
A JAVA-BASED LANGUAGE

WITH TYPE-SAFE DYNAMIC CODE GENERATION

型安全な動的コード生成をサポートする
Javaの言語拡張

by

Yutaka Oiwa

大岩寛

A Master Thesis

修士論文

Submitted to

the Graduate School of Science

the University of Tokyo

on 6–7 February 2001

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in Information Science

Thesis Supervisor: Akinori Yonezawa 米澤明憲
Professor of Information Science

ABSTRACT

In this thesis I describe an extension to the Java language that supports type-safe dynamic
code generation.

Dynamic code generation is a powerful technique for reducing execution time of pro-
grams. It composes a portion of the execution code dynamically at runtime, generally
mixing with some runtime-information. Since generated code holds runtime values such
as number of an iteration or a condition of a branch as constants, it may run faster than
statically-generated code.

However, current dynamic code generators have several disadvantages. First, as most
dynamic code generator are designed to generate native machine code, programs using
dynamic code generation are not portable. Second, most systems have weakness on
high-level language support for describing dynamic code fragment. Especially, safety
of dynamic composition of code fragments is not sufficiently supported. Though it is
partly solved in functional languages, it is not directly applicable to imperative settings.
Many Java-based systems provide functions which generate code dynamically by directly
manipulating bytecode. On those systems, safety of the generated code is the user’s re-
sponsibility. Some systems allow the user to write a code fragment using high-level
language constructs such as C and thus ensure type-safety within the fragment of code,
but type-safety of more than one code fragments that are composed at runtime are not
automatically guaranteed.

To solve these problems, I define a strongly-typed language for dynamic code as an
extension to Java language. This language gives precise types to dynamic code fragments.
Our notion of types includes not only the types of code fragments of the base language,
but also information of conditions that guarantee type safety of their composition. Type-
checking these information confirms statically that result of composition of dynamic code
fragments is still type-safe.

I also present an implementation of this extended language in this thesis. The runtime
system is implemented on Java virtual machine. As most Java virtual machines equip
Just-in-time (JIT) compilers that translate machine-independent intermediate bytecode
to native machine code, the system achieves both execution speed and portability at the
same time.

論文要旨

本論文では型安全な動的コード生成をオブジェクト指向に基づいてサポートする
Java言語の拡張について述べる。
動的コード生成はプログラムの実行時間を短縮するための有用な方法であり、プ

ログラムの実行時に動的にプログラムの一部を構築し、通常はその際に実行時に得
られた情報をその中に含める。生成されたコードはループの実行回数や分岐の条件
などの実行時に得られる情報を定数として埋め込んだものとなり、従って静的に生
成されたコードよりも高速に実行することができる可能性が高い。
しかしながら、現存する動的コード生成器には数々の問題がある。まず初めに、

ほとんどの動的コード生成器は実マシンコードを生成するため、動的コード生成器
を用いたプログラムは移植性が悪くなることが多い。次に、動的コード片に対する
高レベル言語によるサポートは一般に弱い。とりわけ、実行時のコード片の合成に
関する安全性は十分に考慮されていない。この問題は関数型言語ではある程度解決
されているが、その解決法を逐次的言語にそのまま適用するのは困難である。Java
言語上で実行時のコード生成をサポートするライブラリのほとんどは、低レベルで
複雑なバイトコードの操作しかサポートしない。これらのライブラリを用いる際、
生成されたコードが安全に実行可能であることはライブラリ利用者の責任である。
また、C言語のような高級言語を用いてコード片を記述することで、1つのコード
片の中での型の安全性を保証することのできるシステムも存在するが、その場合で
もコード片を組み合わせた際のコード片相互間での型安全性の保証は自動的にはな
されない。
これらの問題点を解決するため、本論文では動的コードの記述のための強く型付

けされた言語を、Java言語の拡張として定義する。この言語は動的コード片に対し
て詳細な型付けを与える。この動的コード片の型は動的コード片を評価した時の結
果の型だけでなく、コード片の結合の際に満たしているべき制約の情報を含む。こ
れらの詳細な情報に対する型検証を行なうことで、動的コード片を結合した結果も
また正しいコードになっていることを静的に保証することが可能となる。
また、この拡張された言語に対する実装も本論文中で示す。本言語の実行時シス

テムは Java仮想マシンのバイトコード言語上で実装されている。多くの Java仮想
マシンはマシンに依存しない中間バイトコードを実マシンコードに変換する効率の
良い実行時コンパイラ (JITコンパイラ)を備えているので、本実行システムは実行
効率と移植性の双方を両立させることができる。

Acknowledgments

I express my gratitude to my research supervisor Prof. Akinori Yonezawa. He always
takes a kindly interest on me and provides me a good research environment.

I am very thankful to Dr. Hidehiko Masuhara. He gave me many pieces of invaluable
advise on this study. Without his help, this thesis could not exist here.

I thank Dr. Kenjiro Taura very much. His stern but tender attitude to me reproaches
my laziness and makes me encouraged toward studies.

I also thank Dr. Naoki Kobayashi and members of “Principle of Programming Lan-
guage” research group in Yonezawa and Kobayashi laboratories. Discussion in the meet-
ings made my knowledge about the semantics and type systems of computer languages
deeper and made inspiration of the type system of this research.

Finally I express my appreciation to all members of Yonezawa Laboratory, delightful
members of Italk and all my families. They all support me on research, daily life and
refreshment. Their kindness made it possible to complete this research. Thanks!

i

Contents

1 Introduction 1
1.1 Background . 1
1.2 Related work . 2
1.3 Outline of this thesis . 4

2 Language Overview 5
2.1 Code fragments and contexts . 5
2.2 Code specifications . 8
2.3 Embedding another context . 9
2.4 Embedding constant primitive values . 10
2.5 Class specifications . 11
2.6 Syntactic sugar . 12

3 Type System 13
3.1 Definitions . 13
3.2 Variables, expressions and simple statements 19
3.3 Exceptions . 20
3.4 Methods . 21
3.5 Labels . 23
3.6 Dynamic codes . 24
3.7 Classes . 26
3.8 Class specifications . 27

4 Implementation 29
4.1 Overview . 29
4.2 Translations by the preprocessor . 31

4.2.1 Code specification types . 31

ii

4.2.2 Class specifications . 32
4.2.3 ��� expression . 33
4.2.4 Reference to methods in class specification 33

4.3 Translating body of code specifications 33
4.3.1 Arithmetics and other simple expressions 35
4.3.2 Embedded code and constant lifting 36
4.3.3 Variables and fields . 37
4.3.4 Methods . 39
4.3.5 Return statement . 40
4.3.6 Labels and break statement . 40
4.3.7 Switch . 41

5 Experiments 42

6 Conclusion and Future Work 46
6.1 Conclusion . 46
6.2 Future work . 46

A An Efficient Dynamic Code Generator 47
A.1 Background . 47
A.2 Code generator . 48
A.3 Constant pool generator . 51

iii

List of Tables

4.1 Type mapping between DynJava and Java representation 31

5.1 Computation time of the FFT . 44

iv

List of Figures

4.1 Global structure of DynJava compiler 30
4.2 Example of class_spec translation by the preprocessor 34
4.3 Nested code generator invocation by �-expression. 38
4.4 Resolving free variables . 39

A.1 An example of the input to the postprocessor 50
A.2 An example of the intermediate code sequence 51
A.3 Generated code generator . 52

v

Chapter 1

Introduction

1.1 Background

Dynamic code generation (DCG) is a technique that generates and executes fragments of
executable code during the run-time of a program. Usually, programs handles three types
of data: compile-time constants, runtime constants, and dynamic data. Compile-time
constants are the values which are already known at compile-time. Usually, values of this
kinds are written directly into program code and are subject to optimization performed by
compilers. Values of dynamic data changes during program runs, and usually not subject
to optimization. Runtime constant are the middle of those two values: their value is not
known at the compile time, but once its value is determined at the very early stage of
computation, it does not varies during rest of computation.

Runtime constants are usually not targets of optimization: it cannot be optimized at
compilation time, obviously. However, if the program repeatedly makes some decisions
(ex. target of branches) depending on those constants, it uses lot of execution time wast-
fully to make such predictable decisions. If dynamic code generation is used, a program
which is specialized to that constant values can be generated. The generated program
does not require any time to make a predictable decision. There is plenty of values which
are subject to runtime code optimizations: number of iterations, user-given instructions
to manipulate data, automata decision table for regular expressions, and more.

There is three ways to implement DCG. The first is to directly write down a program
which generates machine instructions on a memory. However, writing a correct program
in this approach is extremely difficult and error prone. The second is to automatically
generate a program that generates an optimized version of a given generic program–so

1

called (run-time) partial evaluation. As this approach relies on static analysis to deter-
mine where to optimize, resulted optimization would be too conservative. The third is to
define a language in which the programmer can write a fragment of dynamic code as an
expression in a high-level language. This approach can solve the problems of former two
approaches. DynJava is based on this approach.

The DynJava is an extended language to Java in which the user can write dynamic
code fragments in the syntax that is similar to the Java’s. In addition, dynamic code
fragments in DynJava are statically typed, where type safety of dynamically composed
code is statically guaranteed.

Another generic problem with DCG is portability and efficiency. Usually, runtime
code generators have to generate native machine code which are to execute. This means
that programmers must write a machine-specific code for each platform on which the
program needs to run. Use of intermediate language solves the portability problem, but
it requires lot of additional computation time to interpret them.From other point of view,
the intermediate code of program is a typical example of runtime constant.

DynJava solves this problem by using Java virtual machin (JVM) Java virtual machine
is an interpreter of an intermediate language called bytecode, but many implementations
of JVM equips JIT compiler which translates bytecode to efficient native language at the
first time the code is called. As JVM and JIT compiler becomes ubiquitous recently, the
DynJava system enjoys both portability and efficiency.

I devised a type system for DynJava, and implemented a system that translates Dyn-
Java program to a Java program.

1.2 Related work

There are many tools which manipulates bytecode, for example JavaClass API [4], and
�����	
���
� package included in Kawa Scheme [1], and they can be directly used to
generate execution code dynamically on Java Virtual Machine (JVM). However, as those
tools treat a dynamically generated program as a stream of untyped instructions, the user
could generate type-unsafe code. Keeping safety of the generated code completely owe
to the user’s responsibility, and generally it is very hard to maintain.

‘C [13] is an extension to C language which supports writing dynamic code in the
syntax of C language. In ‘C, user can write a fragments of dynamic code and combine
them to generate a function in C language at runtime. ‘C has become a basic idea of the
this research. Especially �-syntax and code-generator approach comes from ‘C. However,
as ‘C does not support any context, type safety of the generated code is still not guaranteed

2

enough. For example, two code fragments ����
��� ��� and ����
��� ��
�������

cannot co-exist in one function obviously, but as these two specifications are both typed
“���
 �����” in ‘C, the inconsistency is not detected. Our DynJava can detects those
inconsistency at compilation time using context information. In addition to this, in ‘C
users must write a special construct explicitly to use variables or labels across two or
more code fragments, and must maintain the consistency of them carefully. DynJava
provides easier way to share one variable between two specifications than ‘C does.

‘C maintains some extent of portability using VCODE and ICODE libraries, which
supports dynamic generation of machine code for several RISC platforms [6]. Our im-
plementation using Java virtual machine which runs on more numbers of platform. Code
generators using VCODE runs very fast, but generated codes are not efficient and not fast.
Generators using ICODE generates better code, but generator itself is slower than one us-
ing VCODE. Current implementations of JIT compiler are still slower than ICODE, but
it may improve further.

