than total-limit.

2. The fastaccess-limit must be either zero or equal to structured-limit.

3. If any pointer points to the memory block, both structured-limit and total-
limit, along with the type information, should not change.

An exception to these rules is the type-undecided pseudo-type, described in Sec-
tion 4.3.

1A difference between out-of-use block and finished varargs block is that the latter should be
“deallocated” once more by a caller function.

70

The data areas inside memory blocks are split into three parts. The first area,
called structured data area, contains most part of the block data. Its virtual size is
always multiple of the element size of the block’s data type. All statically-allocated
data only have structured data area at the beginning of program execution. The
remainder data area (Section 4.1.2) only appears in dynamically-allocated blocks
and holds the extra data which does not fit in the format of associated block type.
The final part is an additional base storage area (Section 4.1.1).

There are a few kinds of blocks which use special format for data area. They are
described in separate sections (functions in Section 3.5.2, type information block
in Section A.1.2, type-undecided blocks in Section 4.3, externally-defined abstract
types in Section 4.4.3, magical blocks in section 4.4.4). Even for these blocks, the
format of the block headers is common.

A.1.1.2 Value representation in structured data area

The format of values stored inside structured data area of memory blocks vary
depending on its block type.

Fat pointers and fat integers The block format for fat pointers and word-sized
fat integers are simple. Fat values described in Section 3.1 are arranged sequen-
tially. Cast flags in fat pointers are maintained in coherent to the block type stored
in the associated block header. Additional base storage area is not required nor
used for blocks of these types.

Narrow Integers and Floats Narrow integers (i.e., usually, char and short)
and floating numbers will not hold a valid pointer value. Thus data representations
for these types are the same as that of native implementation. If a program stores
pointer data in data blocks of these types, additional base storage areas will be al-
located and used. Figure A.2 shows the structure of the blocks of pointers, integers
and floating values.

Structures For struct types, the packed-style relesentation of each element de-
scribed in Section 3.4 is arranged in the main data area of data blocks. Additional
base storage areas is used if the struct type contains any non-fat members. Fig-
ure A.3 shows an example of a block representation for struct values. If no mem-
bers of the struct are fat data, the representation will be equivalent to the native
representation.

A.1.2 Type information and access methods

Type information blocks keep the information of various runtime types, and also
serve as dynamic dispatch tables for access methods.

71

header
type = int *

size = 20
addbase = X base offset

p[0]

base offset

p[1]

0 8 12 16
0 8 16 4012 20 36real offset

virtual offset 4 20
24 28 32

base offset

p[2]

base offset

p[3]

base offset

p[4]

4

header
type = int
size = 20

addbase = X base value

p[0]

base value

p[1]

0 8 12 16
0 8 16 4012 20 36real offset

virtual offset 4 20
24 28 32

base value

p[2]

base value

p[3]

base value

p[4]

4

header
type = float

size = 20
addbase = X

f[0] f[1]

0 8 12 16
0 8 1612 20real offset

virtual offset 4 20

f[2] f[3] f[4]

4

value value value value value

Pointers (int *):

Int:

Float:

Figure A.2: Block structure for pointers and primitive types.

72

struct {
double d;
char c;
float f;
char *p[3];

} s[2];

header

type = struct S
size = 64

base offset
d

p[0]

base offset

p[1]

s[0]

0 8 12 16 24 28 32
0 8 16 40 4812 20 36 44real offset

virtual offset

c pad
[3b]

9 20

pad
[4b]

9 24 28 32

f
base offset

p[2]

base offset
d

p[0]

base offset

p[1]

s[1]

32 40 44 48 56 60 64
48 56 64 88 9660 68 84 92

c pad
[3b]

52

pad
[4b]

72 76 80

f
base offset

p[2]

41
57

(con
tin

u
es...)

(con
tin

u
ed...)

• See Figure 3.4 for the use of paddings.

Figure A.3: Representation of struct data blocks

73

Figure A.4 shows the structure of type information blocks. Each type infor-
mation block consists of three parts: a block header, an information section, and a
method table.

Following information is stored in an information section:

Name of the type User-readable string representation of the type’s name. Used in
error handlers.

Element sizes Sizes of a single element of the corresponding type, counted both
in virtual bytes and in real (representation) bytes. These values (specifically,
the ratio of these values) are used for memory allocations and for accessing
remainder areas (described in Section 4.1.2).

Flags This field holds the following information.

Kind of the type One of primitives, pointers, functions, structures, or spe-
cial/abstract types.

User allocation information The flag indicates that instances of this type
cannot be dynamically allocated by user programs. Typically func-
tions, abstract types and other special types have this flag set.

Continuous flag It indicates whether the representation of the type is con-
tinuous, i.e., it matches to the native representation. For example, nar-
row integers, floats, arrays of continuous data types, or structs com-
posed of only continuous types are continuous. Data blocks of contin-
uous types can be passed directly to external routine (e.g. system calls)
once boundary check succeeds. Wrapper routines for native functions
check this flag to avoid redundant data copying. The flag also changes
the semantics of the remainder data area slightly (Section 4.1.2).

Referee’s type information This field in type information blocks for pointers
points to the type information block of the target type of the pointer type.
For example, this field in the type information block for int * points to the
type information block for int.

The method table in type information blocks contains pointers to the access
methods. Currently the following fields are defined.

dvalue (*ti_read_dword)(base_t, ofs_t);
value (*ti_read_word)(base_t, ofs_t);
hword (*ti_read_hword)(base_t, ofs_t);
byte (*ti_read_byte)(base_t, ofs_t);

void (*ti_write_dword)(base_t, ofs_t, dvalue, typeinfo_t);
void (*ti_write_word)(base_t, ofs_t, value, typeinfo_t);
void (*ti_write_hword)(base_t, ofs_t, hword, typeinfo_t);
void (*ti_write_byte)(base_t, ofs_t, byte, typeinfo_t);

74

Typeinfo

Sizes

Data

Memory Block

Type information structure

Base
flag

Pointer

Access methods

read/
write

Offset

block header

Name of the type

Virtual Element Size

Real Element Size

Flags

Referee’s typeinfo

Access Method Table

. . .

*(ti_read_byte)(...)

*(ti_read_word)(...)

*(ti_write_byte)(...)

*(ti_write_word)(...)

Figure A.4: Structure of type information blocks.

75

First four methods are access methods for read access to memory blocks in
four different sizes. Each of them takes one unpacked fat pointer and returns the
value stored in the corresponding virtual memory location in generic integer types.
The other four methods are for write accesses. First two arguments of each method
indicate a virtual memory location to access, the next one does a value to be stored.
The final argument passes of the type of the memory access. For access with
normal primitive types and pointer types (e.g., *(char *)p = ’x’), it will be the
pointer to the type information block of the corresponding type. However, if the
access is performed on a part of a struct (e.g., p->f.g = ’x’), the type of the
mostly outer struct in the assignment expression (e.g., the type of *p, not of the
field g) will be passed. Almost all access methods simply ignore this information,
but the access methods associated with type-undecided blocks use this information
to initialize a memory block to the correct type.

Finally, every type information block also has a valid block header, to make
it possible to be referred to by pointers in user programs. It has a special runtime
type like abstract data types 4.4.3 to prevent any modification to the information.
The addresses of the type information blocks can be retrieved from user program
by using a primitive operator __typeof(x), where x can be either a type or an
expression (like sizeof operator in C), which returns a pointer to the information
block of the corresponding type as a void * pointer. The intended use of this
operator is to implement a special runtime routines (e.g., a type-specified memory
allocator, a runtime type checker for debugging purpose). Figure A.5 shows an
example of relation between type information blocks.

The type information blocks and access methods for the primitive types (char,
short, int, long long, float, and double), as well as those for some special
types (void, type information), are defined in the runtime library. Type information
for all compound types (i.e., pointers, functions, structs and unions) are generated
by the compiler, because these have infinite possibility of variations. The genera-
tion of access methods is discussed in Section A.2.4.

A.1.3 Memory management

As already mentioned, invocation of free() library function by user program does
not immediately release the memory block. Instead, it just marks the block as
inactive and prevents further access to this block. To mark that the block is inactive,
free() sets the runtime-flag field of the target block to the “released, out-of-use”
state. In addition, it sets fastaccess-limit to 0 (Figure 4.7), redirecting all memory
accesses to associated access methods. The access methods check the runtime-flag,
find out that the accessed block is already “deallocated”, and raise access error.

Current implementation of Fail-Safe C uses the conservative mark-sweep
garbage collector implemented by Hans-J. Bohem et al. [10, 9] as the back-end
memory manager. As memory blocks returned from Bohem’s collector are only
word aligned, the runtime system aligns block addresses to double-word boundary
by itself.

76

int y[4] = {0,1,2,3}; int *x[4]={&y[0],0,0,0};

typeinfo:
limits: 16

x:

typeinfo:
limits: 16

y:

(, 0)

(NULL , 0)

(NULL , 0)

(NULL , 0)

(NULL , 0)

(NULL , 1)

(NULL , 2)

(NULL , 3)

__typeof(int *)

typeinfo:
limits: 16

name: int *
kind: pointer
vsize: 4
rsize: 8
referee:
methods:
 read_*_Pi
 write_*_Pi

type of typeinfo

typeinfo:
limits: 16

name: __typeinfo
kind: SPECIAL
vsize: 4
rsize: 8
referee: NULL
methods:
 read_*_noaccess
 write_*_noaccess

__typeof(int)

typeinfo:
limits: 16

name: int *
kind: primitive
vsize: 4
rsize: 8
referee: NULL
methods:
 read_*_fat_int
 write_*_fat_int

Figure A.5: An example configuration of relationship between typeinfo blocks

77

Although Bohem’s garbage collector is well implemented and is reasonably
fast, it is desirable to adopt exact (non-conservative) garbage collection when pos-
sible. Theoretically it is possible to adopt exact garbage collector to Fail-Safe C
system, because all base addresses stored in the memory block can be reliably iden-
tified by its block type, and all of those in local variables can be identified by its
static type. However, utilizing exact garbage collector is impossible while using
usual C compiler as a back-end code generator, because no type information on
native stacks can be obtained. There are several method for workaround:

1. Use partially-conservative garbage collectors. Bohem’s gc allows programs
to tell that some words in memory blocks do not contain any pointer values.
Unfortunately, its interface is not well documented, and it cannot be used for
Fail-Safe C because the block format expected by their gc is not compatible
with the block format of Fail-Safe C. Further more, it still sweeps all other
memory words conservatively.

Some garbage collectors [6, 39]2 allow exact handling of pointers in heap
by passing type information (more exactly, the locations of pointers inside
blocks) to memory allocator, while using conservative approach for native
stacks and other untyped areas. For example, Kaffe, a virtual machine for
Java byte-codes, uses a kind of this approach (described in [54]).

2. Generate native assembly code directly, and make own records for tracing
pointer values in native stack. Many advanced implementation of safe lan-
guages, such as Objective Caml [56] system, take this approach. It requires
huge amount of implementation work and damages portability of systems.

One possible, realistic variation of this approach is to use low-level interme-
diate language which has a support for stack inspection. C−− [37, 57] is one
of such intermediate languages, which provides a similar level of abstraction
as C language, performs various tiresome job for code generation such as
register allocation and spilling, and provides a set of routines for inspection
of stack structures and values which can be used for exact garbage collectors.

A.2 Generated code

This section describes internal of the code generated by current Fail-Safe C com-
piler.

2The referred articles are discussing about adopting conservative collection technique for copying
garbage collection. As memory blocks which are indefinitely pointed by values which are conser-
vatively guessed as pointer are impossible to move around memory locations, these systems use
conservative, mark-sweep strategy for type-unknown area (such as stacks) and use exact, copying
strategy for other values. Note that C copying collection is not useful even for type-known values
on Fail-Safe C, because Fail-Safe C reveals the real address of objects to user programs as inte-
gers. Copying collection thus changes behavior of existing user programs which do not expect such
movements.

78

Table A.1: Translated types for various builtin types.

translated type
original type packed type unpacked types

base address value/offset
char byte (u_char) — byte
short hword (u_short) — hword

int, long value (u_long long) base_t (u_int) word (u_int)
long long dvalue (a struct) base_t dword (u_long long)

float float — float
double double — double
pointers ptrvalue (u_long long) base_t ofs_t (u_int)

Each entry shows the name of translated types, with real typedef’ed
type shown in parentheses. The type specifier unsigned is abbrevi-
ated to “u_”. For local variables of integer types, the original type is
used instead for value part of unpacked translated types.

A.2.1 Encoding for primitive types

Table A.1 shows the name of translated types corresponds to various builtin types
in usual 32bit architecture.

Current implementation uses gcc’s double-word integer type (long long) to
hold fat integers and fat pointers in packed representations. Under this encoding,
hereafter called “standard encoding”, primitive operations on the standard encod-
ing are implemented as follows.

• Composing a fat value: ((word)(v) | (dword)(word)b << 32)

• Converting an integer to a fat integer: (value)(word)x

• Taking the base part: (base_t)(v >> 32)

• Taking the value/offset part: (word)(v & 0xffffffffU)

On Intel i386, inline assembler facility of gcc is also used. The composition oper-
ation is replaced with the following “empty” assembly directive:

static inline value value_of_base_vaddr(base_t b, word va)
{

value p;
__asm("": "=A" (p): "a" (va), "d" (b));
return p;

}

79

This directive directs the compiler that variables va and b should be arranged to
eax and edx registers respectively, and then assume that the double-word result is
on register pair edx:eax.

Alternatively, another encoding which uses the __complex extension of gcc
can also be possible. The type of fat values is declared as unsigned int
__complex, and operations are implemented as follows.

