
EXTENDING JAVA VIRTUAL MACHINE

TO IMPROVE PERFORMANCE OF

DYNAMICALLY-TYPED LANGUAGES

動的型付き言語の効率向上のための
Java 仮想マシンの拡張

by

Yutaka Oiwa

大岩 寛

A Senior Thesis

卒業論文

Submitted to

the Department of Information Science

the Faculty of Science

the University of Tokyo

on February 16, 1999

in Partial Fulfillment of the Requirements
for the Degree of Bachelor of Science

Thesis Supervisor: Akinori Yonezawa 米澤 明憲
Professor of Information Science

ABSTRACT

Java virtual machine (JVM) is a widely-used code execution environment which does
not depend on any architecture, and it is recently used not only with Java language
but also with other languages such as Scheme and ML. On JVM, however, all values
are statically-typed as either immediate or reference, and its consistency is verified
before execution to prove that invalid memory access will never happen. This property
sometimes makes implementation of other languages on JVM inefficient. In particular,
implementation of dynamically-typed language is very inefficient because all possible
values including frequently-used ones such as integers must be represented by instances
of a class.

In this thesis, I extended the JVM by conversions between references and integers
and by runtime legality check of the references, without modifying the instruction set.
This makes implementation of dynamically-typed language on JVM more efficient,
without breaking both binary-compatibility of existing bytecode and safety from in-
valid memory accesses. I also modified an existing Scheme implementation to use this
extension and got about 93% reduction in calculation time of integer recursive func-
tions. Performance penalty for existing code is currently from 0% to about 20% and
can be removed by static type information.

論文要旨

Java virtual machine (JVM) は、広く使われているアーキテクチャに依存しないコー
ド実行環境であり、Java だけではなく、最近では Scheme や ML など他の言語の実行
環境としても用いられるようになってきている。しかしながら、JVM は実行中に現れ
るすべての値について静的に整数型と参照型などの区別を決定し、その制約が守られて

いることを実行前に検証することにより実行時に不正なメモリアクセスが生じないこと

を保証しているので、他の言語を JVM 上にコンパイルすると非効率的なコードになる
ことがある。特に、型が実行時に動的に定まるような言語では、整数型など頻繁に使わ

れる型についても JVM 上のオブジェクトとして実装する必要があり、整数型の演算の
度に実行時にメモリの確保などを伴い効率が著しく悪くなる。

この論文では、JVM の命令セットを変更することなく、セマンティクスのみを拡張
し、参照型と整数の相互変換と、参照型に対する動的な正当性チェックを導入する。こ

れにより、既存の Java のバイナリコードとの互換性と、JVM の持つ実行時に不正アク
セスを起こさない特性を保ちつつ、動的型を持つ言語の効率の良い実装が可能となる。

また、この拡張を用いて、既存の Scheme の処理系を改良し、整数演算のみからなる帰
納関数の計算において 93% 程度の実行時間の減少を得た。また、既存のコードにかか
るオーバーヘッドは、現状では 0% から 20% 程度であり、これは静的な型情報を利用
することでさらに改善できる。

Acknowledgements

I am very grateful to my thesis supervisor Akinori Yonezawa. I also express my
gratitude to Dr. Kenjiro Taura for his many helpful advices. I would like to thank
all members of Yonezawa Laboratory and Kobayashi Laboratory for valuable daily
discussions.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Dynamic type and static type . 2
1.3 Motivation — handling dynamic type 2
1.4 Outline of the thesis . 4

2 Extending Java virtual machine with descriptor 5

2.1 Introducing descriptor . 5
2.2 Coercing descriptor to reference . 6
2.3 Representation of descriptors on Java bytecode 7
2.4 Garbage Collector . 8
2.5 Array handling . 9
2.6 Safety . 10

2.6.1 About type safety . 10
2.6.2 Higher order security . 11

2.7 Required modification to implement descriptor extension 11

3 Implementing descriptor extension 13
3.1 Implemented features . 13
3.2 Object management and garbage collector 14
3.3 Modified instructions . 15
3.4 Modification for Java library . 15