Kawa Scheme [1] is an interpreter and compiler of Scheme language implemented
on Java virtual machine. Kawa Scheme supports not only interpretive execution of the
program and static compilation but also runtime compilation of lambda closures to reduce
runtime costs for interpretation. It can be seen as another example which shows the
effectiveness of dynamic code generation. However, as it compiles only special forms
(syntactic structres like �� and ����), and as it uses boxed representation for all values,
code generated by Kawa compiler is still slower than Java codes and dynamic codes
generated by DynJava.

Another approach to generate code dynamically in a type-safe way is a runtime spe-
cialization technique, that uses program analysis. For example, [11] describes about run-
time program specialization on Java bytecode, and many related publications on this topic
exist. Since this approach extracts dynamic code fragments from a given single-level pro-
gram, specialized program is always type-safe. However, degree of optimizations (spe-
cialization) depends on the preciseness of the analysis. If the target program is simple,
full-automatic analysis is sufficient produce a good result. However, if the program gets
complicated, the program author will have better knowledge about program’s property
and where to optimize than the automatic analyzer. In this case, our DynJava will be-
come a powerful tool to implement program-dependent runtime optimization easily by
hand.

There are studies on of type safety of dynamic program composition. Modal-ML [14]
is one of such studies on the functional language ML. Due to simple syntax and seman-
tics, restriction on a correct context for a dynamic code fragments can be easily checked

3

by matching types of all free variables. However, in imperative languages such as Java,
context should have more precise information to determine the correctness, because a
program fragment depends not only on the types of free variables, but also various in-
formation such as labels and exceptions. Our type system is extended to handle these
properties and ensures the correctness of composition in an imperative language.

MobileML [9] defines type system for dynamically-bound code fragments on the ML
language, using a notion of context. The base idea of context type checking in DynJava
is inspired by Mobile-ML. However, its context notion binds only variables, because of
the same reason as Modal-ML.

1.3 Outline of this thesis

This thesis is organized as follows. In Chapter 2, I present a overview of DynJava Lan-
guage. In Chapter 3 the type-system of DynJava, which is the principal part of the lan-
guage, is described. Chapter 4 explains the implementation of DynJava compiler, and
Chapter 5 evaluates the performance of it through experiments. The whole thesis is con-
cluded in Chapter 6.

4

Chapter 2

Language Overview

The DynJava language adds, in order to generate new classes, a few constructs for com-
bining several parts of dynamic code fragments together. In this section, I present a brief
overview of DynJava.

2.1 Code fragments and contexts

In DynJava, user can write dynamic code fragments as an code specifications, which
has the syntax which is similar to ����� in ‘C [13]. They are combined to generate an
anonymous subclass of some abstract class. To check the type-safety of dynamic code
compositions described in Chapter 3, the code specification’s type includes its context
information.

A context information of a code specification is very precise in DynJava. It includes
following information:

Name of the base class (superclass) As in Java language all program code is enclosed
in methods which is members of some classes, there is always a “current class”,
and its superclass. In the instance method, methods and fields of the current class is
accessible through simple name, and
��� can be used as an value of those classes.
We call this “context (or environment) is an instance context.” In the class method,
only class methods and class fields are accessible through simple name, and
���

cannot be used. We call this “class context”.

Because the current class of dynamically-generated code is anonymous in Dyn-
Java, an instance of dynamically-generated class is used as those of superclass, the

5

definition of which is statically available. We call this “base class”. Context holds
the name of the superclass, with a flag whether the context is class context.

The base class of an instance context is notated as “��
��
� classname”,1 and
those of an class context as “�
�
�� ��
��
� classname”.

If no base class is specified by user, it is assumed to “�
�
�� ��
��
� ���������������
”,
because code fragment which only depends on an static field of the �����
 class
can be appear in any method of any class.

Variables and fields of current class Variable context holds types of all variables which
is visible in the current scope, like usual environment. In this type system, vari-
able context also holds all fields which are accessible by simple name, and by

����name notation.

The entry of the simple name in the variable context is notated as “type name”
(ex. “��
 �” or “ ��
�� �”). The entry of the field of
��� is notated as “type

����name”.

Note that if some name is available through
���, the name is always accessible
through simple name. However, type of the name and
����name may be different,
as local variable may hide instance fields and class fields.

In a program does not use any dynamic code specification, the information of fields
is simply derivable from the name of current class. The type-checker automatically
consults the definition of current class and expands the fields to the variable context
(see “canonical context expansion” described later). The reason that the language
defines explicit notation of the field in the variable context is to allow programmer
to add an fields to the current class without defining some dummy class.

Methods and Constructors Method context holds the list of methods and constructors
which are defined in or inherited by the current class. For each method a context
holds 1) the name of the method, 2) type of the return value, 3) types of the formal
parameters, and 4) list of exception types which may be thrown by the method. For
each constructors, context holds the 1′) where the constructor is defined, either in
current class or in direct superclass, and 3) and 4).

Method entries in method context are notated as “typer name!type1" type2" . . . #

����� exn1" exn2" . . . ”, where typer is the return type, type1, type2, . . . are the

1Keywords used in notations of contexts are chosen from the reserved keywords of the Java language, to
prevent name conflicts.

6

types of the formal parameters, and exn1, exn2, . . . are the types of the exceptions
which may be thrown. For example, ����� method defined in the �����
 class in
the JDK is notated as “�����
 �����!#
����� $����%�
&�����
�
'����
���”.
For constructor entries, return types are omitted and either ����� or
��� are used
in place of name.

As same as variable context entry, entry of methods and constructors which are de-
fined in the superclass are expanded automatically from the baseclass information
by the type checker.

Type of return value The type of the return value obviously depends on the declared
type of surrounding method. In one context, only one type can be used for the
parameter of ��
��� statement. This information is notated as “��
��� t”. The
context in which only ��
��� statements without argument can be used is notated
“��
��� ���
”.

Context is allowed to contain no return type specification. Code specification with
such contexts can not contain any “��
���” statement in it, but can be used in the
places whatever return type is required.

����(-able Labels Label context holds all labels which is available for use with ����(

or ���
���� statement. ���
����-able label is provided by ����� and ��� state-
ments, and ����(-able label is provided by those and ���
�� statements. In ad-
dition to this, those statements without label is treated to be providing null-label.
���
����-able label with tag t is notated as ���
���� t, and ����(-able label of
those as ����(t. Null-labels are notated simply as ���
���� and ����(.

Throwable exceptions At each point in the programs, exception context holds a set of
exception types which are handled by either method caller or try-catch clause. For
example, at the point of star (�) in the following program flagment, exceptions
of the class ��������)�'����
���, $����%�
*���
'����
��� and of any sub-
class of those class can be thrown.

���
 +�
��
,-!��
 �#
�����)�'����
��� �

�	 � � �

��
�� !$����%�
*���
'����
��� �# � . . . �

�

7

In this type system, this information is notated as “
�����)�'����
���”, “
�����
$����%�
*���
'����
���”.

Other information of context There are two miscellaneous states which context holds.
First, “constructor state” means that the current block is used as a body of a con-
structor, and that some constructor of the current class or of direct superclass must
be explicitly invoked at the top of current block. This state is notated as “�����”.
Second, “switch state”, notated as “���
��”, means that the current block is used
as a body of a ���
�� statement, and the special labels ���� i. and
�����
 can
be used.

For example, the context specification /��
 �0 specifies contexts where � is bound
to a ��
 value, and /��
��� ��
0 specifies that contexts are methods that return ��

values.

2.2 Code specifications

DynJava have two kinds of code specifications, statement specifications and expression
specifications. Each of them corresponds to Java’s statement or expression, respectively.
The type of a statement specification is written as ��
�,����/Γ0, where Γ is the context
on which the specification depends. The type of an expression specification is written
as t ���,����/Γ0, where t is the type of values generated by evaluating a generated
code fragment from the specification. The type t is called a target type of the expression
statement type.

A code specification begins with a backquote (�), followed by a context specifica-
tion and either a statement or an expression. Statement specifications have the form
“�/context0�body�”, and expression specifications have the form “�type/context0!body#”.

Code specifications can have free (unbound) variables, if they are declared in the
context specification. The following is the examples for code specifications.

�/&
���� �0� &	�
�+���
�����
��!������" � 1 � 1 �2�#� �

�
�����/��
 �0!� 1 -��#

When a code specification is used in a program where a value of some specific code
specification type is required, its context specification and target type can be omitted. For
example, in the program below, the type of the statement specification in line 1 should
matches to the type of the left-hand side of the assignment, which is ��
�,����/��
 ��

8

��
��� ��
0. Similarly, the type of the expression specification in line 2 is deduced to

����� ���,����/��
 �0.

- ��
�,����/��
 �� ��
��� ��
0 �- 3 �� ��
��� �� ��

4
����� ���,����/��
 �0 �4 3 �!� 1 -��#�

The places where (and how) the type of the specifications can be deduced are following:

1. Right-hand side of assignments (type deduced from left-hand side)

2. Initializers in variable declarations (from the declared type)

3. An argument of ��
��� (from the return type of enclosing method)

4. Inside 5 . expressions, where above rules applies for the type of 5 . expressions
(from the deduced type of the expressions)

2.3 Embedding another context

In the body of a code specifications, another code specification can be embedded by
writing � followed by an identifier. The code generated from inner code specification
is inlined into the code from outer code specification. For example, in the code below,
compiling �4 will generate the almost same code as one generated from �6.

��
�,����/&
���� �" �0 �- 3

�� &	�
�+���
�����
��!� 1 � 1 �2�#� ��

��
�,����/&
���� �� ��
��� ���
0 �4 3

�� &
���� � 3 �7�������� ��-� ��
���� ��

��
�,����/&
���� �� ��
��� ���
0 �6 3

��

&
���� � 3 �7��������

&	�
�+���
�����
��!� 1 � 1 �2�#�

��
����

��

When a code specification is embedded by �, the context specification of inner specifica-
tion is always checked against surrounding code and the context of outer specification, to

9

ensure that the composition is correct. In the above example, �- requires that variables
� and � must be bound to type &
����. The code surrounding ��- in �4 provides bind-
ing of �. � is not bound by �4 itself, but it requires outer context to bind �. Therefore,
type-checking above code succeeds.

In addition to variables, labels (or break points) can also be “free”. In DynJava,
anonymous break point, which is provided by loop constructs without label, is treated
as “null label”. 8���(and ���
���� statements may point to labels which are bound
outside current code specifications. In the following program, ����(in �- escape the
��� loop in �4.

��
�,����/����(� ��
 �0 �- 3

�� �� !� 33 �# ����(� �

��
�,����/0 �4 3

�� ���!��
 � 3 9� � / -9� �11# �

&	�
�+���
�����
!� � 1 �#�

��-�

�

��

2.4 Embedding constant primitive values

Primitive values can also be embedded (or “lift”ed), by using :-prefix.

&
���� +������ 3 ��������

��
�,����/&
���� �0 �- 3

�� &	�
�+���
�����
��!:+������ 1 �" � 1 � 1 �2�#� ��

��
�,����/��
��� ���
0 �4 3

�� &
���� � 3 �7�������� ��-� ��
���� ��

;; ����
� ������" 7������2� ��
 ������ ������
 +�
��

The expression :+������ in above program embeds runtime value of the variable +������
in to the code specification �-. The values which can be embedded by the :-expression
are limited to primitive values and strings. This reflects a limitation of Java language and
Java virtual machine.

10

2.5 Class specifications

In DynJava, code specifications must be compiled into class to use.
In order to generate a class, DynJava provides class specification constructs which

begins with keyword �����,����. construct. A class specification looks like a the
class definition that lacks bodies of methods, but its instance acts as a “generator of new
classes”. The code below is a small example of class specifications.