• Composing a fat value: (value)((word)(v) + (word)b * 1i)

• converting an integer to a fat integer: (value)(word)x

• Taking the base part: __imag v

• Taking the value/offset part: __real v

The relative performance of these encodings varies among several programs, but
in some preliminary experiments the standard encoding (with an inline assembly
code) performs slightly better than others. The result of those tests are shown in
Section A.4. Unfortunately, gcc (at least version 2.95.4 for Intel architecture and
version 2.95.3 for SPARC architecture) has severe bugs in handling of complex
values, which makes a program code included to every compilation units under
Fail-Safe C cause an internal compiler error inside a register allocation routine. For
this reason, current Fail-Safe C implementation avoids using alternative encoding.3

A.2.2 Encoding of typenames and other identifiers

Type inconsistency between library routines and user programs is severe problem
to whole system under Fail-Safe C. Thus, it uses an ASCII-encoding of various
data type, which are similar to those used in C++ language to support function
overloading, in various places: the name of (specific main entry of) functions, type
information blocks, access methods, various support inline functions, and others.
The type-name encoding rules used in Fail-Safe C is shown in Table A.2.

There are two different encoding for structs: The structs defined in user pro-
grams are currently referred by its internal identification number (encoded as Sn),
which differentiate the encoding of the same struct in different programs. As a
compile-time option, the current compiler also provides limited support for sepa-
rate compilation by encoding the location of struct definitions into the type name.
Unfortunately, this encoding may produce unsound compilation in very tricky pro-
grams, although it is much safer than simple name-based encoding when there are
two different declarations of structs with the same name. True support for separate
compilation is left as future work.

3On Intel architecture, the experiments on alternative encoding is performed by disabling inline
expansion for some library functions which causes internal errors. On Sparc architecture, even a
non-inline version of these functions failed, and thus experiments for the alternative encoding are
completely abandoned.

80

T 〈T 〉
(encoded name of T)

Primitive types:
void† v
char c
short s
int i
long‡ l

long long‡ q
float f
double d

Pointers:
T ′ * P〈T ′〉

Functions:
Tr(void) F_〈Tr〉
Tr(...) FV_〈Tr〉

Tr(T1,---,Tn) F〈T1〉---〈Tn〉_〈Tr〉
Tr(T1,---,Tn,...) F〈T1〉---〈Tn〉V_〈Tr〉

Structures:
struct S (user-defined) Si
struct S (external) Sn�K_

† v is used for the base type of pointers and the return type of
functions. The void specification in function parameters is rep-
resented by null string.

‡ l and q are only used when size of its type are different from
other integer types.

• Attributes such as signed, unsigned, volatile, const, and
inline are ignored for type encoding.

• i: decimal internal ID of the structure

• K: keyword associated with the external structure

• �: the length of the name K

Table A.2: ASCII encoding of type names

81

On the contrary, the structs defined in system library headers will have spe-
cific, fixed names to allow separate compilation of libraries. For example, a FILE
structure in the standard library are defined in stdio.h with special attribute as

struct __fsc_attribute__((named "stdio_FILE", external)) FILE;

and its type encoding becomes “Sn10stdio_file_”. This ensures type-
consistency between user program and the Fail-Safe C standard library.

Various other names in the program are also renamed systematically to avoid
unintended crash of two names. Table A.3 summarizes such renaming.

A.2.3 Translating body of functions

The type-specific entry point of each functions has program code translated from
the original definition. The entry point accepts unpacked values as arguments and
returns packed translated value. For example, an function which has an original
type int(int, char *, double) is translated to a function of translated type
value(base_t, int, base_t, ofs_t, double).

A.2.3.1 Variables and control flow

Fail-Safe C compiler firstly perform various preprocessing before translating mem-
ory operations in user program. Body of functions is expanded into a sequence of
simple intermediate instructions. Especially, all local variables whose addresses
are taken are expanded to pointer variables with a code performing explicit alloca-
tions and initializations (see Section 3.3.1).

Next, all fat variables (both pointers and integers) are separated into two vari-
ables. The purpose of this translation is to find out redundant and duplicate vari-
ables as much as possible. For example, almost all numeric operations does not
refer to the base parts of operands, and generates null (0) base values. In addition,
functions with heavy use of pointer arithmetics is likely to hold several pointer
variables which points to the same array.

A.2.3.2 Arithmetics

Integer and floating arithmetic operations are translated into the operation on the
value parts if operands are fat integers. The base part of the result is set to con-
stant zero, which are often removed by redundant variable elimination in post-
processing.

Pointer arithmetic operations are slightly more complicated. If an integer (i) is
added to a pointer [(b,o)f], the virtual size of the target type of the pointer (vs) is
multiplied to the integer operand, then it is added to the offset part of the pointer.
If the virtual size of target type is a power of two, base part of the pointer does not
need to be updated, because under modulo the size of the range of offsets (vms)
which is a larger power of two (namely 232 or 264),

((o+ vs · i) mod vms) mod vs = o mod vs

82

Renamed global identifiers:
global variables GV_x
function stub blocks GV_x

static variables and functions GV_i_x
string constants in expressions GSTR_i
type-specific entry of functions FS_〈T 〉_x
type-generic entry of functions FG_x

Renamed local identifiers:
base part of function arguments FAB_i_x
value/offset part of function arguments FAV_i_x

(arguments for handling varargs FAva_B, FAva_V)
local variables T_i

Names for type-dependent values:
type information block fsc_typeinfo_〈T 〉
type of translated structures struct struct_〈T 〉
type of memory block for single value struct fsc_storage_〈T 〉_s
memory block type for array of values struct fsc_storage_〈T 〉_n

Names for synthesized type-dependent internal functions:
calculate real offset from virtual offset get_real_offset_〈T 〉
update cast flag set_base_cast_flag_〈T 〉
coerce integer to pointer ptrvalue_of_value_〈T 〉
access methods for user-defined structures read_size_〈T 〉

write_size_〈T 〉

• Legends for symbols: 〈T 〉 is the encoded string for type T , x is the user-
supplied identifier, n is the number of elements, i is an internally-generated
unique identification number, and size is a keyword describing size of access.

• See respective subsections under this section for the meaning of entries.

Table A.3: Name encodings in Fail-Safe C

83

Table A.4: Symbols used in translation rules

x, y, p, q, . . . packed local variables
xb, pb, . . . base field of variables
po, qo, . . . offset field of fat pointer variables
xv, yv, . . . value field of fat integer variables
Tx, Tp, . . . static type of variables
slanted-name field name, internal operator, etc.
slanted-nameT type-dependent operation
sans_serif_name functions in runtime library or generated functions
〈T 〉 encoded string of type name T
L1:, L2:, . . . targets of branch instructions
[[E]] E translated by another translation rule

• [[·]] may appear in variable positions of other statements. Internally, tempo-
rary variables are allocated for these values. For example, f([[(T)x]]) means
[[t = (T)x]]; f(t) where t is a fresh temporary variable.

is always satisfied (because vms mod vs = 0), that means the result pointer is
aligned if a pointer operand is aligned. However, if the virtual size is not a power of
two, the cast flag must be updated when integer overflow is occurred during offset
calculation. Figure A.6 summarizes the translation rule for arithmetic operations.

A.2.3.3 Cast operations

Cast operation between integer types do not trash the base part of the operand value
if the result is also a fat type. If the operand does not have base part, the base part of
the result, if any, will be set to 0. Cast operation between pointer types recalculates
the cast flag of the target pointer, not changing other parts.

Because pointers and fat integers uses different representations, cast between
these types converts virtual offsets to virtual addresses by adding the base part of
the operand (removing cast flag), or vice versa. The cast flags are removed on
integers and recalculated for pointers, as usual.

Figure A.7 summarizes the translation rules for cast operations.

A.2.3.4 Taking address of variables

Taking the address of a simple global variable is almost straightforward. The ad-
dress of the main part of the block (val field, see Section A.2.6) is copied into
the base part of the result. However, taking the address of a field of a global vari-
able must be done slightly carefully. Because the type of the field is different from
the type of the enclosing variable, cast flag of the result pointer must be set to 1
(Figure A.8).

84

Table A.5: Internal operators used in translation rules.

sizeof(a) The virtual size of the expression, type, or
field a in bytes. [constant integer]

real-sizeof(a) The real size of the expression, type, or field
a in bytes. [constant integer]

remove-cast-flag(b) Returns copy of b, which is base part of un-
packed pointer, with cast flag changed to 0.
[inline function in runtime library]

set-cast-flag(b) Returns copy of b with cast flag changed to 1.
[inline function in runtime library]

cast-flag(b) Returns cast flag of b in boolean.
[inline function in runtime library]

update-cast-flagT (b,o) Returns the copy of b with cast flag changed
so that (b,o) will be a valid pointer as type T .
Assuming type T ′ to be the referee type of
pointer type T , the cast flag of the result will
be set when (1) b is null, (2) b points to mem-
ory blocks with type different from T′, or (3a)
the offset o is not multiple of the virtual size
of element in concrete type T′ or (3b) the off-
set o is not 0 and T ′ is abstract, and in other
cases it will be cleared.
[inline function, either in standard library or
generated by the compiler]

isnull(b) Returns 1 if the base b is null (cast flag may
be either 0 or 1).
[inline function in runtime library]

offsetof(f) Returns the virtual offset of field f counting
from the top of enclosing struct.
[constant integer]

85

Numeric arithmetics:

z = x� y (binary) =⇒
[

zv = xv � yv

zb = 0

]

z = $x (unary) =⇒
[

zv = $xv

zb = 0

]

• The code zb = 0 is omitted for narrow integers and floats.

Pointer addition:

• if sizeof (Tp) is a power of 2:

q = p± x =⇒
[

qo = po ± x∗ sizeof (Tp)
qb = pb

]

• if sizeof (Tp) is not a power of 2:

q = p± x =⇒

⎡
⎢⎢⎢⎢⎣

qo = po ± x∗ sizeof (Tp)
if overflow/underflow:

qb = update-cast-flagTq
(pb,qo)

else:
qb = pb

⎤
⎥⎥⎥⎥⎦

Pointer-pointer subtraction:

x = p−q =⇒

⎡
⎢⎢⎣

if qb = pb (modulo cast-flag):
xv = (po −qo)/sizeof (Tp)
xb = 0

else: error

⎤
⎥⎥⎦

Figure A.6: Translation rules for arithmetic operations

86

Cast between fat integers:

y = (Ty)x =⇒
[

yv = (Ty)xv

yb = xb

]

Cast from narrow integers to fat integers:

y = (Ty)x =⇒
[

yv = (Ty)xv

yb = 0

]

Cast from fat integers to narrow integers:

y = (Ty)x =⇒ yv = (Ty)xv

Cast between pointers:

q = (Tq)p =⇒
[

qo = po

qb = update-cast-flagTq
(pb,qo)

]

Cast from pointers to integers:

x = (int)p =⇒
[

xb = remove-cast-flag(pb)
xv = xb + po

]

Cast from integers to pointers:

p = (Tq)x =⇒
[

po = xv − xb
pb = update-cast-flagTp

(xb, po)

]

Figure A.7: Translation rules for casts

87

Taking address of global variables:

p = &v =⇒
[

po = 0
pb = (base_t)&GV_v.val

]

Taking address of a field of global variables:

p = &v. f =⇒
[

po = offset-of (f)
pb = set-cast-flag((base_t)&GV_v.val)

]

Taking address of a field of a target of pointers:

q = &(p-> f) =⇒
[

qo = po + offset-of (f)
qb = update-cast-flagTq

(pb,qo)

]

Figure A.8: Translation rule for pointer address operation

Taking the address of a field of a object via pointer is essentially a variation of
pointer arithmetic. Cast flag is recalculated to maintain runtime type safety.4

A.2.3.5 Memory accesses

Memory access operations are most important operations to perform safety check
in Fail-Safe C system. Figure A.9 shows the translation rules for pointer derefer-
ences (read accesses). First the code checks the boundary, cast, and null condition
of the dereferenced pointer. As already discussed in Section 4.2, Fail-Safe C uses
an implementation trick to perform those three checks in single comparison. If
boundary test succeeds, the real address of the referenced element in target mem-
ory block is calculated, and data are read. The ratio of the real offset to the virtual
offset is hard-coded in output code. For simple types and pointer types it will be
an integer. If the check is failed, there are many possible cases: boundary over-
run, type mismatch, null pointer dereferencing, or dereferencing a pointer to the
remainder area or type-undecided region. Except for the null pointers, the system
picks up a read access methods from the header of the referred block and call it to
delegate detailed safety check and real memory access. The returned value is either
a fat integer or narrow integer depending the type, thus it should be converted to
the expected type by the caller.

Field access via pointer (-> operator in C language) is a variation of the sim-
ple pointer dereference. If the pointer is not cast, the pointer is correctly aligned
and pointing to the top of an element of the enclosing struct, thus the access can
simply be translated to a field dereferencing in output code. Otherwise, the access

4There is a chance the resulting pointer may be well-typed, when the operand was ill-typed (the
cast flag is 1).

88

Reading memory via pointers:

x = ∗p =⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(if is-null (pb): error
if cast-flag(pb) = 1: goto L1

)†

if pb->header.fastcheck-limit < po:

x = ∗
(

pb + po ∗
(real-sizeof (Tp)

sizeof (Tp)

))
else:

L1:
t = pb->header.typeinfo->read-access-method(pb, po)
[[x = (Tx)t]]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Reading field of struct via pointers:

x = p-> f =⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(if is-null (pb): error
if cast-flag(pb) = 1: goto L1

)†

if pb->header.fastcheck-limit < po:

x =
(

pb + po ∗
(real-sizeof (Tp)

sizeof(Tp)

))
-> f [.cv]

else:
L1:
t = pb->header.typeinfo->read-access-method

(pb, po + offset-of(f))
[[x = (Tx)t]]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• †: these checks are merged into next if instruction in the actual implementa-
tion (see Section 4.2).

• Appropriate read-access-method will be chosen based on the size of x.

• The field “.cv” is only used when field f contains a fat integer or a fat pointer
(see Section A.2.6).