4 Implementing Scheme with descriptor extension 16

4.1 Representation of Scheme value . 16
4.2 Modification for procedure interface 16
4.3 Changes for compiler, etc. 18

5 Experiments 19

5.1 Performance on Scheme code . 19
5.2 Performance on existing Java code . 19

i

6 Related work 22

7 Conclusion and future work 23

A Example output code produced by extended Kawa compiler 25

ii

List of Tables

1.1 tagging scheme used in SCM . 3

5.1 Performance improvement of Kawa Scheme with the descriptor extension 20
5.2 Performance penalty for existing Java code with the descriptor extension 21

iii

List of Figures

1.1 Expression of dynamic type on Java language 3
1.2 Handling Scheme values with boxed object 4

2.1 Example code which cause type error on existing JVM 6
2.2 Helper functions to handle descriptors 8
2.3 Example code which needs dynamic type check of array 10

iv

Chapter 1

Introduction

1.1 Background

Java virtual machine (JVM) [7] is a widely-used, machine-independent code execution
environment. It reads sequence of virtual machine instructions called bytecode from
file or through user-supplied routine, and execute it with compilation or interpreta-
tion. The JVM is designed as stack-based virtual machine, and each instruction takes
some operands from the top of operand stack and sometimes takes some from instruc-
tion code. I name the latter instruction operand. All instructions of JVM are typed
statically except for those of simple stack manipulation. The conformance for these
type restrictions are checked when the code is loaded, and the program which does not
conform to it are rejected before execution. This ensures that all instructions receive
the operands which has presumed type, and that references are created only from ref-
erence constants without runtime check. To reduce the performance overhead which is
caused from interpretation without explicit preparation, many JVM software compiles
bytecode on the first time the method is called. This technique is called Just-in-time
Compilation (JIT). JIT performs register allocation for the stack of virtual machine
so that overhead from stack-based execution model is reduced.

Although JVM is designed mainly for supporting Java language [4], as well-tuned
softwares for JVM develops, it is used with languages other than Java languages. For
example, Kawa Scheme [3], which used for basis of this experiments, is the execution
system for Scheme language [6], and Persimmon MLJ [2] is those for ML language.
These systems produce JVM bytecodes directly, without through Java language source
code.

1

1.2 Dynamic type and static type

Programming languages can be categorized to three groups. The first group is dynamically-
typed languages. On these languages, variables has no type associated and accepts any
type of values to be stored. Also, these types are disjoint any value have only one type.
Most Lisp dialects, Perl, Python, Ruby are in this group. This kind of language need
runtime check for type error, which is difficult for low-level language.

The second group is statically-typed language. In these languages, all variables
have type associated before execution, which is called static type. Program can not
use one variable for more than two type of unboxed object. The languages falls into
this category are Java and ML. Seen as language, JVM’s instruction set is also in
this group. Languages in this group is executable as same as untyped language once
consistency of static type is checked. This is one of the major reasons why JVM
employs static type.

The last group is untyped or loosely-statically-typed language. Native machine
language for most CPUs are typical untyped language. It shares same register to both
integer and pointers. Languages like C and C++ are statically-typed in basis, but its
reason is not for keep type-independency but only for programmer’s ease, and coercion
between reference and integers is allows. In both cases, type is not determinable from
the value and keeping type consistency is programs’ responsibility and system does
not care about it.

1.3 Motivation — handling dynamic type

To implement dynamically-typed language, programmer have to construct some dy-
namic type identification mechanism. In the implementation, frequently used values
such as integers must have efficient representation for faster execution. Systems for
Lisp language dialects usually use “tagging” to achieve this on loosely-typed C lan-
guage. Tagging assumes some invariants for reference and use the values which does
not meet the invariants for immediate values. In most case, the invariants is that
references are aligned to the address which is multiple of 4 or 8. For example, Ruby
interpreter uses all odd integers to represent Ruby’s integers. Also, SCM Scheme in-
terpreter [5] categorize the machine-native integer as shown in Figure 1.1 and use each
for specified types.