- ;; ���
�������

4 ���
���
 ����� 7�
��
 � ���
���
 ���
 ����(�!#� �

6

< �����,���� 7�
��
=�� ��
��
� 7�
��
 �

� ���
 ����(�!#� ;;
��� ����� ������
�� ����(�!# �� ����� 7�
��

> �

?

@ ������ ����� A��
 �

B ������ �
�
�� ���
 +���!&
����CD ����# �

-9 7�
��
=�� �� 3 ��� 7�
��
=��!#�

-- ���/���
 ����(�!#0 3 �� &	�
�+���
�����
��!�E�����#� ��

-4

-6 �����+����!#� ;; ������
�� �����

-<

-� 7�
��
 + 3 ��� ��!#� ;; ������
�� ���
����

-> +�����(�!#�

-? �

-@ �

In the class specifications there is a field for each declared methods. These fields has
appropriate types assigned by the type checker. For example, ���/���
 ����(�!#0 has
given the type ��
�,����/��
��
� 7�
��
� ��
��� ���
� ���
 ����(�!#0.

To define the actual body of the methods, user assigns code specifications to the
fields of class generator i.e. an instance of a class defined by �����,����). The fields of
the class generators are indicated by an extended syntax, e�/method signature0, which
appears in line 11 above.

To generate an instance of dynamically-generated class, extended form of ��� ex-
pression, which takes a class generator rather than class name as an argument is used (see
line 16). It returns a reference to new instance, which is typed to the base type declared

11

in the class specification declaration. If the code specification is not compiled explicitly,
it is automatically compiled at the first call to ���.

In addition to above syntax, DynJava allows to create an anonymous class genera-
tor inside method. If the keyword �����,���� is used without class name, and with
the variable declaration after declaration body, It generates an instance of an anonymous
class specification directly. Above example can be rewritten using anonymous class spec-
ification as follows:

- ;; ���
�������

4 ���
���
 ����� 7�
��
 � ���
���
 ���
 ����(�!#� �

6

< ������ ����� A��
 �

� ������ �
�
�� ���
 +���!&
����CD ����# �

> �����,���� ��
��
� 7�
��
 � ���
 ����(�!#� � ���

?

@ ���/���
 ����(�!#0 3 �� &	�
�+���
�����
��!�E�����#� ��

B

-9 ;; �����+����!#� ;; ��� �� �+�

�

-- 7�
��
 + 3 ��� ��!#� ;; ������
�� ����� ��
 ���
����

-4 +�����(�!#�

-6 �

-< �

2.6 Syntactic sugar

As a notation of context specification is usually long, and same context specification
appear many time in programs, DynJava provides syntactic sugar for it. If the context
specification contains term like ��, the context specification contained in the type of � is
“quoted”. For example, in the program shown in the previous section, the type notation
��
�,����/��������	
 	����
����� 0 represents the type of the code specification
in the example. Context specifications can also be extended after quotation, like / ���

��
 �" 	� 0.

12

Chapter 3

Type System

In this chapter, I describe the typing system of the DynJava. As described in the previous
chapter, DynJava type-checks each code specification using its context information so
that the dynamically composed codes preserves type safety.

A type judgment Γ;Δ � e : t determine an expression or statements e has type t under
current environment Γ and outer environment Δ.

3.1 Definitions

Firstly, I define some operators which handles various entities appears in both original
Java language and DynJava.

Definition 3.1 (Subtype and type compatibility relation) subtype relation ≺ and type
compatibility relation� on primitive and reference types are defined as follows:

t′ is a subclass of t

t′ ≺ t

�	
�� ��
 ����
� ��

· · ·

t′ ≺ t
t′ � t

t′ implements interface t

t′ � t

See the specification of Java language [8] for other rules on primitive types.

Definition 3.2 (Class Description) defs(c), called an description of class c, is the set
containing following entries which are defined in the class c in Java language.

13

1. an instance field “t x”, where t is the type and x is the name of field.

2. a class (static) field “�
�
�� t x”.

3. instance method “tr n!t̃p ñp#
����� ẽ”, where tr is a return type, n is a name
of method, t̃p is a list of argument types, ñp is a list of argument names, and {ẽ} is
a set of thrown exception. Actually, t̃p and t̃n are interleaved in the notation.

4. static method “�
�
�� tr n!t̃p ñp#
����� ẽ”, where tr, n, t̃p, t̃n, {ẽ} is as same
as instance methods.

5. constructors “
���!t̃p#
����� ẽ”, where tr, t̃p, t̃n, and ẽ is as same as methods.

The inheritance description of class c, notated defsI(c) is the same but the entries declared
�����
� is not contained.

Definition 3.3 (Context Type) Context Γ is a list of the following elements:

1. base-class and class context specification “��
��
� t” or “�
�
�� ��
��
� t”,
where t is a class type.

2. variable binding “t x” or “t
����x”, where t is a type and x is an identifier.

3. instance method binding “tr n!t̃p#
����� ẽ”, where tr is a type, n is a identifier,
t̃p is a list of types, and {ẽ} is a set of types which are subtype of ����������'����
���.

4. static method binding “�
�
�� tr n!t̃p#
����� ẽ”, where tr is a type, n is a
identifier, t̃p is a list of types, and {ẽ} is a set of types which are subtype of ����������'����
���.

5. constructor binding “n!t̃p#
����� ẽ”, where n is either a
��� or �����, and
tr, t̃p, and ẽ meet same constraints as those of method binding.

6. label binding, one of “����(”, “���
����”, “����(l” or “���
���� l”, where
l is an identifier.

7. exception binding “
����� e”, where e ≺ ����������A��������.

8. constructor context specification “�����”.

9. switch context specification “���
��”.

It is an error if a context contains:

14

1. two base-class specification is in it.

2. two methods or constructors with same name and same argument types, but the
return type differs.

3. two variable bindings of form
����x with same name, but the type does not match.

4. both ����� and ���
�� in it.

5. ����� and no base-class specification of the form “��
��
� t”.

In addition to this, a special context ◦, which means a context is unavailable, is
defined. All operations on contexts defined below are not defined on ◦.

A context with error does appear only in user-given context or the result of canonical
context expansion from user-given context. These context with error is rejected by the
compiler.

Definition 3.4 (Exception context and label context) Exception context exns(Γ) is the
set of all exceptions whose corresponding exception binding is in Γ. Label context lbls(Γ)
is the set of all label binding contained in Γ.

exns(Γ) = {e |
����� e ∈ Γ}
lbls(Γ) = {b ∈ Γ | b is a label binding}

Definition 3.5 (Base class, staticness of the context) The base class and staticness of
the context is defined as follows:

(is-instance(Γ),base(Γ)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(true,t) if “��
��
� t” ∈ Γ
(false,t) if “�
�
�� ��
��
� t” ∈ Γ
(false, ���������������
) otherwise

The context Γ with is-instance(Γ) = true is called an instance context, and others are
called an class context.

Definition 3.6 (Switch state removing ∗) Switch state removing operator is defined as
follows:

Γ∗ � Γ \ {���
��}

15

In Java language, case labels ���� i. and
�����
. must be appear directly inside
���
�� statement. For example, label ���� -. in the following program

���
��!�# �

�����!
���# �

���� -. ���

�

�

is invalid. This operator removes the declaration ���
��, which means these labels are
allowed, from the context and forces the correct placement of the case labels. Labels used
for ����(and ���
���� has no limitation like case labels, and therefore not removed by
this operator.

Definition 3.7 (Variable reference Γ(x)) The type of the variable x in context Γ is de-
fined as follows:

Γ = Γ′, t x
Γ(x) = t

Γ = Γ′, t
����x
Γ(
����x) = t

Γ = Γ′, s s does not match rules above
Γ′(x) = t
Γ(x) = t

In other word, Γ(x) is the type in the variable binding of x which appears last in Γ.

Definition 3.8 (Exception handle relation ∈E) An exception class t is handled by the set
of exception classes T if t ∈E T defined below is satisfied:

t ≺ ����������'����

t ∈E T

t ≺ ����������F��
�+�'����
���

t ∈E T
∃u ∈ T. t ≺ u

t ∈E T

In Java Language, exceptions of type t can be thrown if 1) t is a subclass of class '���� or
F��
�+�'����
���, or 2) some supertype of t is handled by the outer syntactic block or
method caller. The operator cares about those rules and makes the typing rules simpler.

Definition 3.9 (Exception subset relation ⊂E) Set of exceptions T ′ is a subset of T if
the condition

T ′ ⊂E T ⇐⇒ ∀t′ ∈ T ′. t′ ∈E T

16

is met.

Definition 3.10 (Label provision ∈L) Label request r is provided by label context L if
l ∈L L defined below is met.

r ∈ L
r ∈L L

���
���� l ∈L L
����(l ∈L L

����(l ∈L L
����(∈L L

���
���� l ∈L L
���
���� ∈L L

When ���
���� can be used at some point of program, ����(can also be used at that
point. And also, when ����(with some label is allowed, ����(without label is also
allowed (although branch target of these two ����(s may be different). The definition
above reflects those properties.

Definition 3.11 (Canonical context expansion) Canonical context of context Γ is com-
puted from Γ by the following procedure.

1. Assume D = defsI(base(Γ)).

2. For all instance field specification “t
����x” in Γ, add variable binding “t x” if
Γ does not contains any variable binding of x.

3. For all static field “�
�
�� t x” ∈ D, add variable binding “t x” if Γ does not
contains any variable binding of x.

4. For all static methods “�
�
�� tr n!t̃p ñp#
����� ẽ” ∈ D, add “�
�
�� tr
n!t̃p#
����� ẽ” to Γ.

5. If Γ is an instance context,

(a) For all instance field “t x” ∈ D, add variable binding “t x” if Γ does not
contains any variable binding of x.

(b) For all instance field “t x” ∈ D, add variable binding “t
����x”.

(c) For all instance methods “tr n!t̃p t̃n#
����� ẽ ∈ D, add “tr n!t̃p#
�����

ẽ” to Γ.

6. If ����� ∈ Γ, for all instance constructors “
���!t̃p ñp#
����� ẽ” ∈ D, add
“�����!t̃p#
����� ẽ” to Γ.

17

7. Duplicated entries are removed as it is useless.

Whenever the user specifies the context, it is expanded into canonical context.

Canonical context is the context which contains all information about fields and methods
which are to be inherited from the base class. A user-given context is converted into
canonical context by above rule. In all following rules and definition, canonicalness of
the context is assumed. Variable bindings without
��� is only added when other binding
is not exist, to allow hiding field by other variables.

Definition 3.12 (Context subtype relation ≺C) A context Γ′ is sub-context of a context
Γ iff all of following conditions are met:

1. (Base class) base(Γ′)
 base(Γ)

2. (Type of context) is-instance(Γ′)⇒ is-instance(Γ)

3. (Variables) “t x” ∈ Γ′ ⇒ Γ′(x) = Γ(x)

4. (Instance fields) “t
����x” ∈ Γ′ ⇒ Γ′(
����x) = Γ(
����x)

5. (Return Types) ��
��� t ∈ Γ′ ⇒ ��
��� t ∈ Γ
6. (Methods) “tr n!t̃p#
����� ẽ′” ∈ Γ′ ⇒ ∃{ẽ}. (“tr n!t̃p#
����� ẽ” ∈ Γ ∧
{ẽ} ⊂E {ẽ′})

7. (Constructors) “n!t̃p#
����� ẽ′” ∈ Γ′ ⇒ ∃{ẽ}. (“n!t̃p#
����� ẽ” ∈ Γ ∧
{ẽ} ⊂E {ẽ′})

8. (Exceptions) exns(Γ′) ⊂E exns(Γ)

9. (Labels) ∀e ∈ lbls(Γ′). e ∈L Γ

10. (Constructor context) ����� ∈ Γ′ ⇔ ����� ∈ Γ
11. (Switch context) ���
�� ∈ Γ′ ⇒ ���
�� ∈ Γ

This relation is written as Γ′ ≺C Γ.