Figure A.9: Translation rule for pointer dereference

89

is translated as if it were a combination of pointer cast, an addition of the element
offset, and a dereference operation.

Write access is almost a dual operation to read access, except that access meth-
ods require one additional argument, which is the type information about the con-
text of the access. For simple write access, the information is just the static type
of the element to be written. For field access, however, the type of the enclosing
structure, not the type of accessed element, is passed to the access method (Sec-
tion A.1.2).

A.2.3.6 Invoking functions directly

Invoking function with fixed number of arguments via direct identifier is translated
straightforwardly as shown in Figure A.11. Type-specific entry points of translated
functions require unpacked representation for arguments. Contrarily, return values
are packed values so that it will be unpacked when needed (not shown explicitly in
the figure).

If a function receives varargs, an array of word-size fat integers is allocated by
invoking a library function, and all arguments for the varargs slot are put sequen-
tially into the array. Then, a fat pointer to the array, is passed to the function as
additional arguments with special names. If there are no real arguments for varargs,
a null pointer is passed instead. The offset part of the additional pointer is always
zero when the function called under these rules, but it may be different when the
function is invoked via generic stub entry point (described in Section A.2.5).

A.2.3.7 Invoking functions via pointers

When the program invokes a function using a function pointer, the pointer in the
translated program will point to the stub block of the function (Section A.2.5). At
the invocation, the translated code (Figure A.12) first checks for the cast flag of the
pointer. If the pointer is not cast, the pointer to the type-specific entry point is taken
from the stub block and invoked in the same way as in usual function invocation
(see the previous section). The offset part of the function pointer is always zero
when function pointer is not cast, thus no checks are needed.

If the pointer is cast, however, it may point to any kind of blocks, which may
be not even a function stub, and offset may also be arbitrary. First, the kind of
the referred block and the offset part of the pointer is checked. If it is a correct
pointer to a function (of a different type), all arguments, including fixed arguments,
are passed to the generic entry point of the function in the same way as varargs
arguments. The value returned from the generic entry is a fat integer type and will
be converted to the expected type by the caller.

A.2.3.8 Receiving varargs arguments

The additional fat pointer for variable-number arguments are received by the callee
by specially named formal parameters FAva_b and FAva_v. Because these names

90

Writing into memory via pointers:

∗p = x =⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(if is-null (pb): error
if cast-flag(pb) = 1: goto L1

)†

if pb->header.fastcheck-limit < po:

∗
(

pb + po ∗
(real-sizeof (Tp)

sizeof (Tp)

))
= x

else:
L1:
pb->header.typeinfo->write-access-method

(pb, po, [[(int)x]], fsc_typeinfo_〈Tx〉.val)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Writing into field via pointers:

p-> f = x

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(if is-null(pb): error
if cast-flag(pb) = 1: goto L1

)†

if pb->header.fastcheck-limit < po:(
pb + po ∗

(real-sizeof(Tp)
sizeof (Tp)

))
-> f [.cv] = x

else:
L1:
pb->header.typeinfo->write-access-method

(pb, po + offset-of (f), [[(int)x]], fsc_typeinfo_〈T(∗p)〉.val)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• †: these checks are merged into next if instruction in actual implementation
(see Section 4.2).

• Appropriate write-access-method will be chosen based on the size of x, and
the type int will actually be an integer of that size.

• The field “.cv” is only used when field f contains a fat integer or a pointer
(see Section A.2.6).

Figure A.10: Translation rules for pointer write

91

Invoking simple function:

x = f (a0,a1, . . . ,an) =⇒ x = FS_〈Tf 〉_ f (a0.b,a0.v,a1.b,a1.v, . . . ,an.b,an.v)

• Base addresses for narrow integers, floating numbers and struct arguments
are skipped. Offsets are used instead of values for pointer arguments.

Invoking function with variable number of parameters:

x = f (

fixed︷ ︸︸ ︷
a0,a1, . . . ,an,

varargs︷ ︸︸ ︷
b0,b1, . . . ,bn)

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(prepare fixed arguments)
t = fsc_alloc_varargs(n)
fsc_put_varargs(t,0, [[(int)b0]])

...
fsc_put_varargs(t,n, [[(int)bn]])
x = FS_〈Tf 〉_ f (. . . , t,0)
fsc_dealloc_varargs(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• If some arguments are double-word size, fsc_put_varargs_2 will be called
with double-word fat integer argument, and all offset parameter passed for
fsc_put_varargs and fsc_alloc_varargs will be adjusted to skip positions
occupied by double-word arguments.

Figure A.11: Translation rules for direct function invocation

92

x = (∗p)(a0,a1, . . . ,an)

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

if is-cast(pb):
if pb->header.kind �= FUNCTION: error
if po �= 0: error
t = fsc_alloc_varargs(n)
fsc_put_varargs(t,0, [[(int)a0]])

...
fsc_put_varargs(t,n, [[(int)an]])
y = pb->gen-entry(t)
fsc_dealloc_varargs(t)
[[x = (Tx)y]]

else:
pb->spec-entry(a0.b,a0.v,a1.b,a1.v, . . . ,an.b,an.v)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• See notices in Figure A.11. If the type of function pointer have varargs, it
will be passed to specific entry in the way shown in Figure A.11, and passed
to generic entry by putting them into t after usual arguments.

Figure A.12: Translation rule for function invocation via pointers

do not overlap with translated names of other parameters, there is no direct way
to access those parameters from user programs. Instead, a special library function
__builtin_va_start is declared in the runtime library. This function is actually
a macro composing a fat pointer from these special formal parameters.5 The stan-
dard library macro va_start() uses this special function to get a fat pointer to
variable arguments, and all other operations on varargs are implemented solely in
user-level macros.

Because the values of type va_list type can be passed to other functions like
vsprintf, the block containing values for variable arguments must be a valid fat
pointer (i.e., it must have a valid block header), and care must be taken for mis-
behaving user programs which store values of type va_list in a long-live heap
area. Thus these blocks are heap-allocated and not released after returning from
functions. The function fsc_dealloc_varargs only checks runtime flags and then
disables the block by setting fastaccess-limit to 0. The actual deallocation is dele-
gated to the garbage collector.

5Using va_start() in functions without varargs causes a compilation error.

93

A.2.4 Generating type-related data and methods

A.2.4.1 Pointer types

Access methods for pointer types are not generated by compiler: a single set of
access methods for pointer types in the runtime library is shared among all pointer
types, because the data representation of these types are almost identical. The
methods use the referee field in the type information block to check the type safety
of the written pointers and put a cast flag appropriately.

For each pointer type appeared in the user program, two inline helper routines
for cast operations are generated. First one, named set_base_castflag_〈T 〉,
converts an unpacked pointer of any type to the target type by setting the cast flag
of the argument. It sets the cast flag when (1) the type of the block referred to by
the pointer does not match with target type, or (2) the offset of the pointer is (a)
not a multiple of the element size (for concrete types) or (b) not zero (for abstract
types). It also resets the cast flag if all of above conditions are not met. The second
helper routine, named ptrvalue_of_value_〈T 〉, converts a packed fat integer to
the target type.

A type information block is also generated for each pointer type. The values of
fields are almost common to all pointer types: Access methods for word-sized ac-
cess are already described, and other methods delegates the operation to the word-
sized access methods. Figure A.13 shows an example of generated code for char
** type.

A.2.4.2 Struct types

As the data layout inside structures might not be uniform, access methods for struc-
tures are more complicated than those for primitive types and pointer types. Thus
Fail-Safe C compiler generates the code of the access methods for each structure.

To generate access methods for each structure type whose size is multiple of
word size, Fail-Safe C compiler internally generates a table called element access
table. For each virtual offset inside one element of the structure, the compiler
calculates the element which contains the target byte as a part of it, and the real
offset of the byte which corresponds to the virtual offset (if any). The real offsets
inside elements which do not use native-compatible representation (i.e. fat pointers
and fat integers) are undefined. The left three column in Figure A.14 show the table
obtained from the following structure.

struct S {
double d;
char c;
float f;
char *p[3];

};

94

inline static base_t set_base_castflag_PPc(base_t b, ofs_t o)
{

base_t b0 = base_remove_castflag(b);
if (b0 && /* null check */

&fsc_typeinfo_Pc.val == get_header_fast(b0)->tinfo &&
/* type check */

o % 4 == 0) /* alignment check */
return b0;

else return base_put_castflag(b0);
}

inline static ptrvalue ptrvalue_of_value_PPc(value v)
{

base_t b = base_of_value(v);
ofs_t o = ofs_of_value(v);
return ptrvalue_of_base_ofs(set_base_castflag_PPc(b, o), o);

}

struct typeinfo_init __attribute__ ((weak)) fsc_typeinfo_PPc =
{EMIT_HEADER_FOR_TYPEINFO, /* macro emitting block header */
{"**char", /* human-readable type name */
TI_POINTER, /* kind, flags */
&fsc_typeinfo_Pc.val, /* referee */
4, 8, /* virtual, real size of element */
read_dword_by_word, /* read access methods */
read_word_fat_pointer,
read_hword_by_word,
read_byte_by_word,
write_dword_to_word, /* write access methods */
write_word_fat_pointer,
write_hword_to_word,
write_byte_to_word
}

};

• For all code examples in this dissertation, comments are inserted and indenta-
tions are revised by hand.

Figure A.13: A set of auto-generated code for char ** type.

95

virtual real
element

access type
offset offset byte half word word dbl. word

0 0

d

d + 0
d + 0

d + 0

d

1 1 d + 1
2 2 d + 2

d + 2
3 3 d + 3
4 4 d + 4

d + 4
d + 4

5 5 d + 5
6 6 d + 6

d + 6
7 7 d + 7
8 8 c c

c + 0
c + 0

c + 0

9 9 _pad0[0] _pad0[0]
10 10 _pad0[1] _pad0[1]

_pad0[1] + 0
11 11 _pad0[2] _pad0[2]
12 12

f

f + 0
f + 0

f
13 13 f + 1
14 14 f + 2

f + 2
15 15 f + 3
16

(16) p[0]

*
*

p[0]

*

17 *
18 *

*
19 *
20

(24) p[1]

*
*

p[1]
21 *
22 *

*
23 *
24

(32) p[2]

*
*

p[2]

*

25 *
26 *

*
27 *
28 40 _pad1[0] _pad1[0]

_pad1[0] + 0
_pad1[0] + 0

29 41 _pad1[1] _pad1[1]
30 42 _pad1[2] _pad1[2]

_pad1[2] + 0
31 43 _pad1[3] _pad1[3]

Legends for Elements:

• Roman: A field which uses native representation

• Italic: A field which uses non-native representation

Legends for Access Type Rows:

• Field name: read the value of field with appropriate type conversion

• name + offset: read the memory directly inside a field of native representation
by pointer manipulation

• *: decompose/delegate access to word-sized access

Figure A.14: Element access table for structure shown in Figure 3.4

96

After that, the compiler traverses the table to find out a correct way to access
the data inside the structure for each access width (byte, half word, word, double
word). The methods for data accesses are chosen from one of the following:

1. If whole part of the accessed area matches to one element inside the struc-
ture, the corresponding element will be accessed.

2. Otherwise, if every bytes of accessed area corresponds to a part of element
which uses native representation, and the real offsets for these bytes are con-
tinuous, the access is directly performed on the corresponding memory re-
gion by using pointer casts and offset manipulations.

3. Otherwise, if it is a word-sized access and the target word is part of a non-
natively represented double-word datum, the access is delegated to double-
word access method.

4. Otherwise, the access is delegated to word-sized access.

Due to the fact that data types with non-native representation are always at least
word aligned, word-sized accesses are guaranteed to be handled in first three meth-
ods, thus no infinite delegation will occur. Selected access patterns are compiled
into one big select statement, and program codes for handling array of structs and
remainder area are added. Figure A.15 shows a read access method of half-word
access generated for the above structure type. In the example code, the internally-
defined routine read_hword_remainder handles buffer-overflow error handling
as well as remainder areas.

Access methods for word or double-word access support handling for addi-
tional base storage area described in Section A.1.1.2 when the target offset points
to a natively-represented field. These support are implemented by combination of
generated code and internally-provided support routines, as shown in Figure A.16.

All structures which is not multiple of word-size always use native representa-
tion, because all types using non-native representation require word alignments in
virtual addressing. These structures are handled by the common access methods
prepared for continuous data types.