However, because JVM is statically-typed language, system does not permit to
operate on the value of reference. Therefore, tagging technique cannot be used on
JVM. Program (b) in Figure 1.1 is sample program which is not accepted by JVM’s
type system. In this case, immediate values must be expressed by temporal boxed
object. For example, in Program (c) of Figure 1.1 temporal integer object is created
by new operator in line 2.

2

type pattern for LSB

integer 10

character 11110100

special constants 101110100

symbol 001110100

special symbols 00 ID 100

location 11111100

cell reference 000

Table 1.1: tagging scheme used in SCM

(a) Scheme program with dynamic type
1: (define a ’(x . y)) ; define variable and store a reference into it
2: (set! a 5) ; store integer into a

(b) invalid Java program translated from (a)
1: Object a = new ConsCell("x", "y");

2: a = (Object) 5; // invalid operation

(c) valid Java program which expresses the operation of (a)
1: Object a = new ConsCell("x", "y");

2: a = new Integer(5); // box integer into object

Figure 1.1: Expression of dynamic type on Java language

In this solution, numerical operation cannot be performed directly. The operations
are performed as follows:

1. take contained values off from the object

2. perform numerical operation

3. allocate new object and store the result into it

The example code for this operation is shown in Figure 1.2. In these three steps, the
final step is problematic. It makes huge numbers of objects allocated throughout the
execution. Generally the execution cost of memory allocation is significantly larger
than simple operations such as integer addition. In addition to this, this makes many

3

Original program is: (set! c (+ a b)).

1: void function(Object a, Object b) {

2: int a_value = (Integer)a.intValue();

3: int b_value = (Integer)b.intValue();

4: c = new Integer(a_value + b_value);

5: }

Figure 1.2: Handling Scheme values with boxed object

objects discarded which have to be collected by the garbage collection. This causes
garbage collection frequently. Both slows the execution of program in a large scale.

To solve the problem above, I extend JVM to handle new type which can be used
to handle both integers and references, and to handle integer operations as immediate
value provided that other reference values can also be handled. I also implements
those extensions on existing systems Kaffe JVM and Kawa Scheme and evaluates the
performance improvement.

1.4 Outline of the thesis

This thesis is constructed by four parts. Firstly, chapter 2 discuss the extension to JVM
specification which I propose. In this chapter, I explain the extension in the sections
from 2.1 to 2.5. Also, I discuss about the safety of this extension in section 2.6.
Secondly, I explain the implementation which I have done for experimentation in
chapters 3 and 4. The former describes the extension to JVM, and the latter describes
the extension to a Scheme environment. Experiment on this extension is done at
chapter 5. In this chapter I evaluate the implementation by measuring the execution
time for existing test programs. The last part is conclusions and review for related
work, in chapters 6 and 7.

4

Chapter 2

Extending Java virtual

machine with descriptor

As discussed in previous chapter, the goal of my extension is to implement dynamically-
typed languages efficiently on JVM. To this goal, I loosen type restrictions on JVM
and introduce new type which accepts both integers and object references to be stored,
provided that invalid memory access through the references is kept to be forbidden.

Another goal of this extension is compatibility with existing virtual machine. Any
existing binary codes for JVM should be running well on the extended virtual machine,
and changes to the JVM implementation should be small. To hit this objective, I
decided not to extend the instruction set of JVM, but only change the semantics of
the instructions. Implementation is done on the Kaffe version 1.0.b3.

The brief summary of this extension is:

1. Introduce descriptor, the super-type of integer and references

2. Introduce execution-time check at the coercion from descriptor to reference

3. Forbid memory access through descriptors

4. Define the representation of descriptor on Java bytecode

5. Extend garbage collector to handle descriptors

I discuss detail of the extension in following sections.