This rule defines the compatibility relation between contexts and is the more core part of
the type system. Γ′ ≺C Γ means that a fragment of code depending on context Γ′ can be
used in place where context Γ is provided.

18

First, I describe sub-rules 1 and 2. If a fragment uses
��� as a value of type t, it
must be available and its type must actually be a subtype of t. Else, if a fragment does not
use
��� at all (i.e. Γ′ is a class context), and depends on static method which are defined
in t, then its actual base-class must actually be a subtype of t, too. The rules implements
those restrictions.

Second, sub-rules 3 and 4 are almost obvious. However, in 3, I must notice that t and
Γ′(x) may not be equal, as some binding in Γ′ may be hidden by another binding.

Next, sub-rule 5 constraints the type of return values if Γ′ depends on a type of return
values. If Γ′ does not contain specifications of return type, Γmay contain any return type,
because the fragment depends on Γ′ may not contain any ��
��� statement.

If type-checker compares two method specifications with sub-rules 6 and 7, the type-
checker does not require that exceptions thrown by those methods are strictly equal. In-
stead, if the actual implementation (depends on Γ) throws only a subset of exceptions of
the declared set (in Γ′), it is acceptable.

Finally, two context must match strictly on whether it is constructor context or not, as
the constructors are permitted and required to be called only in the top of the constructor
body. Other sub-rules seems obvious.

3.2 Variables, expressions and simple statements

Γ(x) = t

Γ;Δ � x : t
(TR-VarRef)

Γ;Δ � x : t t� t′

Γ;Δ � x : t′
(TR-Coerce)

Γ;Δ � x : t t� t′ ∨ t′ � t
Γ;Δ � !t′#x : t′

Γ;Δ � x : t t is not final t′ is interface
Γ;Δ � !t′#x : t′

(TR-Cast)

These rules are a part of typing rules of original Java language, expressed by DynJava’s
typing notation. Both DynJava and Java have many typing rules for operators such as 1,
G, 5 ., etc., but they are omitted here.

19

Γ∗;Δ � e : expression
Γ;Δ � e� : statement

(TR-ExpStmt)

Γ∗;Δ � s : statement Γ;Δ � e : �������
Γ;Δ � �� !e# s : statement

(TR-If-1)

Γ∗;Δ � s1, s2 : statement Γ;Δ � e : �������
Γ;Δ � �� !e# s1 ���� s2 : statement

(TR-If-2)

These rules are also a part of typing rules of original Java language,

����� � Γ
Γ;Δ � ε : statement list

(TR-StmtListNil)

����� � Γ Γ;Δ � l : statement list Γ;Δ � s : statement

Γ;Δ � s� l � statement list
(TR-StmtList)

����� � Γ Γ∗, t x;Δ � l : statement list
Γ;Δ � t x�l : statement list

(TR-VarBind)

����� ∈ Γ Γ;Δ � s : constructor call
Γ \ {�����};Δ � l : statement list
Γ;Δ � s� l : statement list

(TR-ConstrBody-1)

����� ∈ Γ �����!# ∈ Γ
Γ \ {�����};Δ � l : statement list

Γ;Δ � l : statement list
(TR-ConstrBody-2)

Γ∗;Δ � l : statement list
Γ;Δ � �l� : statement

(TR-Block)

These rules are typing rule for blocks. The rule (TR-VarBind) introduces new variable
binding into current context. If a current context is a constructor context, it must call one
of constructors at the top of method body (TR-ConstrBody-1), or superclass of the cur-
rent class must have a constructor without argument (TR-ConstrBody-2). The conditions
����� � Γ and ����� ∈ Γ forces this restriction.

3.3 Exceptions

Γ;Δ � e : t t ∈E exns(Γ)
Γ;Δ �
���� e� : statement

(TR-Throw)

20

An exception can only be thrown, if some superclass of the exception is included in the
current exception context.

Γ, t e;Δ � b : statement list
Γ;Δ � ��
��!t e# �b� : catch_clause〈t〉 (TR-Catch)

Γ; � b : statement list
Γ;Δ � ������	 �b� : finally_clause

(TR-Finally)

Γ,
����� t1, . . . ,
����� tn;Δ � b : statement list Γ;Δ � ci : catch_clause〈ti〉
Γ;Δ �
�	 �b� c1 · · · cn : statement

(TR-Try-C)

Γ;Δ � b : statement list Γ;Δ � f : finally_clause
Γ;Δ �
�	 �b� f : statement

(TR-Try-F)

Γ,
����� t1, . . . ,
����� tn;Δ � b : statement list
∀i ∈ {1 . . . n}. Γ;Δ � ci : catch_clause〈ti〉 Γ;Δ � f : finally_clause

Γ;Δ �
�	 �b� c1 · · · cn f : statement
(TR-Try-CF)

Exception handling is performed using
�	-��
�� statement in Java. Body of the
try-clause is typechecked on an extended context which all exception types appeared in
catch-clause is added. ������	-clause is not treated specially, since it only evaluates
some statements before re-throwing the thrown exception.

3.4 Methods

Invocation of the method in current class

is-instance(Γ)
tr n!t1" t2" . . . " tn#
����� ẽ ∈ Γ
Γ;Δ � e1 : t1, . . . , Γ;Δ � en : tn{ẽ} ⊂E exns(Γ)
Γ;Δ �
����n!e1" e2" . . . " en# : tr

(TR-MethInvk-This)

Γ;Δ �
����n!e1" e2" . . . " en# : tr
Γ;Δ � n!e1" e2" . . . " en# : tr

(TR-MethInvk-This2)

�
�
�� tr n!t1" t2" . . . " tn#
����� ẽ ∈ Γ
Γ;Δ � e1 : t1, . . . , Γ;Δ � en : tn{ẽ} ⊂E exns(Γ)
Γ;Δ � n!e1" e2" . . . " en# : tr

(TR-MethInvk-Static)

This rule type-checks the invocation of a method which is defined in the current class.
When a method is invoked, all of following conditions must be met:

21

1. For all exceptions which may be thrown by the method, it must be properly han-
dled.

2. All actual argument must be coerce-compatible to the type appeared in the formal
parameter list.

3. If the method to be called is an instance method, context must also be instance
context (
��� must be available to use).

A method invocation of form
����n!. . . # is treated specially in DynJava, as
���
may contain addition methods which is not defined in the base-class if used in code
specifications.

�����!t1" t2" . . . " tn#
����� ẽ ∈ Γ
Γ;Δ � e1 : t1, . . . , Γ;Δ � en : tn{ẽ} ⊂E exns(Γ)

Γ;Δ � �����!e1" e2" . . . " en# : constructor call
(TR-Constr-Super)

���!t1" t2" . . . " tn#
����� ẽ ∈ Γ
Γ;Δ � e1 : t1, . . . , Γ;Δ � en : tn{ẽ} ⊂E exns(Γ)

Γ;Δ �
���!e1" e2" . . . " en# : constructor call
(TR-Constr-This)

These rules are for constructor invocation. These are used with rule (TR-ConstrBody-1).
As these rules and (TR-StmtList) does not allow constructor invocation inside
�	-��
��
statement, it is implied that the exceptions thrown by the superclass constructor must be
caught by the caller of current constructor.

Γ;Δ � e0 : t tr n!t1 n1" t2 n2" . . . " tn nn#
����� ẽ ∈ defs(t)
Γ;Δ � e1 : t1, . . . , Γ;Δ � en : tn{ẽ} ⊂E exns(Γ)
Γ;Δ � e0�n!e1" e2" . . . " en# : tr

(TR-MethInvk-Instance)

�
�
�� tr n!t1 n1" t2 n2" . . . " tn nn#
����� ẽ ∈ defs(t)
Γ;Δ � e1 : t1, . . . , Γ;Δ � en : tn{ẽ} ⊂E exns(Γ)
Γ;Δ � t�n!e1" e2" . . . " en# : tr

(TR-MethInvk-Class)

These rules are for invocation of method through instance or class name. it must obvi-
ously check the consistency of thrown exceptions.

22

Return from method
��
��� ���
 ∈ Γ
��
���� : statement

(Ret-V)

��
��� t ∈ Γ Γ;Δ � e : t
��
��� e� : statement

(Ret-NV)

On each ��
��� statement, the type of the return value is checked against those con-
tained in context Γ. if Γ does not contain any ��
��� t specifications, ��
��� statement
is not accepted at all.

3.5 Labels

In Java language, ����(and ���
���� can be used only inside loop constructs or ���
��.
Also, labeled ����(can only appear inside the loop construct with the same label. Typing
rule below describes these properties.

Label-binding Constructs

Γ;Δ � e : ������� Γ∗, ���
����;Δ � s : statement
Γ;Δ � ����� !e# s : statement

(TR-While-NL)

Γ;Δ � e : ������� Γ∗, ���
���� l;Δ � s : statement
Γ;Δ � l. ����� !e# s : statement

(TR-While-L)

These two rules are defined for while statement. Both rules extend context Γ with
���
���� declaration, and then check the statement s under the extended context.

Γ∗;Δ � e1 : expression ∨ e1 = ε Γ;Δ � e2 : �������
Γ∗;Δ � e3 : expression ∨ e3 = ε
Γ∗, ���
����;Δ � s : statement
Γ;Δ � ���!e1�e2�e3# s : statement

(TR-For)

Γ;Δ � e1 : t Γ, t x;Δ � e2 : �������
Γ∗, t x;Δ � e3 : expression ∨ e3 = ε
Γ∗, t x, ���
����;Δ � s : statement

Γ;Δ � ���!t x 3 e1�e2�e3# s : statement
(TR-For-B)

Γ∗;Δ � e1 : expression ∨ e1 = ε Γ∗;Δ � e2 : �������
Γ∗;Δ � e3 : expression ∨ e3 = ε
Γ∗, ���
���� l;Δ � s : statement

Γ;Δ � l. ���!s1�e2�e3# s : statement
(TR-For-L)

Γ;Δ � e1 : t Γ∗, t x;Δ � e2 : �������
Γ∗, t x;Δ � e3 : expression ∨ e3 = ε
Γ∗, t x, ���
���� l;Δ � s : statement

Γ;Δ � l. ���!t x 3 e1�e2�e3# s : statement
(TR-For-LB)

23

These rules are for ��� statement. Rules with postfix “B” correspond to ��� state-
ment with local variable binding, and one with postfix “L” correspond to one with label.
The rules appends ���
���� label specifications and local variable binding of x, if any,
for type-checking the body s. The condition (e2) must be boolean, and the inclement
expression e3 may be an expression of any type, or may be empty. If no variable binding
is done, e1 is also any expression or empty. If it is with variable binding, e1 must be
compatible to t.

Label Uses

����(∈L Γ

Γ;Δ � ����(� : statement
����(l ∈L Γ

Γ;Δ � ����(l� : statement
(TR-Break)

���
���� ∈L Γ

Γ;Δ � ���
����� : statement
���
���� l ∈L Γ

Γ;Δ � ���
���� l� : statement
(TR-Continue)

These rules are for ����(and ���
���� statements. These are allowed only when
corresponding binding in the label context is exist. See definition 3.10 for more details
about ∈L.

Switch

Γ;Δ � e : ��
 Γ∗, ���
��, ����(;Δ � s : statement list
���
��!e#�s� : statement

(TR-Switch)

���
�� ∈ Γ i : integer constant Γ;Δ � s : statement

���� i. s : statement
(TR-SwitchLbl-C)

���
�� ∈ Γ Γ;Δ � s : statement

�����
. s : statement
(TR-SwitchLbl-D)

If the switch statement is appear in the program, its body is type-checked under special
context with flag ���
��. Case labels and default label are only allowed inside this
context. As switch statement allows ����(, it is added to the context.