A.2.5 Generic entry points and stub blocks for functions

As mentioned in Section A.2.3.7, generic stub entry points of functions receive a
base address of an array which contains all arguments passed as fat integers. The
stub function retrieves required arguments from the array and then passes it to the
main entry of the functions. Values returned from the main entry are converted
to the largest fat integer type and returned to a caller of the stub entry. Shortage
of arguments raises runtime error, while redundant arguments are silently ignored.
If the function receives varargs, the offset of the next slot of the last argument is
passed to the additional argument for varargs mentioned in Section A.2.3.8. If the

97

/* struct struct_S1
{
double d;
unsigned char c;
unsigned char __pad1[3];
float f;
union fsc_initUptr p[3];
unsigned char __pad2[4];};
}; */

hword read_hwordS1(base_t b0, ofs_t ofs)
{
base_t base = base_remove_castflag(b0);
fsc_header * hdr = get_header_fast(base);
if (ofs + 2 > hdr->structured_ofslimit)

return read_hword_remainder (base, ofs);
else {

size_t ofs_outer = ofs / 32;
size_t ofs_inner = ofs % 32;
struct struct_S1 *bp = (struct struct_S1 *)base + ofs_outer;
if (ofs_inner % 2) return read_hword_offseted_hword(base, ofs);
else switch (ofs_inner) {
case 0: return *((hword *)&(*bp).d);
case 2: return *((hword *)((char *)&(*bp).d + 2));
case 4: return *((hword *)((char *)&(*bp).d + 4));
case 6: return *((hword *)((char *)&(*bp).d + 6));
case 8: return *((hword *)&(*bp).c);
case 10: return *((hword *)&(*bp).__pad1[1]);
case 12: return *((hword *)&(*bp).f);
case 14: return *((hword *)((char *)&(*bp).f + 2));
case 16: return read_hword_by_word(base, ofs);
case 18: return read_hword_by_word(base, ofs);
case 20: return read_hword_by_word(base, ofs);
case 22: return read_hword_by_word(base, ofs);
case 24: return read_hword_by_word(base, ofs);
case 26: return read_hword_by_word(base, ofs);
case 28: return *((hword *)&(*bp).__pad2[0]);
case 30: return *((hword *)&(*bp).__pad2[2]);

}
}

}

Figure A.15: A generated access method for half-word read access to struct type

98

value read_wordS1(base_t b0, ofs_t ofs)
{
base_t base = base_remove_castflag(b0);
fsc_header * hdr = get_header_fast(base);
if (ofs + 4 > hdr->structured_ofslimit)

return read_word_remainder(base, ofs);
else {

size_t ofs_outer = ofs / 32;
size_t ofs_inner = ofs % 32;
struct struct_S1 *bp = (struct struct_S1 *)base + ofs_outer;
if (ofs_inner % 4) return read_word_offseted_word(base, ofs);
else {
word result_v = 0;
switch (ofs_inner) {

case 0: result_v = *((word *)&(*bp).d); break;
case 4: result_v = *((word *)((char *)&(*bp).d + 4)); break;
case 8: result_v = *((word *)&(*bp).c); break;
case 12: result_v = *((word *)&(*bp).f); break;
case 16: return value_of_ptrvalue((*bp).p[0].cv);
case 20: return value_of_ptrvalue((*bp).p[1].cv);
case 24: return value_of_ptrvalue((*bp).p[2].cv);
case 28: result_v = *((word *)&(*bp).__pad2[0]);
break;

}
return read_merge_additional_base_word(result_v, b0, ofs);

}
}

}

Words at virtual offsets 0, 4, 8, 12, 28 have native representations. The case
blocks for those offsets use break statement to pass the value read to internal
subroutine read_merge_additional_base_wordwhich cares about addi-
tional base area of the block. Other case blocks directly returns value to the
caller by return statement.

The meaning of “.cv” field is described in Section A.2.6.

Figure A.16: A generated access method for word read access to a struct type

99

(Assuming the function f is type T = Tr(Ta0
,Ta1

, . . . ,Tan))

dvalue FG_ f (base_t b){
i0 = read_word(b,0)

a0 = [[(Ta0
)i0]]

i1 = read_word(b,4)
ai = [[(Ta1

)i1]]
...

in = read_word(b,4n)
an = [[(Tan)in]]

r = FS_〈T 〉_ f (a0.b,a0.v,a1.b,a1.v, . . . ,an.b,an.v)(
fsc_finish_varargs(t,0)

)
return [[(long long)r]]

}

• See notices in Figure A.11 for handling of narrow arguments and double-
word arguments.

• If the specific entry does not return any value, 0 is returned to caller.

• See the main text for the handling of varargs.

• fsc_finish_varargs is only called when f does not have varargs (otherwise
it is already called inside f)

Figure A.17: Generation rule for stub entry point of functions

100

dvalue FG_main(base_t FAva_b)
{

auto value T4;
auto ofs_t T7;
auto value T9;
auto value T11;
T4 = read_word(FAva_b, 0);
T9 = read_word(FAva_b, 4);
T7 = ofs_of_value(T9);
T11 = FS_FiPPc_i_main

(base_of_value(T4), (unsigned int)vaddr_of_value(T4),
set_base_castflag_PPc(base_of_value(T9), T7), T7);

return dvalue_of_value(T11);
}

struct fsc_function_stub_init GV_main = {
EMIT_FSC_HEADER(fsc_typeinfo_FiPPc_i.val, 1),
{ (void *)FS_FiPPc_i_main, FG_main }

};

Figure A.18: Stub entry point for the main function

function returns nothing (void), the stub function generated by current implemen-
tation returns 0 for the caller. Figure A.17 shows a generation rule for stub entry.

A function stub block is also generated for each function definitions. It consists
of block header, a pointer to the specific entry point of the function (coerced to the
void * type) and a pointer to the generic stub entry. Figure A.18 shows an example
of the generic entry and the function stub block for function int main(int, char
*).

The performance overhead introduced by this stub block seems not to be so
large, but further optimization can be considered to remove indirection overhead
for type-specific entry points, by placing stub blocks just before the type-specific
function entry point. This is easy in assembly language, but is impossible while C
compiler is used as back-end code generator. The Glasgow Haskell Compiler [25]
performs some dirty trick which post-processes the compiler-output assembly code
to achieve this, but this might have severe compatibility problem with various ver-
sion of underlying C compilers. Future version of Fail-Safe C may implement its
own code generator for native assembly languages or utilize some low-level inter-
mediate language like C−− [37, 57] to implement this optimization.

A.2.6 Layout static data onto memory

As well as dynamically-allocated data, all statically-allocated data (global variables
and string constants) must have appropriate headers attached. the back-end native
C compilers, however, only guarantee a specific data layout inside single variable:
relative layout between two or more variables may vary for each compilation. This

101

/* BIG-ENDIAN DEFINITIONS */
#define EMIT_INIT_TWO_WORDS(h,l) { (h), (l) }
#define EMIT_DECL_TWO_WORDS(h,l) h; l

#define EMIT_INIT_i(b,o) {EMIT_INIT_TWO_WORDS((b),(b)+(o))}
#define EMIT_INITPTR(b,o,f) {EMIT_INIT_TWO_WORDS((b)+fsc_canonify_tag(f),(o))}

union fsc_initU_i {
struct fsc_initS_i {
EMIT_DECL_TWO_WORDS (word base, word ofs);

} init;
value cv;

};
union fsc_initUptr {

struct fsc_initSptr {
EMIT_DECL_TWO_WORDS (word base, word ofs);

} init;
value cv;

};

Figure A.19: Macros and unions used to emit global initializers

means that Fail-Safe C compiler must encode the required memory layout in single
variable declaration in usual C syntax.

In addition, C compilers and linkers introduce certain limitation on statically-
initialized values. Specifically, addresses of global variables can be cast to word-
size integer in static initializers, or added to constant integers, but cannot be multi-
plied to or divided by constant integers. Further more, static initializers containing
any kind of addresses are not permitted for double-word variables. This means that
a packed fat pointer pointing to a global variable v, that might be expressed like
“(dword)v << 32”, cannot be written directly as a constant.

These problems are solved in the Fail-Safe C compiler by using unions and
structs. To solve first problem, for each unique type T or type T[n] appeared
in global declaration, Fail-Safe C compiler generates a temporary structure decla-
ration. The structure have two fields, the first of which corresponds to the block
header, and the second contains real data. All references to the global variables are
translated to the code referring the second field. The same approach are carried
out for type information blocks and static string constants (which are translated to
char[] global variables).

The solution to the second problem is as follows. for pointers and integers,
union types shown in Figure A.19 are defined in standard library. The first field
.init is used for static initialization. while all runtime reference to this field
refer the .cv field. Macros are used to absorb the byte-order differences: these
macros swap the two arguments on little-endian architectures. Figure A.20 shows
the example output code for global initializations.

102

/* input source:
int a[5] = { 17 };
int j = 3 * 5 + (int)a;
int i = (int)&j;
int *p = &a[3];

*/

struct fsc_storage_Pi_s {
struct fsc_header fsc_header;
union fsc_initUptr val;

};
struct fsc_storage_i_5 {

struct fsc_header fsc_header;
union fsc_initU_i val[5];

};
struct fsc_storage_i_s {

struct fsc_header fsc_header;
union fsc_initU_i val;

};

struct fsc_storage_i_5 GV_a = {
EMIT_FSC_HEADER(fsc_typeinfo_i.val, 20),
{EMIT_INIT_i(0, 17)}

};
struct fsc_storage_i_s GV_j = {

EMIT_FSC_HEADER(fsc_typeinfo_i.val, 4),
EMIT_INIT_i((base_t)&GV_a.val, 15)

};
struct fsc_storage_i_s GV_i = {

EMIT_FSC_HEADER(fsc_typeinfo_i.val, 4),
EMIT_INIT_i((base_t)&GV_j.val.cv, 0)

};
struct fsc_storage_Pi_s GV_p = {

EMIT_FSC_HEADER(fsc_typeinfo_Pi.val, 4),
EMIT_INITPTR((base_t)&GV_a.val, 12, 1)

};

Figure A.20: An example output of global initialization

103

A.2.7 Dynamic initializations

Unlike static initializations, dynamic initializations inside function bodies resem-
ble to assignment statements, i.e., expressions for dynamic initializers can be al-
most any kind of expressions, not limited to constant expressions. Fail-Safe C
compiler thus treats dynamic initializers for scalar variables in the same way as
usual variable assignments.

Local variables of array type are currently allocated in heap. Each element of
initializers for local arrays are analyzed and determined whether it can be treated as
static initializers. If it can be calculated as constant value, it is assigned directly into
the members of the heap-allocated array. For members which cannot be calculated
statically, the corresponding elements are initialized by zero at first and assignment
statements for corresponding elements are inserted. Local scalar variables whose
address is taken by & operator is preprocessed to an array of one element, and thus
translated in the same way as other arrays.

An example is shown in Figure A.21. First three elements are initialized stati-
cally, and the last element is translated in the same way as an assignment to array,
a[3] = (int)v. Current implementation of Fail-Safe C does generate a redun-
dant boundary checking code for element assignment. This check can be erased by
simple pointer analysis.

A.3 Summary of the current standard library

Various methods are used to implement library functions in the current standard
library. The following is a summary for some of standard library functions with
explanations on implementation method used.

1. Simple wrapper functions:

• Ctype functions (isascii, toupper etc.)
For these functions, wrappers are suitable to reflect locale support of
underlying operating system. Type-specific entry-points of these func-
tions are declared as inline functions for faster execution. The argu-
ment, which has type int, must be cast to unsigned char type be-
fore passed to corresponding native functions because the behaviour of
native functions for value outside unsigned char range is undefined.

• fopen, fclose, ftell, fseek, fread, fgetc, etc.
Using abstract type block for FILE pointers. Figures A.22 and A.23
show an example implementations for wrapper functions on FILE type.

2. Custom implementation provided in native C language:

• errno
This special variable is implemented using magical blocks. Fig-
ures A.24 and A.25 show the current implementation of the errno

104

Original Source:

int main(int c, char **v) {
int a[4] = { 1, 2, 3, (int)v };
return 0;

}

Translated Source (comment inserted):

value FS_FiPPc_i_main (base_t FAB_1c, unsigned int FAV_1c,
base_t FAB_2v, ofs_t FAV_2v)

{
auto base_t T2;
auto base_t T5;
auto ofs_t T11;
auto unsigned int T12;
auto value * T18;
auto int T39;
B0:
T2 = fsc_alloc_stack_block(&fsc_typeinfo_i.val, 4);
T18 = (value *)T2;
(T18 + 0) = value_of_base_vaddr(0, 1); / first three elements */
(T18 + 1) = value_of_base_vaddr(0, 2); / initialized directly */
*(T18 + 2) = value_of_base_vaddr(0, 3);

/* calculating (int)v */
T5 = base_remove_castflag(FAB_2v);
T11 = 0 + 4 * 3;
T12 = (unsigned int)(int)vaddr_of_base_ofs(FAB_2v, FAV_2v);

/* assignment */
T39 = is_offset_ok(T2, T11);
if (!T39) goto LL_37_0;
*get_realoffset_i(T2, T11) = value_of_base_vaddr(T5, T12);
goto LL_37_1;
LL_37_0:
write_word(T2, T11, value_of_base_vaddr(T5, T12), 0);
LL_37_1:
return value_of_base_vaddr(0, (unsigned int)0);

}

Figure A.21: Handling of dynamic initializer for local arrays

105

struct typeinfo_init fsc_typeinfo_Sn10stdio_FILE_ = {
EMIT_HEADER_FOR_TYPEINFO,
{

"stdio_FILE",
TI_SPECIAL,
NULL,
4,
sizeof (FILE *),
EMIT_TYPEINFO_ACCESS_METHODS_TABLE_NOACCESS

}
};

struct stdio_FILE_init {
struct fsc_header header;
FILE *p;

};

...

FILE **get_FILE_pointer_addr(base_t b0, ofs_t o) {
base_t b;
fsc_header *h;
FILE *p;

initialize_stddesc();
b = base_remove_castflag(b0);
if (b == 0)

fsc_raise_error_library(b0, o, ERR_NULLPTR, "get_FILE_pointer");
h = get_header_fast(b);
if (h->tinfo != &fsc_typeinfo_Sn10stdio_FILE_.val)

fsc_raise_error_library(b0, o, ERR_TYPEMISMATCH, "get_FILE_pointer");
if (o != 0)

fsc_raise_error_library(b0, o, ERR_OUTOFBOUNDS, "get_FILE_pointer");
return (FILE **)b;

}

FILE *get_FILE_pointer(base_t b0, ofs_t o) {
FILE *p = *get_FILE_pointer_addr(b0, o);
if (!p)

fsc_raise_error_library(b0, o, ERR_OUTOFBOUNDS,
"get_FILE_pointer: file already closed");

return p;
}

• The function initialize_stddesc (not shown in this figure) prepares three standard file
objects, stdin, stdout, and stderr.

Figure A.22: Implementation of the FILE abstract type.