2.1 Introducing descriptor

On JVM, all locations such as operand stack and local variables have static type. The
consistency between static type of the location and the value type which is stored in the
location is check by verifier using flow analysis. For example, on program in figure 2.1,

5

(Assume that a boolean value is stored in local variable #1)
0: iload_1 Get value from local variable #1 to the stack top
1: ifeq 4 Go to line 4 if stack top is 0 (false)
2: iconst_1 Push integer constant 1 to the stack top
3: goto 5 Go to line 5
4: aconst_null Push constant reference null to the stack top
5:

Figure 2.1: Example code which cause type error on existing JVM

type error is detected on line 5. This program has two flows 0 → 1 → 2 → 3 → 5
and 0 → 1 → 4 → 5 depending on a result of the branch on line 1. The value
on the top of the operand stack at line 5 cannot have any static type, because it is
integer 1 in the former flow and is reference null in the latter flow. Through bytecode
verification, original JVM prevents invalid reference to be generated, and guarantees
that the reference always points some valid object except for null.

In this thesis, I introduce descriptor as the super-type of integer type and all refer-
ence type. Descriptors have 32bit significance and can be used to integer arithmetics.
In addition, descriptors can be coerced to reference using the instructions INSTANCEOF
and CHECKCAST. Other reference operations, such as virtual function invocation and
memory access are not defined on descriptors. With this extension, The stack-top
value at line 5 on figure 2.1 has the descriptor type.

In the real use of descriptor extension, some values guaranteed never to reference
no object is needed, e.g. for tagging in chapter 1. To satisfy this demand, I restrict
that reference always coerce to the descriptor which is multiple of 4.

2.2 Coercing descriptor to reference

In this section, I discuss about the operation on the coercion from a descriptor to a
reference. To coerce a descriptor to reference, CHECKCAST instruction is needed as same
as to coerce some reference to reference of its superclass. CHECKCAST instruction takes
class type as an instruction operand and check whether the reference at the stack top
points an object of some subclass of specified class. The verifier in JVM assumes the
stack-top reference has a reference type to specified class after CHECKCAST instruction.
I extend CHECKCAST instruction to accept descriptor as the stack-top value and check
whether the descriptor points to valid object and its type is the subclass of specified
class.

The INSTANCEOF instruction is similar to CHECKCAST. This instruction is used to
implement instanceof operator in Java language. INSTANCEOF checks the dynamic

6

type of stack-top value just like CHECKCAST, and replace stack-top reference with the
boolean value which shows whether the coercion is available of not.1 I also extend
INSTANCEOF instruction to handle descriptor.

Many existing JVM assume that references are either null or pointing valid Java
object. With this assumption runtime type check can be simply done by checking the
pointer to virtual function table contained in the object. This method, however, cannot
be applied to descriptor because the assumption is false for descriptor. Descriptors
must be checked first whether they point to valid object.

Because this additional existence check works properly even when it is applied to
references, implementations applying this check to all CHECKCAST instructions is still
proper. However, in those implementations execution performance is lost. To keep
performance to existing Java code, this check should be omitted for values which are
known to be references.

We can use static type information available from verifier stage to solve this prob-
lem. If the stack-top operand of some CHECKCAST instructions have descriptor as its
static type, verifier marks these instructions to notify that existence check is needed.
Just-in-time code generator (JIT) or bytecode interpreter can change the operation of
CHECKCAST instructions which is marked by the verifier. One way to do this is to add
new virtual instruction CHECKCAST DESC internally. This instruction is never appear
in bytecode, and only generated through verification stage. The bytecode verifier re-
places CHECKCAST instructions with this instruction is it is applied to descriptor. This
simplifies JIT and interpreters, and also needs no additional memory space. How-
ever, this functionality is not yet implemented because the verifier in Kaffe 1.0.b3 is
incomplete and cannot deriver informations needed for this technique.

2.3 Representation of descriptors on Java bytecode

With extensions already described in past section, descriptors can be used inside one
function. However, to use descriptor effectively, it should be usable beyond the function
regions; it should be used for function arguments and return values; and it should be
stored inside other data structures. To achieve this, descriptor type must have some
representation on the Java bytecode syntax. This representation should:

1. be distinguishable from either integers and references, to diminish dynamic ex-
istence checks.