3.6 Dynamic codes

Statement and expression specifications

R; Γ � l : statement list
Γ; ◦ � �/R0�l� : ��
�,����/R0

(TR-Tick-Cspec)

R; Γ � e : t
Γ; ◦ � �t/R0!e# : t ���,����/R0

(TR-Tick-Espec)

24

Values of code specification types are introduced by this rule. These rule requires that
outer context is ◦, to prevent nested code specification from appearing in the program.

As these rules show, a context of a code specification is used as a current environment
of the body of the specification, which is supposed to supply all name bindings, method
bindings, label bindings, etc. Γ is saved to outer context, and only used in rules below.

Value lifting and code specification embedding

Δ(x) = t t is primitive type

Γ;Δ � :x : t

Δ(x) = ����������&
����

Γ;Δ � :x : ����������&
����
(TR-Tick-Lift)

Δ(x) = t ���,����/R0 R ≺C Γ

Γ;Δ � �x : t
(TR-Tick-EmbedE)

Δ(x) = ��
�,����/R0 R ≺C Γ

Γ;Δ � �x� : statement
(TR-Tick-EmbedS)

If a :-expression is appear inside a code specification, the name must be bound in
the current outer context Δ, not Γ. In addition to this, type of the x is limited to either a
primitive type or string, which is the limitation of Java virtual machine.

The rules (TR-Tick-EmbedE/S), which corresponds to �-expression also refers to
outer context Δ. The type of x must be either statement specification or expression spec-
ification. In addition to this, the type-checker checks whether the context required by
the specification is actually provided by current context Γ, using context subtype rela-
tion. The �-expression is treated as of component type of the specification, only when the
context check is succeed. This rule and next coerce rules assure the consistency of the
composition of the code specifications.

Type compatibilities between specification types

Γ;Δ � x : ��
�,����/R0 R ≺C R′

Γ;Δ � x : ��
�,����/R′0
(TR-Coerce-CS)

Γ;Δ � x : t ���,����/R0 R ≺C R′

Γ;Δ � x : t ���,����/R′0
(TR-Coerce-ES)

This rules correspond to rule (TR-Coerce) in Section 3.2. If a code specification is
a subject to implicit type coercion, the component type of the specification must match
exactly, and its context specification must be sub-context of that of coercion target.

25

3.7 Classes

The typing rule of the class definition is partly recursive. The typechecker firstly corrects
all member of the class before typecheck the method body.

Firstly, some new operators are defined.

Definition 3.13 (Method context of class) Instance method context of a class is a con-
text which is visible from the instance methods and constructors. It is defined, using class
description D = defs(c), and assuming c′ as a direct superclass of c, as follows:

ctxI(D, c
′) = ctxI(c) � ��
��
� c′

∪ {t x, t
����x | t x ∈ D} ∪ {t x | �
�
�� t x ∈ D}
∪ {tr n!t̃p#
����� ẽ | tr n!t̃p ñp#
����� ẽ ∈ D}
∪ {�
�
�� tr n!t̃p#
����� ẽ | �
�
�� tr n!t̃p ñp#
����� ẽ ∈ D}
∪ {
���!t̃p#
����� ẽ |
���!t̃p ñp#
����� ẽ ∈ D}
∪ {�����!t̃p#
����� ẽ |
���!t̃p ñp#
����� ẽ ∈ defs(c′)}

Class method context of a class is a context which is visible from class methods in the
class. It is defined, using class description D = defs(c), as follows:

ctxC(D, c′) = ctxC(c) � �
�
�� ��
��
� c′

∪ {t x | �
�
�� t x ∈ D}
∪ {�
�
�� tr n!t̃p#
����� ẽ | �
�
�� tr n!t̃p ñp#
����� ẽ ∈ D}

Method declaration

ctxI(c), t̃ ñ, ��
��� tr,
����� ẽ; ◦ � l : statement list
◦, ◦ � tr xm!t̃ x̃#
����� ẽ �l� : method〈c〉 (TR-Method-I)

ctxC(c), t̃ ñ, ��
��� tr,
����� ẽ; ◦ � l : statement list
◦, ◦ � �
�
�� tr xm!t̃ ñ#
����� ẽ �l� �l� : method〈c〉 (TR-Method-C)

ctxI(c), t̃ ñ,
����� ẽ, �����; ◦ � l : statement list

◦, ◦ � c!t̃ x̃#
����� ẽ �l� : method〈c〉 (TR-Method-Constr)

Typing rule is defined for the method declarations. It creates initial context from the
members of current class, arguments, return type, and throwable exceptions to type-check
the body.

26

���!t1 n1" t2 n2" . . . " tn nn#
����� ẽ ∈ defs(t)
Γ;Δ � e1 : t1, . . . , Γ;Δ � en : tn {ẽ} ⊂E exns(Γ)

Γ;Δ � ��� t!e1" e2" . . . " en# : t
(TR-New)

The typing rule for instance creation is similar to that of method invocation.

3.8 Class specifications

Class specification type is introduced in the form of class specification definition. The
declaration “�����,���� n ��
��
� c′ �D�” introduces name of the type n as a type
�����,����〈D, c′〉.

n is a class specification type

Γ;Δ � ��� n!# : n
(TR-New-CLS)

����� � Γ
Γ∗, �����,����〈D, c′〉 x;Δ � l : statement list
Γ; ◦ � �����,���� ��
��
� c′ �D� x� l

(TR-New-AnonCLS)

To create an instance of class specification, use normal ��� statement. Extended
�����,���� syntax can be used to generate class specification anonymously.

Γ;Δ � e : �����,����〈D, c′〉 tr n!t̃ ñ#
����� ẽ ∈ D
e�/tr n!t̃ ñ#0 : ��
�,����/ ctxI(D, c

′), t̃ ñ, ��
��� tr,
����� ẽ0
(TR-CLS-Field-I)

Γ;Δ � e : �����,����〈D, c′〉 �
�
�� tr n!t̃ ñ#
����� ẽ ∈ D
e�/tr n!t̃ ñ#0 : ��
�,����/ ctxC(D, c′), t̃ ñ, ��
��� tr,
����� ẽ0

(TR-CLS-Field-I)

Γ;Δ � e : �����,����〈D, c′〉
���!t̃ ñ#
����� ẽ ∈ D
e�/
���!t̃ ñ#0 : ��
�,����/ ctx(D, c′), t̃ ñ,
����� ẽ, �����0

(TR-CLS-Field-Constr)

Reference to the field of class specifications have special syntax. Note that the context
specifications given for the fields matches the one appeared in the rules in the previous
section. These field references can be used as a left-hand-side of the assignment.

27

Γ;Δ � e : �����,����〈D, c′〉
Γ;Δ � e���+����!# : ���

(TR-CLS-Compile)

Γ;Δ � e : �����,����〈D, c′〉

���!t1 n1" t2 n2" . . . " tn nn#
����� ẽ ∈ D
Γ;Δ � e1 : t1, . . . , Γ;Δ � en : tn {ẽ} ⊂E exns(Γ)

Γ;Δ � ��� e!e1" e2" . . . " en# : c′
(TR-CLS-New)

The rule (TR-CLS-New) typechecks the instance generation of dynamically-generated
class. As the generated class is anonymous, the value is treated as an instance of its
superclass c′.

28

Chapter 4

Implementation

4.1 Overview

In this chapter, I present the current implementation of DynJava. The implementation
of DynJava is based on runtime code generator approach. For each code specifications,
our compiler system generates one runtime code generator. The code generators are
combined by the static part of the program and generate bytecode at runtime. Generated
bytecode are loaded to Java virtual machine using custom classloader and linked to the
running program.

Our compiler system consists of two parts: the language preprocessor and the code
postprocessor, which utilizes Java’s original compiler ����� as a back-end code genera-
tor. This approach is similar to those of Tempo [2, 12].

First, the language preprocessor reads the source code and type-checks the whole
code. For each code specification, the preprocessor generates a code generator class, with
a template of dynamic code in the Java language. Next, The template is then processed
by the ����� and compiled into bytecode. Finally, the code postprocessor reads the result
of ����� and translates it to Java program which generates the bytecode on runtime code
generation. Compiling postprocessor-generated code will produce code generators (or
runtime compilers) of code specifications.

Using ����� as a prototype-generator for dynamic code generators have two merits
and one demerit. First, it makes whole system simpler and easy to implement, as prepro-
cessor and postprocessor does only need to handle constructs which are closely related to
dynamic code generation. Second, generated code are partly optimized by �����. How-
ever, it makes postprocessor slightly depends on the specific version of �����. Actually,

29

DynJava Source Code

Code
Specifications Static Part

PreProcessor

PostProcessor

javac

Dynamic Code
Template

Runtime Code
Generator

Dynamic Code
Template

Static Part

Static Part
Runtime Code

Generator

javac

Static Part

PostProcessor
(Merge)

Bytecode

Source code

Figure 4.1: Global structure of DynJava compiler

as many JVM instructions heavily correspond to the specific constructs of Java language,
the problem is not so serious. Current postprocessor implementation is tuned to work
with ����� contained in Linux version of JDK 1.3.0 (IBM build).

Currently, the preprocessor is implemented as a plug-in for EPP [10], a extensible
Java preprocessor package. The postprocessor and runtime code generator is imple-
mented using JavaClass [4], a library for bytecode manipulation. The process for all
DynJava constructs except for ���
�� is currently implemented. As runtime code gener-
ator should run very fast to minimize code generation cost, I’m planning to re-implement
the code generator using more light-weight methods (see Appendix A).

30

Types in DynJava Representation on Java

��
�,����/. . . 0 	��
	���
�������

���
 ���,����/. . . 0 	��
	���
�������

������� ���,����/. . . 0 	��
	���
�������H

���� ���,����/. . . 0 	��
	���
�������$

�	
� ���,����/. . . 0 	��
	���
�������8

����
 ���,����/. . . 0 	��
	���
�������&

��
 ���,����/. . . 0 	��
	���
�������)

���� ���,����/. . . 0 	��
	���
�������I

����
 ���,����/. . . 0 	��
	���
�������*

����� ���,����/. . . 0 	��
	���
�������J

c ���,����/. . . 0 	��
	���
�������K

(c is not primitive type)

Table 4.1: Type mapping between DynJava and Java representation

4.2 Translations by the preprocessor

Firstly, I describe the translation performed by the preprocessor with the description of
current implementation.

4.2.1 Code specification types

As the subtype relation between code specification types is complex, it cannot be directly
mapped into the subtype relation between Java’s classes or interfaces. In the implemen-
tation, the preprocessor maps all code specification types into ten predefined abstract
classes, according to Table 4.1. This mapping is obviously projective: two or more types
are mapped into one representation. This is generally not a problem because:

1. Type checking is done globally by the preprocessor before mapping.

2. If the user intentionally bypass the preprocessor’s type check by mixing two classes
separately compiled with a different set of related classes, the runtime system or the
verifier in JVM detects unsafe code and refuse to loaded it. A similar behavior is
observed when the user bypass the �����’s type check by the same way.

One limitation imposed by this mapping is that a class can not have two methods of same
name, if the types of the arguments are equivalent except for code specification types.