106

value FS_FPSn10stdio_FILE_ii_i_fseek(base_t b, ofs_t o,
base_t lb, int lo,
base_t wb, int wo) {

FILE *p;
int r;

p = get_FILE_pointer(b, o);
return value_of_int (fseek(p, lo, wo));

}

value FS_FPviiPSn10stdio_FILE__i_fread(base_t ptr_b, ofs_t ptr_o,
base_t size_b, unsigned int size_o,
base_t nmemb_b, unsigned int nmemb_o,
base_t fp_b, ofs_t fp_o) {

void *ptr;
void *p0;
FILE *fp;
unsigned int s;
unsigned int r;

fp = get_FILE_pointer(fp_b, fp_o);
if (size_o == 0 || nmemb_o == 0)

return 0;

s = size_o * nmemb_o;
if (s / size_o != nmemb_o) {

fsc_raise_error_library(0, nmemb_o, ERR_OUTOFBOUNDS,
"fread: I/O size exceeds integer");

}
ptr = wrapper_get_read_buffer(ptr_b, ptr_o, &p0, s, "fread");
r = fread(ptr, size_o, nmemb_o, fp);

assert(r <= nmemb_o);
wrapper_writeback_release_tmpbuf(ptr_b, ptr_o, p0, r * size_o);
return value_of_int(r);

}

Figure A.23: Wrapper routines for fseek and fread functions.

107

value read_fsc_errno_word(base_t base_c, ofs_t ofs) {
base_t base = base_remove_castflag(base_c);

if (ofs != 0)
fsc_raise_error(base_c, ofs, ERR_OUTOFBOUNDS);

return value_of_base_vaddr(*(base_t *)base, errno);
}

void write_fsc_errno_word(base_t base_c, ofs_t ofs, value v, typeinfo_t ti) {
base_t base = base_remove_castflag(base_c);

if (ofs != 0)
fsc_raise_error(base_c, ofs, ERR_OUTOFBOUNDS);

*(base_t *)base = base_of_value(v);
errno = vaddr_of_value(v);

}

struct typeinfo_init fsc_typeinfo_Sn12stdlib_errno_ = {
EMIT_HEADER_FOR_TYPEINFO,
{

"stdlib_errno",
TI_SPECIAL,
NULL,
4,
4,
read_dword_by_word,
read_fsc_errno_word,
read_hword_by_word,
read_byte_by_word,
write_dword_to_word,
write_fsc_errno_word,
write_hword_to_word,
write_byte_to_word

}};

struct fsc_storage_Sn12stdlib_errno__s
{

struct fsc_header fsc_header;
struct struct_Sn12stdlib_errno_ val;

};

struct fsc_storage_Sn12stdlib_errno__s GV___errno = {
EMIT_FSC_HEADER(fsc_typeinfo_Sn12stdlib_errno_.val, 0), {0}

};

Figure A.24: Implementation of the errno special variable (library part)

108

struct __fsc_attribute__((named "stdlib_errno", external)) __stdlib_errno;

extern struct __stdlib_errno __errno;

#define errno (*(int *)&__errno)

Figure A.25: Implementation of the errno special variable. (include file)

variable. The memory block GV___errno contains only the base part
of the value. If the block is read, the read access method combines the
base part with the current value of the native errno variable.

• malloc, free
These functions are implemented directry for an obvious reason. By
default malloc generates an type-undecided block (Section 4.3).

• printf, fprintf, vprintf, vfprintf
The formatting routine for these functions is implemented directly, and
these functions use native fwrite for output.

If these functions were written as a wrapper function, these should have
handle varargs arguments. However, it is impossible in the C standard
to construct varargs arguments or a va_args value dynamically by the
program.

• sprintf
This function is basically the same as the above functions. A two out-
put routines are provided, both for continuous memory blocks and for
generic memory blocks.

The output string may be arbitrary length, thus it is impossible to guess
whether buffer overrun occurs or not before execution.

• gets
This function is implemented using getchar, not a native gets.

This function may generate output strings which are arbitrarily long,
thus it is impossible to prepare long enough buffers beforehand.

3. Custom implementation written in Fail-Safe C:

• strcpy, strcat, strncmp, etc.

Wrappers are inconvenient for these functions, mainly because the out-
puts may be arbitrarily long. If these functions are written as wrappers,
the input strings must be scanned twice, first for determining the in-
put length, and then for the actual operation. Of course it can also be
written in native C language, but for those functions providing custom
native implementation does not reduce the required safety checks.

109

Table A.6: Result of the Fibonacci test

Pentium4 Sparc
time ratio time ratio

Native †1.931 s (1.00) 5.022 s (1.00)
Fail-Safe C Std. 2.302 s 1.19
Fail-Safe C Std. (no asm.) 2.339 s 1.21 4.602 s 0.92
Fail-Safe C Alt. 2.092 s 1.08

(the average of 5 executions)
(†: the average of 10 executions)

A.4 Result of preliminary micro-benchmarks

As described in Section A.2.1, the encoding of fat integers and pointers are decided
by comparing execution performance of several small programs. Three tests are
shown here: one is a Fibonacci to check integer operations, and another is a quick-
sorting to check pointer operations. Another test, knapsack, is a slightly more
larger program which is not originally written for Fail-Safe C. All experiments
(unless notified as otherwise) are performed on two different architectures:

• a Linux workstation operating Pentium 4 CPU at 2.8GHz with 1GB of main
memory. The versions of the Linux kernel, standard library, and the back-
end compiler is Linux 2.4.27, glibc-2.2.5 (Debian woody), and gcc 2.95.4
(with -mpentiumpro option).

• Sun Fire V880 operating four UltraSPARC-III CPUs at 1.2GHz with 8GB
main memory. Software versions are SunOS 5.9, gcc-2.95.3 configured in
32bit environment (with -msupersparc option).

A.4.1 Fibonacci

A very simple test which calculates the 30th element of Fibonacci sequence is
performed to evaluate base-line performance evaluation and the quality of assem-
bly code emitted by the back-end C compiler. The program implements a simple,
well-known recursive method of the calculation.

The result is shown in Table A.6. The execution overhead, relative to the native
execution time, is between 10% to 20%.

On recent SPARCv9 CPU, the instrumented code runs faster than original code,
Although the number of instructions in instrumented code is significantly larger
than native code (Figure A.26). I have run the same binary output on various
available Sun workstations, but this trend does not change.

On Pentium 4, the assembly code generated for Fail-Safe C seems to be very
clean (Figure A.27), although a significant amount of overhead is observed. Only

110

FS_Fi_i_fib: fib:
!#PROLOGUE# 0 !#PROLOGUE# 0
save %sp, -112, %sp save %sp, -112, %sp
!#PROLOGUE# 1 !#PROLOGUE# 1

mov %i0, %l0
cmp %i1, 1 cmp %l0, 1
ble .LL100 ble,a .LL3

mov 1, %i0
add %i1, -1, %o1

mov 0, %o0
call FS_Fi_i_fib, 0 call fib, 0
mov 0, %i0 add %l0, -1, %o0

mov %o1, %l1 mov %o0, %i0
mov 0, %o0
call FS_Fi_i_fib, 0 call fib, 0
add %i1, -2, %o1 add %l0, -2, %o0

add %l1, %o1, %o1 add %i0, %o0, %i0
b .LL115
mov %o1, %i1

.LL100:
mov 0, %i0
mov 1, %i1

.LL115: .LL3:
ret ret
restore restore

Figure A.26: Two codes generated for Fibonacci on SPARC

111

FS_Fi_i_fib: fib:
pushl %ebp pushl %ebp
movl %esp,%ebp movl %esp,%ebp
subl $12,%esp subl $16,%esp
pushl %edi
pushl %esi pushl %esi
pushl %ebx pushl %ebx
movl 12(%ebp),%edi movl 8(%ebp),%ebx
cmpl $1,%edi cmpl $1,%ebx
jle .L139 jle .L3
addl $-8,%esp addl $-12,%esp
leal -1(%edi),%eax leal -1(%ebx),%eax
pushl %eax pushl %eax
pushl $0 call fib
call FS_Fi_i_fib
movl %eax,%ebx movl %eax,%esi
addl $-8,%esp addl $-12,%esp
leal -2(%edi),%eax leal -2(%ebx),%eax
pushl %eax pushl %eax
pushl $0 call fib
call FS_Fi_i_fib
addl %ebx,%eax addl %esi,%eax
xorl %edx,%edx
jmp .L155 jmp .L6

.L139: .L3:
movl $1,%eax movl $1,%eax
xorl %edx,%edx

.L155: .L6:
leal -24(%ebp),%esp leal -24(%ebp),%esp
popl %ebx popl %ebx
popl %esi popl %esi
popl %edi
movl %ebp,%esp movl %ebp,%esp
popl %ebp popl %ebp
ret ret

The left column is a code generated for Fail-Sate C system (standard encoding).
The right column is a code generated by native compilation.

Figure A.27: Two codes generated for Fibonacci on Pentium4

112

.data

.LC6:
.long 1
.long 0

.text
FS_Fi_i_fib: fib:

pushl %ebp pushl %ebp
movl %esp,%ebp movl %esp,%ebp
subl $16,%esp subl $16,%esp
pushl %esi pushl %esi
pushl %ebx pushl %ebx
movl 12(%ebp),%ebx movl 8(%ebp),%ebx
cmpl $1,%ebx cmpl $1,%ebx
jle .L101 jle .L3
addl $-8,%esp addl $-12,%esp
leal -1(%ebx),%eax leal -1(%ebx),%eax
pushl %eax pushl %eax
pushl $0
call FS_Fi_i_fib call fib
movl %eax,%esi movl %eax,%esi
addl $-8,%esp addl $-12,%esp
leal -2(%ebx),%eax leal -2(%ebx),%eax
pushl %eax pushl %eax
pushl $0
call FS_Fi_i_fib call fib
leal (%eax,%esi),%ecx addl %esi,%eax
movl %ecx,%eax
xorl %edx,%edx
jmp .L117 jmp .L6

.L101: .L3:
movl .LC6,%ecx movl $1,%eax
movl .LC6+4,%ebx
movl %ecx,%eax
movl %ebx,%edx

.L117: .L6:
leal -24(%ebp),%esp leal -24(%ebp),%esp
popl %ebx popl %ebx
popl %esi popl %esi
movl %ebp,%esp movl %ebp,%esp
popl %ebp popl %ebp
ret ret

The left column is a code generated for Fail-Sate C system (alternative encoding).
The right column is a code generated by native compilation.

Figure A.28: The code generated for Fibonacci on Pentium4 with the alternative
encoding

113

Table A.7: Result of the Quicksort test

Non-Cast Cast Ptr.
time ratio time ratio

P4 Native 0.958 s (1.00) — —
P4 Std. 2.287 s 2.38 8.067 s 8.42
P4 Std. (no asm.) 2.255 s 2.35 8.144 s 8.50
P4 Alt. 2.527 s 2.64 8.251 s 8.62
SPARC Native 2.241 s (1.00) — —
SPARC Std. 7.710 s 3.44 22.020 s 9.82

(Native version: the average of 10 executions)
(Fail-Safe C versions: the average of 5 executions)

a few additional instruction is inserted to set base part to 0, compared to a natively
compiled code. An output code for alternative encoding seems slightly less effi-
cient than standard encoding at least for human’s eye (Figure A.28). A constant
1+0i, which is for the result of the base cases, is stored in read-only memory area
(.LC6).

The reason that Pentium4 executes this code faster than the code for the main
encoding is a gcc’s fault to manage one more callee-save register (%edi) in the main
encoding, which is not used in the body of function at all. Removing superfluous
pushl/popl by hand gives similar result as alternative encoding (2.069 s).

A.4.2 Quick sorting

This test is performing quick sorting on an array of pesudo-random numbers. The
arrays of narrow integers and fat integers, which are initialized to an identical ran-
dom sequence of integers up to 10000, are passed to the routines compiled by both
native compiler and Fail-Safe C. In addition to this, an additional test which inten-
tionally put a cast-flag on a pointer to the passed array is performed. The number
of elements is ten million.

The result is shown in Table A.7. The execution overhead which is about 135%
of the native execution time is observed. It is also shown that if all memory accesses
to the array is performed via access methods, the execution overhead will be about
750% on Pentium 4.

Under this test, the alternative encoding performs worse than the standard en-
coding. Unlike the case of the Fibonacci test, the reason for the performance dif-
ference is slightly more visible: it seems to be the code generated for a operation
which composes a base part and a value part to one fat integer. When the alter-
native encoding is used, gcc fails to optimize the multiplication of real value and
purely imaginary value (0+1i) and thus generates redundant multiply instructions
shown in Figure A.30. The same operation for the standard encoding is defined

114

1 void SWAP(int *x, int *y) {
2 int t;
3 t = *x;
4 *x = *y;
5 *y = t;
6 }
7
8 void qsort_int(int *p, unsigned int len) {
9 int pivot;

10 int i, j, mid;
11 int *l, *r;
12 if (len <= 1)
13 return;
14 if (len == 2) {
15 if (p[0] > p[1]) {
16 SWAP(&p[0], &p[1]);
17 }
18 return;
19 }
20 mid = len / 2;
21
22 if (p[0] > p[mid])
23 SWAP(&p[0], &p[mid]);
24 if (p[mid] > p[len - 1]) {
25 SWAP(&p[mid], &p[len - 1]);
26 if (p[0] > p[mid])
27 SWAP(&p[0], &p[mid]);
28 }
29 pivot = p[mid];
30 l = p; r = &p[len - 1];
31 do {
32 while(*l < pivot)
33 l++;
34 while(*r > pivot)
35 r--;
36 if (l < r) {
37 SWAP(l, r);
38 l++;
39 r--;
40 }
41 else if (l == r) {
42 l++;
43 r--;
44 break;
45 }
46 } while (l <= r);
47
48 qsort_int(p, (r - p) + 1);
49 qsort_int(l, len - (l - p));
50 }

Figure A.29: A quicksort test program.

115

(The base part is in %ecx, and the value part is in %ebx at label .L126. Comments added.)

.LC0:
.long 0
.long 1 ! A constant (0 + 1i)

...

.L126:
movl 12(%ebp),%eax ! an offset in a local variable
cmpl %eax,-20(%edi) ! check boundary
jbe .L133 ! failed: call an access method
leal (%edi,%eax,2),%edx ! calculate real address
movl %ecx,%eax ! eax := base
imull .LC0+4,%eax ! eax := 1 * base
imull .LC0,%ecx ! ecx := 0 * base
addl %ecx,%ebx ! ebx := 0 * base + value
movl %ebx,(%edx) ! write the value part
movl %eax,4(%edx) ! write the base part

Figure A.30: A generated code composing a fat integer under the alternative en-
coding.

(The base part is in %edx, and the value part is in %eax at label .L164. Comments added.)

.L164:
cmpl %edi,-20(%esi) ! check boundary
jbe .L171 ! failed: call an access method
movl %eax,%ecx ! ecx := value
xorl %ebx,%ebx ! ebx := 0
movl %edx,%eax ! eax := base
xorl %edx,%edx ! edx := 0
movl %eax,%edx ! edx := base
xorl %eax,%eax ! eax := 0
orl %eax,%ecx ! ecx := value | 0 = value
orl %edx,%ebx ! ebx := base | 0 = base
movl %ecx,(%esi,%edi,2) ! write the value part
movl %ebx,4(%esi,%edi,2) ! write the base part

Figure A.31: A generated code composing a fat integer under the standard encod-
ing (without inline assembly code).

116

Table A.8: Result of the Knapsack test

Pentium4 Sparc
time ratio time ratio

Static, native 0.330 s (1.00) 3.286 s (1.00)
Static, Std. 0.784 s 2.37
Static, Std. (no asm.) 1.076 s 3.26 3.430 s 1.04
Static, Alt. 0.910 s 2.76
Stack, native 0.330 s 1.00
Stack, Std. 4.044 s 12.25

(the average of 5 execution is taken)

by shift instruction, and gcc generates slightly better code for this (Figure A.31),
although there are still many redundant logical instructions. Thus I implemented
the assembly version of the composition function to remove this overhead. The
same trend holds also with gcc version 3.0.4.

It is also confirmed that boundary checking is correctly performed. Examples
is shown in Figure A.32 for two cases: one for the simple buffer overrun, and
another for the buffer overrun regarding integer overflow.

A.4.3 Knapsack problem

This test program solves “knapsack problem” strictly. The problem is to find a
subset of given set of goods which gives maximal total value within given limit for
total weight. The program uses recursive search of the possible solution space with
branch cutting based on upper bounds of possible solution. The program declares
a structure of two integers and one double-precision floating-point value, which
gives 3/2 ratio of the real size to its virtual size. There is no internal pointers to the
array of this structure in the program.

A recursively-called function (find_ans) in the program declares one array
of 1000 integers as a local variable, and its address is passed to a subroutine
(try_greedy). The value in the array is not used for recursions, and the address
of the array is not leaked outside those two functions, thus it can be either stati-
cally allocated or stack-allocated in theory. As described in Section A.2.3.1, the
array is heap-allocated in the translated program. Hereafter the original program
is called “stack” version, and the program modified to declare the array as static
is called “static” version. The input data for performance evaluation contains 500
items of similar value/weight ratios and similar weights, which gives bad condition
for branch cutting.

The result of the experiments is shown in Table A.8. On Pentium 4, the static
version shows gives an overhead slightly more than twice of original execution
time, which is in the expected range. However, the stack version gives overhead

117

% ./qsort 5 6
native: 0 msec

Fail-Safe C trap: access out of bounds
Address: 0x805dfa0 + 20
Cast Flag: not set
Region’s type: int

size: 20 (FA 20, ST 20)
block status: normal

backtrace of instrumented code:
./qsort(fsc_raise_error_library+0x15f)[0x804b277]
./qsort[0x804b2ce]
./qsort(read_word_fat_int+0x46)[0x804a136]
./qsort(FS_FPii_v_qsort_int+0x14d)[0x8049945]
./qsort(main+0x19c)[0x8049e4c]
/lib/libc.so.6(__libc_start_main+0xbb)[0x4006614f]
./qsort(backtrace_symbols_fd+0x59)[0x8049531]
(7 entries)

Abort
% ./qsort 5 2147483648
native: 0 msec

Fail-Safe C trap: access out of bounds
Address: 0x805dfa0 + 4294967292
Cast Flag: not set
Region’s type: int

size: 20 (FA 20, ST 20)
block status: normal

backtrace of instrumented code:
./qsort(fsc_raise_error_library+0x15f)[0x804b277]
./qsort[0x804b2ce]
./qsort(read_word_fat_int+0x46)[0x804a136]
./qsort(FS_FPii_v_qsort_int+0xdd)[0x80498d5]
./qsort(main+0x19c)[0x8049e4c]
/lib/libc.so.6(__libc_start_main+0xbb)[0x4006614f]
./qsort(backtrace_symbols_fd+0x59)[0x8049531]
(7 entries)

Abort

Figure A.32: An example of boundary overflow detection in quick-sorting

118

four times as many as the static version, which indicates that the overhead of heap
allocation of local variables in frequently-called function cannot be neglected. Un-
der this test, the alternative encoding outperformed the standard encoding.

The author has also investigated the overhead caused by a fractional ratio on
offset conversions, by modifying the output code of Fail-Safe C compiler by hand
to add a padding element and make the real size of the structure just twice of the
virtual size. The result was 1.072 s (the average of 10 executions), it means there
is no observable overhead. The assembly code generated for reading an element of
the array of the structure is like following:

shrl $1,%eax
leal (%eax,%eax,2),%eax
movl GV_data+40(%eax),%eax

The fractional multiplication is done by using shrl (shift right) and the pow-
erful leal (load effective address) instruction in i386 architecture, to avoid use of
multiplication instruction.

On SPARC architecture, there is only a little overhead (∼4%) observed. The
author has no knowledge about the exact reason because the output code is already
huge with this program (2913 lines of C code generates 5070 lines of assembly
output). However, when compared with the results on Pentium 4 architecture, it
seems to be that there is some reason that the native version of the program behaves
badly on this architecture. In fact, the native version of Knapsack on SPARC runs
almost 10 times slower than Pentium 4, while Quicksort runs only 2.3 times slower.
Comparing the Fail-Safe C output using standard encoding, those figures are about
3.2 and 3.4 which seems natural.

A.5 Further extensions to the implementation

There are several possibilities of studies which can improve implementations of
the Fail-Safe C systems. In this section, some of these possibilities are discussed.

A.5.1 Local optimization

There are many studies (for example, [60, 72]) on local analyses for reducing re-
dundant boundary checks proposed for various safe languages. Most of these can
be applied to Fail-Safe C to reduce runtime overhead. However, there is one big
difference between the semantics of Fail-Safe C and other safe languages. On other
safe languages, failure on the boundary check is a fatal error: it immediately means
the failure of the memory access, and the program executions are either terminated,
or aborted from current scope by raising exceptions. Thus most (possibly all) of the
proposed optimizations assume that when program execution reaches some loca-
tion in the program, all preceding boundary checks in the program are succeed. It
means if a boundary check for the same memory address is exist in such preceding
checks, the current check will never fail.

119

Table A.9: Preliminary result of the local optimization in Quicksort test

standard optimized optimize
time ratio time ratio ratio

Native 0.958 s (1.00) — — —
Without Cast flag 2.255 s 2.35 2.109 s 2.20 −6.5%
With Cast flag 8.144 s 8.50 8.130 s 8.49 (−0.2%)

(Native version: the average of 10 executions)
(Fail-Safe C versions: the average of 5 executions)

On the contrary, the failure of the access check may be non-fatal in Fail-Safe
C. As shown in Figure 4.4 in page 44, the failure of the inlined access check in
Fail-Safe C only means the situations that some other methods for memory access
is needed, which may either fail or succeed. Execution paths of the program after
check failure merge into its original execution pass, and thus future boundary check
for the same memory location may fail again and thus may not be removed.

To apply existing approach for boundary check optimization to Fail-Safe C,
there are two possible approaches to be taken. One possibility is to analyze pro-
gram and find boundary checks on which failed check always means a fatal error.
For example, if a pointer to simple type like char is known to be never cast, the
invocation of access methods for this pointer always leads to fatal errors, because
there is no possibility that the access succeeds. Boundary checks of such cases
can be used as a source information for optimizations. The another, more general
approach is to apply code duplication. As shown in Figure A.33, the compiler can
duplicate all code of the function to “fast code” (which will initially be executed)
and “slow code”, and make all invocation to access methods transfer execution to
the “slow code”. After this code duplication, the property required by existing op-
timizations are recovered on the “fast code”. As long as such optimizations are
done locally inside single function, executing return instructions inside the “slow
code” can transfer to the “fast code” of the caller functions.

In this way, a fast code may access the contents of memory blocks already
marked as deallocated. This is unfavorable, but the safety of the execution is
still maintained, because (1) these deallocated blocks are still on memory until the
pointers pointing to the memory blocks are disappeared, and (2) the deallocation
does not affect the block contents itself.

A preliminary experiment is performed to evaluate an effect of this optimiza-
tion. I have modifed the output of the Fail-Safe C compiler by hand to implement
the code duplication method shown in Figure A.33, and removed two obviously re-
dundant boundary checks in the SWAP function in Quicksort program (Figure A.29).
Under this experiment, the standard encoding of fat values is used on the Pentium
4 machine.

The result is shown in Table A.9. It shows about 6.5% reduction of execution

120

null?

cast pointer?

offset overrun?

calculate
real offset

read memory
directly

FAST DONE

pick up
access method

delegate access to
access method

convert
result type

FAST START

ERROR

Y

Y

Y

N

N

N

Success
Failure

null?

cast pointer?

offset overrun?

calculate
real offset

read memory
directly

SLOW DONE

SLOW START

N

N

N

ERROR

Y

Y

Y

Access with same base/offset pair
can be done without dynamic checks
once access succeeds
 (control reached FAST-DONE)

Access check cannot be
omitted even if control reached
SLOW-DONE.

Figure A.33: Code duplication for boundary access reduction

121

time, with non-cast pointers. The handling of non-cast pointers are not changed,
and the results has shown that, at least in this small example, the the growth of code
size caused by code duplication did not affect the performance.

Another important issue which should be noticed is the handling of integer
overflow conditions which occur during calculation of pointer offsets. For ex-
ample, in the quicksort test program shown in Figure A.29 (at Page 115 in Sec-
tion A.4.2), the offset of r in line 34 may point outside memory region. This will
occur when the offset of p is 8, len is 231 − 1 (assuming word size to be 32 bits),
and p contains 4 elements {3,2,1,4}. In this case, mid becomes 230−1, while len
- 1 becomes 231 − 2. As the virtual offset of the elements in integer arrays is 4
times the index, the offsets of &p[mid] and &p[len - 1] become 232 +4 and 233,
which will be rounded to 4 and 0 respectively. Thus, the accesses during pivot se-
lection in lines 22–28 will succeed. The values in the array are not modified during
pivot selection, and the pivot becomes 2. The loop at line 32 terminates without
access violation (l pointing the value 4 at offset 12). As the value p[len - 1] is
3, the the loop condition at the first iteration in line 34 holds, and r will be decre-
mented to have offset 232 −4 and cause a buffer overrun error. A correct handling
for such integer overflow is possible but complex, and increases much number of
required boundary checks which are not required under ideal consideration on in-
tegers.

An obvious exception to this is the access to the same element in memory
blocks which occurs shortly. There is no fear about the complication from inte-
ger overflow in such cases, and such cases appear very frequently in programs
(e.g., modifying the elements in array.) The optimized part in quicksort test above
is an instance of this pattern.

A.5.2 Global optimization

A.5.2.1 Value analysis

The output program code of the Fail-Safe C has many redundant data. For example,
the following optimization may be possible.

• Most integer variables in programs will only contain non-pointer values or
values which are never used as pointers. There is no need to add base fields
for those variables.

• In modern use of the C language, many data tend to be represented as a set
of heap-allocated non-array values. Pointers pointing to only these memory
area do not need offset fields.

Some of these optimizations inside single function is already done, implicitly
by the design of translations in the compiler, but to perform these optimization
throughout a program, the compiler requires global knowledge on possible values

122

of each variables. There are many previous studies on global analysis of C pro-
grams, which can be applied to Fail-Safe C. For example, the type system proposed
for CCured [49, 18] can be altered for Fail-Safe C.

One noticeable fact about the application of these analysis for Fail-Safe C is
that the analyses applied are not needed to be conservative in general. That is,
although the results of analyses are used for safety enforcement, the analyses are
not needed to care about ill-typed accesses performed by programs. Restricted
domains of values derived from those analyses can be enforced by access methods,
because all ill-typed accesses are handled only through access methods, which can
report error condition and halt the program execution. This can greatly reduce the
false possibility of values stored in variables and may improve the quality of the
analyses results.

A.5.2.2 Temporal analyses

There are many instances of local variables whose address is taken by & operator
in existing programs, because it is very common practice in C programs to allocate
temporary arrays inside functions, perform local computation on the arrays, or pass
an address of such local variables to subroutines or library functions to receive a
result by modification of the variables via passed pointer.

Currently, such local variables are always heap allocated to avoid dangling
pointers. However, it sometimes imposes a relatively large performance penalty.
Even in simple program, the caused overhead exceeds twice the execution time
(e.g., Knapsack test in Section A.4.3). However, most of those variables can be ac-
tually stack-allocated because all pointers to the variables cease to exist before the
variable is deallocated (it should be so because these variables are stack allocated
in native compilation!), and in many cases the possibility of safe stack allocation
can be proved by kinds of temporal analysis, region inference [70, 8] or escape
analysis [52, 59, 31].

The analysis applied to Fail-Safe C should be inter-procedural one because ad-
dresses of local variables are casually passed to another functions. It is also guessed
that the property should be maintained between separately compiled modules as
possible, because most of pointer arguments for functions in the standard library
are in fact “non-escaping”—e.g. printf, strcpy and others. For safety, such
safety-related properties should be encoded in the mangled name used in Fail-Safe
C by extending the translation rule shown in Section A.2.2.