31

4.2.2 Class specifications

If class specifications are appeared in the program, it is converted into normal class def-
initions. The generated class is a subclass of class 	��
	���
�����������, which is a
part of the runtime system, and have following fields and methods:

1. Fields holding statement specifications for method body, one per each method and
constructor declarations

2. Fields holding reflection object for constructors, one per each constructor declara-
tions

3. A method ��+����, which generates requested class.

4. Methods named ,,���, one per each constructor declarations

First, For each method declarations in the class specification, the preprocessor emits
one field declarations, which has appropriate statement specification types, described
in 3.8. The name of the field is determined from the name of the method, type of
a return value, and type of arguments. In current implementation, it is a concatena-
tion of the name and type signature used in the class file, replacing characters invalid
for identifiers by “,”. For example, the field name representing ��
 ����(�!
�����

�" �����
 	# is “����(�,JI����,����,�����
,,)”, because its type signature is
“!JI����;����;�����
�#)”.1 The names of the arguments are not included in the field
name, because having two methods only whose argument names differ is invalid.

Second, for each constructor declarations, a method ,,��� and a field is generated.
When the method is called, it calls the constructor of the generated class using Java’s
reflection API, to instantiate an object of the generated class. A reflection object for
the constructor is generated during compilation (see below) and stored into a field in
class specification object. The name of those fields are ,,���, concatenated with type
signature.

In addition to those, the preprocessor generates method ���
 ��+����!#, which
generates class from code specifications. Most of the work which should done for class
generation is already implemented in the superclass 	��
	���
�����������. The method
��+���� passes the list of methods and statement specifications to runtime via interfaces
defined in ��������� and asks ��������� to generate a class. If the compile succeeds, it

1This naming rule is decided to make debug easier. If name collision become real problem, it may be
changed to use hash of type signature, for example ����������	
��
��

	
��
�.

32

acquires reflection objects for every constructors using reflection API, which are required
by ,,���’s. An example of translation is shown in Figure 4.2.

In actual implementation of the preprocessor using EPP, there is small difficulty to
use type signature for the name of field. In EPP, type checker is only available after
all class declarations are parsed, but it is not possible to expand short form of class name
like �����
 to its full name like ���������������
 without type checker. This problem
is solved using some tricks to delay expansion of field name until all names of defined
classes are collected and type checker is become available.

4.2.3 ��� expression

When the ��� expression with the argument of class specification instances instead of
class name appears, it is translated into the invocation of method ,,���, described above.
Syntactically, there is two patterns for calling ��� with class specification. Firstly, if ���
is followed by open parenthesis “!”, it is always assumed to be extended one. If a dotted
name is appeared, it is ambiguous that it may be either class name or reference to class
specification instance. In this case, typechecker is used to determin whether it is normal
instance creation or extended one.

4.2.4 Reference to methods in class specification

If a methods in a class specification is referenced using �/· · · 0 syntax, it is simply ex-
panded to its mangled form, used in class spec translation. For example, an expression
�����,K-�/���
 ����(�!#0 is translated to �����,K-�����(�,, .

4.3 Translating body of code specifications

The bodies of the code specifications are translated into runtime code generator by close
cooperation of the preprocessor and the postprocessor. In this section, I enumerates the
constructs of DynJava language, and describes how the runtime code generator is gener-
ated for each constructs in those translation process.

Generally, translation tactics are carefully chosen to keep the following properties:

• If a original construct is an expression, the types of the expression and result of
translation must match.

• The exceptions thrown by the expression or statement matches to those of transla-
tion result.

33

Original:

���������� ������	
 ����
�� �����
����������������� �
�
� ��
�������
���� �
�������

�

Translated: (Reformatted and redundant parenthesis removed)

����� ������	
 ����
�� �����
�������������� �
������	
��� ������ �����
����������������� �� �

�����
����������! ������!�
�����
����������! �
������!�

������� "������
#���$�������
��������
��
�%��&�����
�������������������

�����
����������������� ��
�%���
�$ ��������'" ((
���� ����������
��� �

�����
 ������
������������������
��
�%��&�����
�������������������
�%)
���
���
�% *'"���+,����

� ����� �"������
#�-�������
 �� �
�����
������.�������
����%
�% "������
#�-����� %���� �
���
�����
�'"���/ 0 ���

�
�

���� ����������
��� �

���������$����� � 1) 1 $������
���������������� 2�
��3 1 ��! 1 1 $����1 ������!��
���������������� �
���� 1 ��! 1 1 $����1 �
������!��
�����#�
��������������
��
�%��&�����
������������������ (

�������'"�#����
���������
�% "������
#������+,����
� ����� �"������
#�-�������
 �� �

�����
������.�������
����%
�% "������
#�-����� %���� �������
���������/ 0 ���

�
�

�

Figure 4.2: Example of class_spec translation by the preprocessor

34

• If the control flow is altered by the statement, result of translation should also alter
the control flow in the way resembles to original expression.

• If the result of translation must be processed further by postprocessor, it should
have specific pattern which is easy for the postprocessor to detect. Especially, it
is desirable that its structure is simple enough to prevent optimizer component in
����� from simplify it more.

4.3.1 Arithmetics and other simple expressions

For simple arithmetics and other simple expressions, DynJava preprocessor simply gen-
erates the code as-is into the template. For example, from the expression specification
���
/0!� 1 6#, the preprocessor generates following template class as a inner class of
the current class:

����� ,$9 ��
��
� 	��
	���
�������) �

,$9!# ��

�����
� ��
 ,,
�+���
�!# �

��
��� !� 1 6#�

�

�

The specification itself is translated into the expression “��� ,$9!#”. The method ,,
�+���
�
has the same return type and
����� declaration as the specification has, so that it passes
the �����’s type checking. From this code, ����� generates following bytecode for the
method ,,
�+���
�:

8)LM&E @

)F'AMF%

The postprocessor removes the return instruction appeared at the last of the template
method. Note that after removing a return instruction, the generated code leaves one
value on the stack for expression specification.

Almost same approach is taken for statement specifications. Statement specifications
are translated into the program which generates the code which does not leaves any value
on the stack. If F'AMF% instruction is appeared other than the last of the template method,
it is translated to the =�A� instruction to the end of generated code.

Other instructions appeared in the compiled template are translated to the program
which generates those instructions verbatimly at runtime. Most instructions can be simply

35

translated to the code which appends one instructions to output list. However, like usual
assembly language, forward branch instructions need some treatment, because the target
position of the branch is not yet decided. In current implementation, the postprocessor
generates the code which generates branch instruction with dummy (null) target address.
And it appends the code which back-fills the target address to branch instructions to the
last of generated code.

4.3.2 Embedded code and constant lifting

If some constant value is embedded to code specifications, it must be translated into the
instructions which pushes the exact value onto the stack. if :-expression is appeared in the
code specifications, teh preprocessor allocates an instance field in the template class, and
stores the runtime constant value into the field at the constructor of the template class. The
expression is then translated to a reference to the field allocated by the preprocessor. For
example, for ��
 ���,����/0� :� �, the preprocessor generates following template
class.

����� ,$- ��
��
� 	��
	���
�������) �

��
 ,,�9�

,$-!��
 ,,�9# � ,,�9 3 ,,�9� �

�����
� ��
 ,,
�+���
�!# �

��
��� ,,�9�

�

�

The :-expression itself is translated to ��� ,$-!�#. The name begins with ,, is reserved
by the system and its naming schema is carefully managed. The name begins with ,,� is
only used by value lifting and specification embedding.

N���� translates this code into following bytecode:

KI�KJ,9

='A*)'IJ A��
:,$-�,,�9)

In this code, KI�KJ,9 loads the reference to
���, which is type of the template class. As
the type of template class may never appear in the final result, it must be compiled from
a code which is generated temporarily by the preprocessor. In the code above, following
='A*)'IJ instruction refers to the field generated by constant lifting expression. The
postprocessor converts this instruction sequence into the code which generates instruc-
tions which pushes the constant value stored in the field to the stack. As specification of

36

JVM only allows the constant of numeric or string types in the class file, DynJava also
restricts the types of :-expressions to those types.

For �-expression, the preprocessor also allocates the instance field and stores the in-
stance of template class in it. In addition to this, the preprocessor allocates dummy static
method, which has same return types and
����� declaration as the embedded specifica-
tion has. Then the �-expression is translated into the invocation of that method. For exam-
ple, if � has type ��
 ���,����/
�����)�'����
���0, “���
/
����� '����
���0!��#”
is translated into the following template. Note that the declaration of method ,,
9 makes
generated template type-safe.

����� ,$4 ��
��
� 	��
	���
������� �

	��
	���
������� ,,�9�

,$-!	��
	���
������� ,,�9# � ,,�9 3 ,,�9� �

�����
� �
�
�� ��
 ,,
9
�����)�'����
���

�
���� ��� '����!��#� �

�����
� ��
 ,,
�+���
�!#
����� '����
��� �

��
��� ,,
9!#�

�

�

The postprocessor translates the invocation of method with name ,,
O into the nested
invocation of the code generator (Figure 4.3). Because each code generator created the
code which pushes one value onto the stack, or nothing for statement specifications, em-
bedding one generated bytecode into another produces correct bytecode with regards to
the stack depth and types. However, as each template of code uses the slots of local vari-
ables in its own way, naive merger of two codes will conflict with each other on the usage
of local variables. Our postprocessor and generated code generator counts the number of
used local variable slots at each embed point and shifts the slot numbers used by inner
code fragment to unused ones.

4.3.3 Variables and fields

If the code refers to a variable which is bound by context specifications (not bound syn-
tactically inside statement specification), it must be resolved to refer outer code at code
generation time. First, the type-checker in the preprocessor determines whether a variable
is bound syntactically or by context. If it is bound syntactically, the preprocessor simply

37

Code GeneratorsBytecode List

call
call

call

generate
instr.

@ @

@

return

Patterned bytecode fragments are generated by the code generator with corresponding patterns.

The code generated by inner code generator is embedded into code generated by outer one.

Figure 4.3: Nested code generator invocation by �-expression.

emits the variable reference into template. Else, the preprocessor allocate a static field
with the same name and type, and emits the reference to the field. For example, for the
code

�/��
 �0� ��
 � 3 9� &	�
�+���
�����
��!��3� 1 !� 1 �##� �

it emits the following template:

����� ,$6 ��
��
� 	��
	���
������� �

	��
	���
������� ,,�9�

�
�
�� ��
 ��

�����
� ��
 ,,
�+���
�!# �

��
 � 3 9� &	�
�+���
�����
��!��3� 1 !� 1 �##�

�

�

N���� compiles it to the instructions ='A*)'IJ and LMA*)'IJ. The postprocessor finds
those instructions referring the template class, and translates it to the code which asks the
“caller” code generator to generate the variable reference.

38

Code GeneratorsBytecode List

List of bound variables

call call call

x = ...

request x
request x

istore_3
generate

instr.

x A-C 1

y B-C 2

x A-B 3 y A-B 4

z A-B 5

z A-B 6

A

B

C

A

B

@

A

B@

A

B

@

Figure 4.4: Resolving free variables

If a code generate is asked to generate the variable reference, it checks the referred
variable is bound by the current position of generating code, by using debugging infor-
mation generated by �����. If it binds the variable, it generates appropriate instructions
to access a local variable slot. If it does not bind, delegates the request to its caller again
(Figure 4.4). If the request does not resolved even by the topmost code specification, it is
delegated to the “method generator” which controlling generation of code for the current
method, and compared to its argument specification. If it also fails, the request goes to
the “class generator” and it generates an appropriate field reference instruction.

If an expression refers to a field of
��� (
����name), it is translated as if it refers to
a variable of special name ,,
���,name. The request on such special variable is always
delegated to its class generator.

If an expression refers to
��� alone, it is translated as if it is special variable ,,
���.
It is always converted into the instruction KI�KJ,9 by the postprocessor.

4.3.4 Methods

If the code invokes a static method defined in the context specification, a dummy static
method with same return type, same formal parameter types, and same
����� decla-
ration is added to the template. Then the invocation is translated into an invocation of
dummy method. If the postprocessor encounters the)% �P'&AKA)$ instruction referring
the template class, it is converted to the code which generates)% �P'&AKA)$ instruction
referring current generating class.