A.5.3 True support for separate compilation

Separate compilation is a common practice for developing large programs. Almost
all C programs are coded using several modules (compilation units). Under usual
C compiler, several modules for a program are linked into one execution binary by
performing a unification on every symbol occur in the compilation units, making
all references to the same symbol point to the same location.

123

However, this simple schema is not applicable for Fail-Safe C, because separate
compilation in the native C implementation is indeed unsafe. This holds even for
the C++ language, whose compilers embed type names into the output binaries.
There is no guarantee that modules in a program is compiled with a same set of
type definitions. Even worse, using the same name for two or more incompatible
structures (in several disjoint set of modules) is possible, although it is disallowed
in the language specification. Such a name conflict is not rare in existing programs,
especially when a name of struct is used both in a user code and in an external
library.

There are two possible method to solve this problem. One method is so-called
“whole-program compilation”, i.e., to compile the whole program at once. Ex-
isting work such as CCured [49, 18] also use this approach. The merits of this
approach are that it simplifies the guarantee of safety, and that it enables various
global optimizations, such as one described in Section A.5.2. However, it also has
several demerits: it changes the compiler interface dramatically, it incurs longer
compilation time, and it makes impossible to reuse compiled modules for several
execution programs. At least, there must be a support for true separate compilation
of library modules.

The another method is to handle separate compilation in linking stage. Ex-
isting work on functional language by Leifer et al. [40] uses a hash value of a
canonically defined representation of the structure to support type-safe linking of
separately-compiled modules. However, this simple method seems not to be work
with the existence of abstract declaration in the C language. A possible solution
is to compile every module assuming that every struct is disjoint to any structs in
another module, and then unify any compatible types at the linking time. Although
this method reduces opportunities for global optimization, it does not damage the
basic design of Fail-Safe C, because distinction between non-cast and cast pointers
in Fail-Safe C is solely a runtime property which can be checked in a light-weight
operation (described in Section 4.2). When compiling each modules, the compiler
can assume that cast fat pointers may be passed to externally exported functions
with almost no runtime overhead. This is not true for CCured which heavily relies
on the compile-time distinction between cast and non-cast pointers.

Furthermore, it is possible to annotate the possibility to optimize explicitly.At
least, the annotation can be employed for standard libraries, system calls, and other
library wrappers, because they are already prepared specially for Fail-Safe C and
they are separately compiled even in the current system.

A.5.4 Multi threading

Multi-thread programming is getting more and more common these days. Most
of the Unix-like operating systems currently on production line already have a
POSIX-define interface for multi-threading. However, ensuring safety for multi-
thread program is more difficult than for single-threaded programs, especially on
the management of the consistency of safety-related values.

124

Current implementation schema of the Fail-Safe C runtime is carefully de-
signed for future support of multi-threading in several places, although it is not
yet supported. Especially, the design does not require operation on exclusive locks
for usual memory accesses. The design assumes that underlying hardware ensures
atomic word-width accesses without any additional consideration. The race will
happen between two or more of the following accesses:

• direct access to memory

• access via access methods

• updating type of type-undecided blocks

• deallocating (forbidding further access for) blocks

• allocating additional base storage

The following considerations on implementation are sufficient for multi-threading
support.

• Double-word fat pointers in the data area must be atomically accessed, un-
less the value accessed are statically known to not to be cast.

• Exclusive locks on a memory block must be taken for updating the type of
the block, allocating additional base area, and deallocating the block. In
addition, the first two operations must be aware that another thread might
already have done the same job while waiting for the lock.

• The update of the type field and ptr-additional-base field must be done as a
final operation.

The conditions on each combinations under above treatment is investigated sepa-
rately.

Direct-access to direct-access If a read access and a write access to the same
word cause race condition, There is a chance that the value neither origi-
nal value nor currently-written value will be read. In this case, the read value
will be a mixed combination of base value and offset value of those two
values.

If either an old or new value may be cast, and if a double-word access incurs
a race condition, there is a chance that a base value without cast value is
paired with an unaligned offset value which requires a cast flag. Thus, an
atomic operation for double-word might be required, if either of the values
might have cast flag set.

If no cast flags are involved (fat integers, or values assured by static anal-
ysis), no additional treatment is required. Although the resulting value is
unexpected in usual sense, it does not break safety conditions in this case.
The similar thing happens on a write-to-write race condition.

125

Direct-access to Access-method, Access-method to Access-method The mem-
ory accesses in the access method can be considered in the same way as
that for direct access.

Type-update to Direct-access Basically, no race of this kind will occur, because
no pointers without cast flag may point to a type-undecided blocks. However,
the order of updating header values will be important: before updating type
field, structured-limit field and total-limit must be properly updated.

Type-update to Access-method The race between type-update and access-
method for types other than the undecided type is avoided, in the way shown
above. invocation of access method for undecided type will cause type-
update to type-update race.

Type-update to Type-update This race is critical and a mutual exclusion is re-
quired. Furthermore, if an access method which wins the mutual exclusion
updates type, second (and later) access method must see updated type, to
prevent performing type-update twice. Thus, a proper implementation of
type update must follow the following order:

1. Take an exclusive lock of the block.

2. Double-check the type field in the block.

3. If the type is updated, release the lock, and call the access method
associated to the new type.

4. If not updated, initialize a block contents and update all fields other
than type information.

5. Update the type field of the block.

6. Release the exclusive lock.

Deallocation to Direct-access No additional consideration are required. The
deallocation only modifies the fastaccess-limit and the runtime-flags fields
in the block header, and the contents of the block is not modified during
deallocation. Thus, direct access will see the value of fastaccess-limit as ei-
ther 0 or the original value. In the former case, the access invokes access
methods and causes runtime error because of accessing deallocated blocks.
In the latter case, the access succeeds even after deallocation.

Deallocation to Access-method No additional consideration required, too. The
access methods only see the structured-limit and total-limit for accessing
contents of blocks. Thus, modification to fastaccess-limit by deallocation
does not break the operation of access methods. The race on the runtime-
flags determines whether the access is granted or not, which is natural.
(Atomicity on the update of the flag is assumed.)

Deallocation to Type-update Mutual exclusions are required.

126

Deallocation to Deallocation No additional consideration required.6

Additinal-base-allocation to Direct-access Direct memory accesses do not touch
the additional base area.

Additinal-base-allocation to Access-method The race on the ptr-additional-
base determines whether the access methods see the additional base or not.
This means that the contents of the additional base area must be initialized
before setting the address to the ptr-additional-base field.

Additinal-base-allocation to Type-update This race will not occur.

Additinal-base-allocation to Additinal-base-allocation Mutual exclusions are
required. The double check for the field update must be done, in the same
way as described in the type-update race.

Additinal-base-allocation to Deallocation Basically, no care will be required.7

On the SPARC architecture, it is relatively easy to implement atomic double-
word access. In fact, the generated code in current compiler is already using
double-word memory access instructions (e.g., std and ldd instructions) which
is guaranteed to be atomic [69, Sections A.70.5 and A.70.12]. On Intel IA32 archi-
tecture, however, there are no generic double-word atomic memory-access instruc-
tions on integers [32]. The possible alternatives are (a) a complicated CMPXCHG8B
instruction introduced in Pentium, (b) FIST/FILD instructions on floating-point
processor, or (c) MMX or SSE multimedia instruction extensions. Among those,
the choice (b) seems mostly unsuitable, because it is no way to move the values in
floating-point registers to general-purpose registers without using external memory
locations. The method (a) is current used in Linux kernel, but it requires complex
coding shown in Figure A.34, because it is a “compare-and-exchange” instruction,
not a simple store/load instruction. The alternative (c) may be useful if newer SSE
extensions can be used, however it seems unrealistic with older MMX extensions
because it cannot be coexist with floating-point operations.

A.5.5 Compiling to more low-level language than C

Current choice of C language for output language of the Fail-Safe C compiler
seems to be a realistic solution, but at the same time the system suffers several
restrictions from this choice: it is practically impossible to implement precise
garbage collectors (already discussed in Section A.1.3), function stub blocks must
be placed separately from main function bodies (Section A.2.5), and it is hard to
control the backend compiler to generate optimal code for various places, such as
overflow detection or handling of double-word values including fat pointers.

6This race conditions may be mutually-excluded by lock acquisition required for other race con-
ditions.

7The same as above.

127

An excerpt from include/asm-i386/system.h in Linux 2.4.27.

/*
* The semantics of XCHGCMP8B are a bit strange, this is why
* there is a loop and the loading of %%eax and %%edx has to
* be inside. This inlines well in most cases, the cached
* cost is around ~38 cycles. (in the future we might want
* to do an SIMD/3DNOW!/MMX/FPU 64-bit store here, but that
* might have an implicit FPU-save as a cost, so it’s not
* clear which path to go.)
*
* chmxchg8b must be used with the lock prefix here to allow
* the instruction to be executed atomically, see page 3-102
* of the instruction set reference 24319102.pdf. We need
* the reader side to see the coherent 64bit value.
*/
static inline void __set_64bit (unsigned long long * ptr,

unsigned int low, unsigned int high)
{

__asm__ __volatile__ (
"\n1:\t"
"movl (%0), %%eax\n\t"
"movl 4(%0), %%edx\n\t"
"lock cmpxchg8b (%0)\n\t"
"jnz 1b"
: /* no outputs */
: "D"(ptr),

"b"(low),
"c"(high)

: "ax","dx","memory");
}

Figure A.34: An atomic double-word memory store in IA32 architecture

128

All of these problems can be solved when the output language is changed to the
assembly languages of underlying hardware, which requires extremely huge effort
to implement. This is not only because assembly languages are complex, but also
because the Fail-Safe C compiler relying backend C compilers for various low-
level handling of native architectures, for example instruction scheduling, register
allocation and spilling, peep-hole optimizations, choice of the strength to perform
common value eliminations, and so on. Therefore, porting Fail-Safe C compiler
to every architectures the users use seems not a worth effort to do. The author
is currently considering use of an intermediate language which is between C and
the assembly languages. As already mentioned (in Section A.1.3), C−− [37, 57]
seems to be one of possibilities for this purpose.

129

Appendix B

Perspectives on derived research

There are several potential extensions of the Fail-Safe C system that could effec-
tively utilize various aspects of Fail-Safe C. Some of these possibilities are dis-
cussed below.

B.1 Language extensions

Extensions to the input language of Fail-Safe C, which is currently the pure C
language, might make the system more useful (or interesting). Obviously these
extensions will require some modifications of the source code of programs, and
thus be a slight diversion from the original design basis—no source modification,
gain complete safety—, but it might still be very useful to allow programmers to
use extended features with less modification to original source, compared to the
modification required when rewriting whole programs to other languages such as
Java.

B.1.1 Recovery from failure

Fail-Safe C currently halts program execution whenever a runtime error is signaled.
This behavior is based on the current design principle. Moreover, this is a realistic
choice when assuming the input language is the pure C language because it is
practically impossible to guess what countermeasures are needed to avoid failure
once a fatal access error is detected.

On the other hand, many would prefer that the behavior after failures be con-
trollable at user’s discretion. For example, a possible recovery process for thread-
based web servers might be to silently terminate only failed threads, and allow the
master thread to revive dead sub-threads. Alternatively, the server may return a re-
sult to clients saying that a fatal error has occurred during processing. It is possible
to implement such a user-directed failure rescue feature by defining an language
extension for the usual C language. One possibility is to introduce the exception

130

handling syntax from the C++ language and map runtime memory access errors to
a predefined exception.

B.1.2 Incorporation with high-level security mechanisms

Many studies have been on security enforcement and verification. For example,
language-based studies have aimed at ensuring confidential data in programs can-
not leak to low-level output by analyzing/checking the data flow or information
flow [71, 44, 61].

Most of this work has been done using a safe language (either concrete or
abstract) as a base language, so findings are not directly applicable to the C lan-
guage. More precisely, the proofs regarding the satisfaction of security properties
typically assume that the running program does not cause undefined behavior such
as buffer overruns or other low-level bugs. There are many instances, though, of
security holes which bypass high-level security protection features (e.g., security
zones or per-domain separation of scripting languages in web browsers) through
low-level invasion (e.g., a buffer overrun). Analyzing C programs based on these
high-level theories, assuming no existing buffer overruns, is still valuable as an ef-
fort to search for programming bugs, but not as a practical guarantee of security
properties. Fail-Safe C can be used to close such loopholes, so it can help make the
application of those high-level security theories to the C language a form of real
security protection.

B.2 Altering semantics

Currently the main design goal of Fail-Safe C is to maintain the highest possible
compatibility with the native semantics of C language as high as possible. More-
over, the error condition signaled by the Fail-Safe C system is designed to be easily
understood by users familiar with the usual C language. However, setting a slightly
different design goal might also leads to interesting developments. The entire Fail-
Safe C compiler system can be thought of as a powerful tools for modifying the
runtime semantics of C language in various ways, and the object-oriented design
of memory blocks can be considered a strong weapon for modifying the runtime
semantics of the heap area, which cannot be easily achieved by using simple pre-
processor to the C language. Several possible modifications to the semantics of
Fail-Safe C are discussed below.

B.2.1 Fail-Soft C—partial remediation of buffer-overrun problems

Through the combination of object-oriented memory block design, implementa-
tion of the remainder area in memory blocks, and the ability to implement several
different semantics in a single memory block depending on the offsets, we can par-
tially allow writing beyond a memory block’s boundaries. Current access methods
deny all access to the memory area which is outside the boundary of a memory

131

block. Instead, an implementation can dynamically allocate additional space to al-
low buffer overflows while preserving safety. It is not always possible to support
all kinds of buffer overflow, though, because memory resources are limited. Still
some types of simple buffer overflow can be remedied without loss of operations.

There are many ways to implement this feature. For example, the data format
for extra data may be either hash (to allow sparse, distributed invalid memory ac-
cess, like that found in Sendmail (see Section 5.1.1)), or array (to allow only simple
cases of (string) buffer overrun, but faster).

Another consideration is memory addressing. One possibility is to simply use
current addressing format. While this would make implementation easier, and
would maintain higher compatibility with current native semantics for programs
without problems, but a drawback is that valid fat pointers corresponding to one
virtual address (the sum of the base and the offset) will no longer be unique. In
other words, two different addresses might correspond to one integer. To avoid this
difficulty, another form of addressing is also possible. Assuming a 32b-it architec-
ture, we can extend both the base and offset to 64 bits, while keeping a 32-bit size
for the default integer type. Then, only the higher 32 bits of base addresses and the
lower 32 bits of offsets will be used (limiting the possible range of writable offsets
to [0,232 −1] or [−231,231 −1]). This mapping ensures the virtual addresses of the
tops of different memory blocks will differ by at least 235 bytes, and thus keeps
the addresses of memory blocks disjoint. Of course, this mapping changes exist-
ing native setting of word size and thus only accepts “portable” programs without
modification.

B.2.2 Fail-Safe C on Java (or Scheme)

The output language of the compiler is not limited to C native assembly languages,
or other low-level intermediate languages. As the data format of the memory
blocks in Fail-Safe C is strictly formatted and typeable, it can be mapped to data
structures in other high-level languages. The representation of the fat pointer is
also mappable to the references (although embedding a cast flag in the base field is
not possible). As a consequence, an entire program can be compiled into languages
such as Java and Scheme. One possible positive benefit of this would be achieving
safe interoperability between such a safe language and C language. Another con-
sequence is that the mapping to the safe language would provide indirect proof the
safety of the Fail-Safe C semantics. This is a promising subject for further research
in the near future. term research.

132

Bibliography

[1] Advanced Micro Devices, Inc. AMD 64 and enhanced virus protection.
http://www.amd.com/evp.

[2] American National Standard Institute. American national standard for infor-
mation systems — programming language – C. ANSI X3.159-1989.

[3] Starr Andersen and Vincent Abella. Changes to functionality in
Microsoft Windows XP Service Pack 2, part 3, August 9, 2004.
http://www.microsoft.com/technet/prodtechnol/winxppro/
maintain/sp2mempr.mspx.

[4] A. W. Appel. Foundational proof-carrying code. In Proc. of 16th Annual
IEEE Symposium on Logic in Computer Science, pages 247–258, June 2001.

[5] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection of
all pointer and array access errors. In Proc. ’94 Conference on Programming
Language Design and Implementation (PLDI), pages 290–301, 1994.

[6] Joel Bartlett. Mostly-Copying garbage collection picks up generations and
C++. Technical report, DEC WRL, 1989.

[7] Brian N. Bershad, Craig Chambers, Susan J. Eggers, Chris Maeda, Dylan Mc-
Namee, Przemyslaw Pardyak, Stefan Savage, and Emin Gun Sirer. SPIN - an
extensible microkernel for application-specific operating system services. In
Proc. of ACM SIGOPS European Workshop, pages 68–71, September 1994.

[8] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region inference to
von Neumann machines via region representation inference. In Proceedings
of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 171–183. ACM Press, January 1996.

[9] Hans Boehm and Mark Weiser. Garbage collection in an uncooperative en-
vironment. Software: Practice & Experience, pages 807–820, September
1988.

[10] Hans Bohem. A garbage collector for C and C++. http://www.hpl.hp.
com/personal/Hans_Boehm/gc/.

133

[11] Brandon Bray. Compiler security checks in depth, February 2002.
http://msdn.microsoft.com/library/en-us/dv_vstechart/html/
vctchcompilersecuritychecksindepth.asp.

[12] BYTE Magazine. BYTEmark Benchmarks. http://www.byte.com/
bmark/bmark.htm.

[13] CAN-2002-0702 (format string vulnerabilities in the logging routines for dy-
namic dns code). An entry candidate in Common Vulnerabilities and Ex-
posures, July 16, 2002. http://www.cve.mitre.org/cgi-bin/cvename.
cgi?name=CAN-2002-0702.

[14] CERT/CC. Double free bug in zlib compression library. CERT Advi-
sory CA-2002-07, July 20, 2002. http://www.cert.org/advisories/
CA-2002-07.html.

[15] CERT/CC. Format string vulnerability in ISC dhcpd. CERT Advisory
CA-2002-12, October 7, 2002. http://www.cert.org/advisories/
CA-2002-12.html.

[16] CERT/CC. Heap overflow in cachefs daemon. CERT Advisory CA-2002-11,
May 14, 2002. http://www.cert.org/advisories/CA-2002-11.html.

[17] CERT/CC. Double-free bug in CVS server. CERT Advisory CA-2003-
02, March 27, 2003. http://www.cert.org/advisories/CA-2003-02.
html.

[18] Jeremy Condit, Matthew Harren, Scott McPeak, George C. Necula, and West-
ley Weimer. CCured in the real workd. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 232–244, June
2003.

[19] Intel Corporation. Execute disable bit functionality blocks malware code
execution. http://cache-www.intel.com/cd/00/00/14/93/149307_
149307.pdf.

[20] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. Stack-
Guard: Automatic adaptive detection and prevention of buffer-overflow at-
tacks. In Proc. 7th USENIX Security Conference, pages 63–78, San Antonio,
Texas, January 1998.

[21] CVE-2001-0653 (sendmail 8.10.0 through 8.11.5, and 8.12.0 beta, allows lo-
cal users to modify process memory). An entry in Common Vulnerabilities
and Exposures, March 9, 2002. http://www.cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2001-0653.

134

[22] CVE-2002-0033 (heap-based buffer overflow in cfsd_calloc function of
Solaris cachefsd). An entry in Common Vulnerabilities and Exposures,
April 2, 2003. http://www.cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2002-0033.

[23] Igor Dobrovitski. Exploit for CVS double free() for Linux pserver. A
message posted to Bugtraq mailing list, February 2, 2003. http://www.
securityfocus.com/archive/1/309913.

[24] Noah Friedman. ssh 1.2.22: premature memory deallocation. A message
posted to Secure-Shell Mailing List, February 12, 1998. http://www.
securityfocus.com/archive/121/230289.

[25] The Glasgow Haskell Compiler. http://www.haskell.org/ghc/.

[26] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification. Addison-Wesley, second edition, 2000.

[27] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang,
and James Cheney. Region-based memory management in Cyclone. In Proc.
ACM Conference on Programming Language Design and Implementation
(PLDI), pages 282–293, June 2002.

[28] Helge Hafting. Re: Unexecutable Stack / Buffer. A message posted to
Linux Kernel mailing list, January 20, 2000. http://www.uwsg.iu.edu/
hypermail/linux/kernel/0001.2/0916.html.

[29] N. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A syntactic approach
to foundational proof-carrying code. Technical Report YALEU/DCS/TR-
1224, Dept. of Computer Science, Yale University, 2002.

[30] S. P. Harbison. Modula-3. Prentice Hall, 1992.

[31] P. Hill and F. Spoto. A foundation of escape analysis. In Proceedings of 9th
International Conference on Algebraic Methodology and Software Technol-
ogy (AMAST2002), 2002.

[32] Intel Corporation. IA-32 Intel Architecture Software Developer’s Manual,
2004.

[33] International Organization for Standards and International Electrotechnical
Commission. Programming languages — C. ISO/IEC Standard ISO/IEC
9899:1990.

[34] International Organization for Standards and International Electrotechnical
Commission. Programming languages — C. ISO/IEC Standard ISO/IEC
9899:1999.

135

[35] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney,
and Yanling Wang. Cyclone: A safe dialect of C. In USENIX Annual Techni-
cal Conference, June 2002.

[36] Richard W. M. Jones and Paul H. J. Kelly. Backwards-compatible bounds
checking for arrays and pointers in C programs. In Automated and Algorith-
mic Debugging, pages 13–26, 1997.

[37] Simon Peyton Jones, Norman Ramsey, and Fermin Reig. C−−: a portable
assembly language that supports garbage collection. In International Confer-
ence on Principles and Practice of Declarative Programming, 1999.

[38] Brian W. Kernighan and Dennis M. Ritchie. The Programming Language C.
Prentice Hall, second edition, 1988.

[39] Yoshinori Kobayashi. An efficient garbage collector in the presence of am-
biguous references. Master’s thesis, University of Tokyo, February 2002.

[40] James J. Leifer, Gilles Peskine, Peter Sewell, and Keith Wansbrough.
Global abstraction-safe marshalling with hash types. In Proceedings of
8th ACM SIGPLAN International Conference on Functional Programming
(ICFP2003), August 2003.

[41] Alexey Loginov, Suan Hsi Yong, Susan Horwitz, and Thomas Reps. De-
bugging via run-time type checking. Lecture Notes in Computer Science,
2029:217–, 2001.

[42] Toshiyuki Maeda and Akinori Yonezawa. Kernel Mode Linux: Toward an
operating system protected by a type theory. In Proceedings of the 8th Asian
Computing Science Conference (ASIAN ’03), volume 2896 of Lecture Notes
in Computer Science, pages 3–17, December 2003.

[43] Uwe F. Mayer. Linux/Unix nbench. http://www.tux.org/~mayer/
linux/bmark.html.

[44] John McLean. Security models and information flow. In IEEE Symposium
on Security and Privacy, pages 180–189, 1990.

[45] G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith,
D. Walker, S. Weirich, and S. Zdancewic. TALx86: A realistic typed assem-
bly language. In Proc. of ACM SIGPLAN Workshop on Compiler Support for
System Software, pages 25–35, 1999.

[46] G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-based typed assembly
language. In Proc. of Types in Compilation, pages 28–52, 1998.

[47] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed
assembly language. ACM Transactions on Programming Languages and Sys-
tems, 21(3):527–568, 1999.

136

[48] George Necula. Proof-carrying code. In Conference Record of POPL ’97:
The 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 106–119, Paris, January 1997.

[49] George Necula, Scott McPeak, and Westley Weimer. CCured: Type-safe
retrofitting of legacy code. In Proc. The 29th Annual ACM SIGPLAN–
SIGACT Symposium on Principles of Programming Languages (POPL2002),
pages 128–139, January 2002.

[50] Michael Norrish. C formalized in HOL. PhD thesis, University of Cambridge,
December 1998. Available as a Technical report UCAM-CL-TR-453 from
Computer Laboratory, University of Cambridge.

[51] Nikolaos S. Papaspyrou. A Formal Semantics for the C Programming Lan-
guage. PhD thesis, National Technical University of Athens, 1998.

[52] Young Gil Park and Benjamin Goldberg. Escape analysis on lists. In Pro-
ceedings of the Conference on Programming Language Design and Imple-
mentation (PLDI), pages 116–127, 1992.

[53] Harish Patil and Charles Fischer. Low-cost, concurrent checking of pointer
and array accesses in C programs. Software—Practice and Experience,
27(1):87–110, January 1997.

[54] Alexandre Petit-Bianco. No silver bullet – garbage collection for java in em-
bedded systems. http://gcc.gnu.org/java/papers/nosb.html.

[55] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[56] Projet Cristal, INRIA Rocquencourt. The Caml language. http://caml.
inria.fr/.

[57] Norman Ramsey and Simon Peyton Jones. A single intermediate language
that supports multiple implementations of exceptions. In ACM SIGPLAN
2000 Conference on Programming Language Design and Implementation
(PLDI’00), June 2000.

[58] Sergei Romanenko, Claudio Russo, Niels Kokholm, and Peter Sestoft.
Moscow ML. http://www.dina.kvl.dk/~sestoft/mosml.html.

[59] Cristina Ruggieri and Thomas P. Murtagh. Lifetime analysis of dynamically
allocated objects. In Proceedings of the 15th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages (POPL’88), pages 285–293,
January 1988.

[60] Radu Rugina and Martin Rinard. Symbolic bounds analysis of pointers, array
indices, and accessed memory regions. In Proc. ’00 Conference on Program-
ming Language Design and Implementation (PLDI), pages 182–195, 2000.

137

[61] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications, 21(1):5–19,
January 2003.

[62] Martin Schulze. cvs – double freed memory. Debian Security Advi-
sory DSA 233-1, January 21, 2003. http://www.debian.org/security/
2003/dsa-233.en.html.

[63] SecurityFocus. Sendmail Debugger Arbitrary Code Execution Vulnerability,
August 17, 2001. http://www.securityfocus.com/bid/3163.

[64] Sendmail, Inc. and the Sendmail Consortium. Sendmail. http://www.
sendmail.org/.

[65] Fermín J. Serna. ISC dhcpdv3, remote root compromise. Next Generation
Security Technologies security advisory, June 6 2002. http://www.ngsec.
com/docs/advisories/NGSEC-2002-2.txt.

[66] Standard ML of New Jersey. http://www.smlnj.org/.

[67] Kohei Suenaga, Yutaka Oiwa, Eijiro Sumii, and Akinori Yonezawa. The
interface definition language for Fail-Safe C. In Proceedings of International
Symposium on Software Security (ISSS2003), volume 3233 of Lecture Notes
in Computer Science, pages 192–, November 2003.

[68] Sun Microsystems, Inc. Security in the Solaris 9 operating system data sheet.
http://wwws.sun.com/software/solaris/9/ds/ds-security/.

[69] Sun Microsystems, Inc. UltraSPARC III Cu Processor User’s Manual, Jan-
uary 2004.

[70] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. In-
formation and Computation, 1997.

[71] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system
for secure flow analysis. Journal of Computer Security, 4(3):167–187, 1996.

[72] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken. A
first step towards automated detection of buffer overrun vulnerabilities. In
Network and Distributed System Security Symposium, February 2000.

[73] Gray Watson. Dmalloc – debug malloc library. http://www.dmalloc.com/.

138