39

If the code invokes a instance method on
���, almost same approach is taken. How-
ever, dummy instance method is generated instead. Also, because a reference to
��� is
needed at the bottom of arguments on the stack to invoke an instance method, following
additional translations are done:

1. An formal parameter of type �����
 is added to the top of formal parameter list.

2. An argument ,,
��� is added to the top of arguments.

The reference to ,,
��� inserted by 2. is turned to a code which pushes the reference to

���, which is needed on the invocation.

Method invocation on other classes or instances does not need special treatment. The
preprocessor inserts it into template verbatimly.

4.3.5 Return statement

If ��
��� statement appears in the code, a static dummy method with name ,,��
���

is added and the statement is translated into an invocation of it (with an arguments if
the return type is not ���
). The postprocessor translates it to an appropriate OF'AMF%

instruction.

4.3.6 Labels and break statement

If a loop constructs (����� and ���) appears in the code, the type-checker checks whether
there is embedded statement specifications which may refer the loop constructs by label
(including null label). If the loop is not referred by inner statement specifications, no
translations are performed by the preprocessor. If it is referred, the preprocessor inserts
following code at the top of loop body, where label is a name of the label associated with
the loop.

�� !,,�����
������!�,,A)$P,IK8'I,8F'KP, label�## ����(�

���� �� !,,�����
������!�,,A)$P,IK8'I,$�%A)%M', label�## ���
�����

The special method ������� ,,�����
������!&
����# is defined in the superclass of
the template class, 	��
	���
�������. This inserted code is compiled into following 8
bytecode instructions by �����.

�
� �,,A)$P,IK8'I,8F'KP, label�

40

����(��
�
�� 	��
	���
��������,,�����
������

!I����;����;&
�����#H

���Q I-

��
� I8

I-. �
� �,,A)$P,IK8'I,$�%A)%M', label� !B#

����(��
�
�� 	��
	���
��������,,�����
������

!I����;����;&
�����#H

���Q I4

��
� I$

I4.

The postprocessor removes above 8 instructions and records the targets of I8 and I$ in
code generator.

If ����(or ���
���� statement appears in the code, the type-checker checks the
target loop of the statement is either in the code, or outside the code specification. In the
former case, no translations is done by the preprocessor. In the latter case, it is translated
to either

���� ,,����(!�,,A)$P,8F'KP, label�#�

or

���� ,,����(!�,,A)$P,$�%A)%M', label�#�

The special method ����������A�������� ,,����(!&
����# is also defined in the
class �����. The postprocessor translates invocation of this special methodto the code
which firstly generates an unconditional branch instruction, and then asks caller code
generator to fill-in appropriate branch target. KAEF�R instruction which corresponds to

���� is removed.

4.3.7 Switch

Currently, switch statement is not supported by implementation.

41

Chapter 5

Experiments

In this chapter, I show some experimental result of the performance of DynJava imple-
mentation. I implemented a runtime optimizer for fast Fourier transform (FFT). FFT
calculates the discrete Fourier transform of size n

Y[i] =
n−1∑
j=0

X[j]ω−i j
n where ωn = e2π

√−1/n

in the computational order less than O(n2). There is a well-known algorithm [5] of
O(n log n) when n equals to some power of 2. For general number n, there are sev-
eral algorithms to achieve low computational order, described in [7], but all of them are
depending on the size n. In the experiments, I implemented the Cooley-Tukey fast Fourier
transform [3], along with the naive DFT routine.

The Cooley-Tukey fast Fourier transform can be applied when n can be factored into
n = n1n2, and is represented by the following formula:

Y[i1 + i2n1] =
n2−1∑
j2=0

[(n1−1∑
j1=0

X[j1 + j2]ω−i1 j1
n1

)
ω
−i1 j2
n

]
ω
−i2 j2
n2
.

The formula can be interpreted as (1) inner DFT of size n1 repeated n2 times (however
input data are not continuously stored in array X), (2) n times of multiplication called
“twiddler”, then (3) outer DFT of size n2 repeated n1 times. If n is factored into more
than 2 prime numbers, the lgorithm can be applied recursively for inner and outer DFTs.
Assuming that the computation size of the FFT of size n is written as F(n), the Cooley-
Tukey algorithm reduces F(n) from O(n2) to O[n2 F(n1) + n + n1 F(n2)]. When n is
pk (p is prime), and naive DFT is used for the DFT of size p, the actual F(k) is become

42

O(p2 n log n). In the [7], other algorithms for n = 4n′, for n = n1n2 where gcd(n1, n2) = 1,
and for prime number n is described, but these are not implemented in this experiment.
We also implemented a routine which implements the same algorithm using an object for
representation of nested DFT calculations and compared the performance.

DynJava version of the FFT implementation is about 160 lines of DynJava code
(counting only method body) and consists of followings:

1. The code generator for base case (n is prime), about 25 lines

2. The code generator for Cooley-Tukey iteration case (n is factored), about 40 lines

3. The dispatcher calling above two routines, about 10 lines

4. The interface called from other part of program, about 25 lines

5. Support routines (ex. prepare array of ω’s), about 60 lines

The length of these two code is roughly equal to the length of the program which does
not use dynamic code generation.

In the implementation, two methods returning statement specification type are de-
fined. They tooks following arguments:

1. size of the input data (an immediate value of ��
)

2. from/to what array data should be read or stored (an expression specification of
type
�����CD)

3. the position in the array where first datum is stored (an expression specification of
type ��
)

4. read/write interval for data (an immediate of ��
).

and they return statement specifications which calculates FFT by appropriate algorithms,
with constants described above as an immediate value are embedded. Those specifica-
tions are either used to produce a body of user-requested FFT routine, or embedded into
the position of inner FFT of Cooley-Tukey algorithms. For example, if n = 210, which
is factored to 16 = (2 · 7) · (3 · 5), generic DFT routine of size of 2 and 7, which consists
of two nested ��� loops are embedded into the for loop appeared in the Cooley-Tukey
FFT routine of size 14, and the routine of size 14 is embedded into ��� loop in another
Cooley-Tukey routine, which is size 210. Finally, the routine consists of 4-depth nested
��� loop are generated.

43

Size of # of # of Dynamic Generation Static Over-
data sets factors iters. Time Code Sz. 1st Time Time head

960 26 · 3 · 5 8 200 2.11 2761 2652 2.15 −1.9%
1024 210 10 50 2.16 3483 4155 2.39 −9.7
2048 211 11 50 4.23 3855 5274 5.19 −18.5
3600 24 · 32 · 52 8 25 7.85 2766 2304 8.34 −5.9
6561 38 8 25 15.08 2770 2290 13.90 +8.4
8192 212 12 50 24.95 4594 7934 25.64 −2.7

10000 24 · 54 8 25 25.7 2764 2296 25.2 +1.9
16384 213 13 50 53.40 4963 9419 56.96 −6.3
30030 2 · 3 · 5 · 7 · 11 · 13 6 25 97.0 2066 1358 92.3 +5.1
44100 22 · 32 · 52 · 72 8 5 130.1 2789 2428 136.5 −4.7
65535 3 · 5 · 17 3 10 899.2 1318 1593 878.0 +2.4
65536 216 16 20 – – >2min. 272.45 –

1048575 2 · 52 · 11 · 31 · 41 6 1 6051 2062 7230 5915 +2.2
(unit: Time: [ms], Code Size: [byte])

Runtime environment is: Linux 2.2, IBM build of JDK1.3.0 with JIT en-
abled, PentiumIII 500MHz, 256MB of main memory

Table 5.1: Computation time of the FFT

Table 5.1 shows the execution time of the FFT computation for various data set size.
Input values to the FFT are the same random complex numbers. The times shown in the
row “Dynamic” is the execution time of dynamically-generated code, and times in the
row “Static” is that of the routine using object representation. For each data size, the
test performs 5 sets of repeated FFT calculation, with predefined number of iterations.
The “Time” shown in the table are an average of the execution time of 3 sets, excluding
the fastest and slowest sets, and divided by the number of iterations. Before beginning
iterations, the program performs FFT calculation once, to perform JIT compilation. The
time needed for the first invocation is measured separately and shown in the column “1st
Time”. “1st Time” minus “Time” shows the guessed time needed for JIT compilation.
For size of 65536, first call of FFT routine does not last in 2 minutes, which may be
caused by bug of either library or JIT compiler. I also measured the length of bytecode of
the generated calculation method. As usual length for method in Java seems to be around
200 bytes, and most method in Java does not exceed 2000 bytes, the code generated with
this experiments are exceptionally long and deeply nested for JIT compiler, though this
setting is intentional.

When the data set size contains many small factors, especially many 2’s, the dynamically-

44

generated version of the routine runs faster than statically-compiled one. The time needed
for JIT compilation is around 2 seconds with 8 prime factors, and increase to 9 seconds
with 13 factors. However, performance gain of about 1 milliseconds overcome this over-
head with about 10000 iterations, even the setting of experiments seems hard for JIT
compiler.

45

Chapter 6

Conclusion and Future Work

6.1 Conclusion

I presented a strongly typed language DynJava that supports dynamic code generation.
The user can write dynamic code fragments using high-level language constructs eas-
ily. The presented type system statically guarantees that dynamically composed code
fragments are type safe, and makes programer away from painful debugging of dynamic
code, which tends to be try-and-error basis.

This thesis also presents an implementation of DynJava on Java virtual machine. The
current implementation demonstrates that the system can be used to easily implement
dynamic optimization of a FFT program.

6.2 Future work

I am planning to implement more efficient runtime code generator in the near future.
The new runtime code generator will generate a bytecode by directly generating byte
streams of instructions into array, instead of library-based, object-based approach which
is currently used. Its idea is described in Appendix A. Also, implementation of ���
��
statement should be completed.

Current design of DynJava is focused to allow almost all constructs of static language
to be written flexibly in dynamic code specification. To make a DynJava language more
generally useful, some new constructs or syntax sugars, some of which may be specific
to dynamic codes, will be needed. Language design of DynJava may be refined with
experiences applying DynJava to large scale of actual applications.

46

Appendix A

An Efficient Dynamic Code
Generator

In this chapter, I describe an idea of efficient dynamic code generator for DynJava, which
replaces current implementation using JavaClass library.

A.1 Background

As described in Chapter 4, the DynJava compiler generates a prototype of byte code
stream for each code specifications using �����. A byte code stream consists of two
parts: codes which are translated to appropriate processes by the postprocessor, and
codes which are copied into dynamically-generated bytecode sequence. The algorithm
described in this chapter handles the latter part.

A planned code generator directly emits bytecode instructions into an byte array. As
both input of the preprocessor and output of the code generators are in same bytecode
language, many instructions can be copied simply in byte-to-byte basis. For example, an
instruction)KJJ (integer addition), whose instruction number is >916, can be translated
to the program code like “�	
���
�C��11D 3 9�>9�”.

However, even if the instruction is not for translation described in chapter 4, The
following instructions must not be copied byte-to-byte way:

An instruction which operates on local variables As described in Section 4.3.2, a code
generator which is nested inside another generator must generate a code whose ac-
cesses to local variables have shifted the indices.

47

A branch instruction An operand to a branch instruction is an offset to branch target
from the instruction, instead of absolute address in the bytecode. If a branch jumps
over the code generated from other embedded code specifications or codes referring
free variables, which have variable length, the offset to the target of branch may be
changed. If a range between the branch instruction and the branch target does
contain only fixed-length instructions, the branch can be generated verbatimly.

An instruction which refers to a constant pool entry As each template bytecode have
own constant pool, instructions from two different code specifications do not agree
on the entry number of constant poll unless it is resolved globally in output class.

In addition, some of these instructions have variable length. As JVM’s bytecode lan-
guage is focused to reduce the size of bytecode, which may also reduces execution time
in embedding environments, frequently-appearing instructions have its short form. For
example, an instruction)I�KJ n, which loads an ��
 value in the n’th local variable
slot to the top of operand stack, has two-byte representation, “-�16, n”. However, if n
is smaller than 3, it is represented by one byte, (-K16 + n). In addition, if n is greater
than 255, although it is rare, it requires 4 bytes, as “$<16, -�16, �n/256�, n mod 256”.
If the length of an instruction is changed, all branch instructions which jumps over the
instruction must be modified.

A.2 Code generator

An efficient code generator can be implemented in following algorithm under above con-
ditions.

1. Expand all local variable reference instructions into its longest form.

2. Break down the byte code stream at each point of code embedding and free variable
reference, where the byte code stream of variable length will be inserted. I each
piece of code “basic block” of the bytecode.

3. Reads through the input bytecode stream. For each instruction in the instruction
stream,

(a) if it is a normal instruction which is not handled by rules below, output the
code which writes the instruction opcode to the target byte array prepared for
each method, and write the original operand of the instruction, if any.

48

(b) if it accesses a local variable, output the code which writes an instruction op-
code to the target array, then writes the number (value of an original operand)
+ (shift amount of local variable slot).

(c) if it refers constant pool, emit the code which consults constant pool gen-
erator in the generator of current class, which is described later, and output
the instruction with the constant pool index returned from the constant pool
generator.

(d) if it is a branch which is local to the current basic block, output the code which
emits the instruction verbatimly.

(e) if it is a non-local backward branch, output the code which writes the instruc-
tion opcode of branch, and the operand calculated as

(the address of the top of target block)

− (the address of the top of current block)

+ [(the in-block offset of branch target from the top of target block)

− (the in-block offset of branch instruction from the top of current block)].

The equation in [] can be calculated by postprocessor. The addresses of the
top of blocks is recorded by a rule for the top of block, which is described
below.

(f) if it is a non-local forward branch, output the code which writes the instruction
opcode of branch, with a dummy operand. Then, record that when the process
reaches the top of the target block, it should output the code which overwrites
the dummy operand, whose location is determined by the in-block offset of
the branch instruction and the block number of it, by the value calculated as
same as those of backward branch.

4. At the top of each basic block, output the code that records the current absolute ad-
dress in the output bytecode into array, and also output the codes which is recorded
by the rule of forward branch.

5. Output the code which appends the entries into the exception table of current
method. The addresses in the entries of original exception table is converted to
a pair of basic block and in-block offset, and output is generated by the offset and
the absolute address of the block top recorded by the above rule.

49

7�
��
 ��
 ,,
�+���
�!#

9. 8@ 99 9>)% �P'&AKA)$ S> /7�
��
 ��
 ,,
-!#0

6. 6K)&A�F',-

<. 84 99 9? ='A&AKA)$ S? /*���
 ��������L���
&
���+ ��
0

?. -8)I�KJ,-

@. 9>)$�%&A,6

B. K< 99 9B ��,)$7LI' -@

-4. 8@ 99 9>)% �P'&AKA)$ S> /7�
��
 ��
 ,,
-!#0

-�. K? 99 9< =�A� -B

-@. 9<)$�%&A,9

-B. 8> 99 9@)% �P')FAMKI S@ /7�
��
 ���
 ����
��!��
#0

44. 8- ��
���

Figure A.1: An example of the input to the postprocessor

Operations needed for each instruction at code generation time is some of emitting
few bytes to array, recording current pointer to an array, calculates offset by at most
2 additions/subtracts and emit it, and consults the constant pool generator and emit the
returned index. All of these operations, except for constant pool operation, is very simple.

A use of the longest form of an instruction makes the bytecode longer. At the worst
case, one-byte instruction is expanded to four bytes. However, as the output bytecode is
finally becomes an input of JIT compiler, the difference between short and long forms of
the same-meaning instruction does not have an impact for execution speed at all, I guess.

For example, the byte code sequence of an template generated from a statement spec-
ification

�/0� ��
 � 3 ��-!#� &	�
�+���
�����
��!!� 0 6# 5 ��- . 9#� �

is shown in Figure A.1. Two boxed)% �P'&AKA)$ instructions are the embed points. The
F'AMF% instruction at address 22 is removed before processing. There is two basic blocks
in the stream, ranges 3–11 and 15–21. After removing “specific pattern” for embedding,
and expanding local variable instructions of short form, the code will become one shown
in Figure A.2. In this code, an address of instruction is written as an offset to the block
top, and constant entry indices are removed. There are two kinds of branches in the
program: the)*,)$7LI' is inter-block branch, and =�A� is intra-block branch. Two
variable indices are underlined in the figure.

50

7�
��
 ��
 ,,
�+���
�!#

Embed: ��-

Block 0:
9. $< 6> 99 9- R)J')&A�F' T-

<. 84 55 55 ='A&AKA)$ S5 /*���
 ��������L���
&
���+ ��
0

?. $< 44 99 9- R)J')I�KJ T-

--. 9>)$�%&A,6

-4. K< 55 55)*,)$7LI' CBlock 1.6D
Embed: ��-

Block 1:
9. K? 99 9< =�A� <

6. 9<)$�%&A,9

<. 8> 55 55)% �P')FAMKI S5 /7�
��
 ���
 ����
��!��
#0

Figure A.2: An example of the intermediate code sequence

From the code in Figure A.2, the code generator shown in Figure A.3 will be gener-
ated. In the figure, variables and methods which are not defined explicitly in the code is
used for explanation only. For each instructions its opcode or operand bytes are shown
in Figure A.2, simple assignment for the array �	
���
� is generated. local variable
instructions are also directly emitted, but its operand is added with ,,����
.

For the inter-block branch in the offset 12 of block 0, two bytes are left unfilled at
the first emission at line 15, and then back-patched at the top of Block 1, lines 20–22.
Intra-block branch at the offset 0 of Block 1 is simply emitted verbatimly at lines 24–25.

A.3 Constant pool generator

An constant pool is shared by all methods in a class, and therefore by all class specifica-
tions in a class. In addition, two constant pools have usually common entries in it, such
as “����;����;�����
”. Therefore, simply appending constant pools in the templates,
with index shifting like those of local variables, may result in too large constant tables.
For this reason, I decide that the code generator should generate a constant pool in which
the duplicated entries are unified. The constant pool generator will have a hash table in
it, and the each entries in the hash table records a constant index for each constant types,
such as UTF8-string, class name, method name, etc. If an class name entry is requested,

51

 �� (���
���#�
������'�������1 ��1 ����� 44 -�'��
5
6 '�������+7, (��� 44 8���� 7
9
: � '�������+��00, (7��9� '�������+��00, (7�6;�
; ����� � (
 0 �����$��
< '�������+��00, (� 4 5:;� '�������+��00, (� = 5:;�� 44 7)�.*>-
? � '�������+��00, (7�85�
@ ����� � ('���A�����$����� "���4��4B��
������� 1 ��� ��

7 '�������+��00, (� 4 5:;� '�������+��00, (� = 5:;�� 44 9 C-.�.	.)�

 � '�������+��00, (7��9� '�������+��00, (7�55�

5 ����� � (
 0 �����$��

6 '�������+��00, (� 4 5:;� '�������+��00, (� = 5:;�� 44 <)&*	D

9 � '�������+��00, (7�7;� � 44

)�*E�.�6

: � '�������+��00, (7�	9� �� 0(5� � 44
5)F�)��B&-

;

< �� (���
���#�
������'�������1 ��1 ����� 44 -�'��

?

@ '�������+
, (��� 44 8����

57 � ����� � (�� G '�������+7, 0 9 G
5�
5
 �
� � ('�������+7, 0
6�
55 '�������+�, (� 4 5:;� '�������+�0
, (� = 5:;�� 44 '��������
5
56
59 � '�������+��00, (7�	<�
5: '�������+��00, (7�77� '�������+��00, (7�79� � 44 7 C*.*
5; � '�������+��00, (7�79� � 44 6)�*E�.�7
5< � '�������+��00, (7�8;�
5? ����� � ('���A������������ "���4��4B��
������� 1 ���
��
 1 �)�! ��
5@ '�������+��00, (� 4 5:;� '�������+��00, (� = 5:;�� 44 9)E!*H-!)>.I	&
67 �����
 ���

Figure A.3: Generated code generator

52

for example, an hash table entry for given string is searched. If it is not yet in the table,
an entry is created, and UTF8-entry is emitted to the byte stream of constant pool, and
its index is recorded. Next, if the entry already has a index for class entry, it is returned.
Otherwise, an class entry is emitted to the byte stream and the index of it is returned.

53

References

[1] Per Bothner. Kawa—compiling dynamic languages to the Java VM. In USENIX,
New Orleans, June 1998.

[2] Charles Consel and François Noël. A general approach for run-time specialization
and its application to C. In Proceedings of the ACM Symposium on Principles of
Programming Languages (POPL ’96), pages 145–156, St. Petersburg Beach, FL,
USA, January 1996.

[3] James W. Cooley and John W. Tukey. An algorithm for the machine computation
of the complex Fourier series. athematics of Computation, 19:297–301, 1965.

[4] Markus Dahm. Byte code engineering with the JavaClass API. Technical Report
B-17-98, Institut für Infomatik, Freie Universität Berlin, 7 July 1998.

[5] Pierre Duhamel and Martin Vetterli. Fast Fourier transforms: A tutorial review and
a state of the art. Signal Processing, 19(4):259–299, April 1990.

[6] Dawson R. Engler. VCODE: A retargetable, extensive, very fast dynamic code gen-
eration system. In Proceedings of the ACM SIGPLAN ’96 Conference on Program-
ming Language Design and Implementation (PLDI), pages 160–170, Philadelphia,
PA, USA, May 1996.

[7] Matteo Frigo. A fast Fourier tranform compiler. In Proceedings of the ACM
SIGPLAN ’99 Conference on Programming Language Design and Implementation
(PLDI), pages 169–180, Atlanta, GA USA, May 1999.

[8] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Speci-
fication. Addison-Wesley, second edition, 2000.

[9] Masatomo Hashimoto and Akinori Yonezawa. MobileML: A programming lan-
guage for mobile computation. In Proceedings of the 4th International Conference

54

on Coordination Languages and Models (COORDINATION 2000), number 1906 in
Lecture Notes in Computer Science, pages 198–215. Springer-Verlag, 2000.

[10] Yuuji Ichisugi. Epp homepage. �

�.;;�����
�������;U���;.

[11] Hidehiko Masuhara and Akinori Yonezawa. Run-time bytecode specialization: A
portable approach to generating optimized specialized code. In Olivier Danvy and
Andrzej Filinski, editors, Second Symposium on Programs as Data Objects (PADO
II), In Lecture Notes in Computer Science. Springer-Verlag, Aarhus, Denmark, May
2001. To appear.

[12] François Noël, Luke Hornof, Charles Consel, and Julia L. Lawall. Automatic,
template-based run-time specialization: Implementation and experimental study.
In Proceedings of the International Conference on Computer Languages, Chicago,
May 1998.

[13] Massimiliano Poletto, Wilson C. Hsieh, Dawson R. Engler, and M. Frans Kaashoek.
‘C and tcc: A language and compiler for dynamic code generation. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 21(2):324–367, March
1999.

[14] Philip Wickline, Peter Lee, and Frank Pfenning. Run-time code generation and
modal-ML. In the ACM SIGPLAN ’98 Conference on Programming Language De-
sign and Implementation (PLDI), pages 224–235, 1998.

55