2. reflect the one-way convertibleness between descriptors and references

3. reflect that memory access through descriptor is invalid

1These two instruction differ in the handling of null reference, but this difference is not essential
for this extension.

7

public static native java.lang.Descriptor makeDescriptor(int);

public static native int getDescriptor(java.lang.Descriptor);

Figure 2.2: Helper functions to handle descriptors

I define a virtual superclass of java.lang.Object class as the representation of de-
scriptor. This is named java.lang.Descriptor and has only two static member func-
tions described later. Java.lang.Object is changed to be a subclass of java.lang.Descriptor.

Because this representation reflect the convertibleness between descriptors and ref-
erences, those coercion can be expressed naturally on Java language. Existing Java
compiler can detect the location where the CHECKCAST instructions are needed. How-
ever, with this representation coercion between descriptors and integers cannot be
written by existing Java language. To solve this problem, two helper functions in
figure 2.2 are defined. These are effectively a simple identity function but changes its
type between descriptor and integer for Java language.

This representation has one more important property. This virtual class has no
instance functions and instance variables. Because of this, invalid code which access
memory through descriptors is never produced from Java language compilers. This
makes those invalid memory access detectable at compiler stage, to make debug easier.

There is no special representation for descriptor constants, both in the program and
in the initial value of variables. For program constants, descriptor can be represented
simply by integer constants or reference constants. For initial values, In JVM they are
represented as program in special initializer function and fall into former case.

In current implementation, I use java.lang.Object as descriptor representation
to make changes to Kaffe smaller. This makes some unnecessary problem which is
described in later section.

2.4 Garbage Collector

Garbage Collector (GC) walks and marks all active references in JVM recursively to
find all object not pointed by any reference and collect their memory regions for later
reuse. Handling of descriptor on GC is ideally desired that object pointed by descriptor
is marked if the descriptor currently holds reference, not an integer. However, because
descriptor can hold any integers, it is unable to decide which a descriptor currently
holds reference or integer perfectly. In fact, not collecting memory region not pointed
by any reference is non-desirable but acceptable, though collecting memory region
pointed by reference is unacceptable and non-desirable. Therefore, any object which
seems to be pointed by descriptor is temporally marked and not collected. This is
called conservative GC technique.

8

In general, changing normal GC into conservative GC is difficult, because it is
hard to know whether some memory space is object or not. However, in the case of
JVM, conservative GC is generally needed even without this extension. This is caused
by the properties which JVM’s operand stacks and local variable frame have. Each
of these locations may be shared by more than two variables with different types,
provided that type inconsistency is not caused under all control flow. Types of those
are not determinable even if the function currently executing is known, and therefore
conservative GC is required. This is the one of the reason that I suppose conservative
GC is acceptable.

Some GC routines performs more complex operation to achieve better performance.
Because GC have information about all alive objects and references, when an object
is moved, GC can repair all reference to the moved object properly. This can be
used to gather unallocated memory regions to one continuous area and to improve
memory allocation performance. Copying GC is one of the algorithms which uses this
property. However, if some object is referenced by descriptor, object cannot be moved.
Otherwise, if referencing descriptor is used as reference in future, this value must be
rewritten to point new location, but if the descriptor is used as integer in future, the
value must not rewritten anyway. These two situations are not determinable from GC
and the operation is exclusive. To conclude, an object which is referenced from at
least one descriptor must not moved from existing location. Researches for copying
GC with those untrusted references are mentioned in other places[1]. In this thesis,
this problem is not mentioned any more because the GC routine in Kaffe is Mark &
Sweep method and does not move object anyway.

2.5 Array handling

On JVM, array of references have transitional properties as same as those of simple
references in the sense of coercion. For example shown in figure 2.3, reference to an
array of Strings can be stored to a variable whose type is an array of Objects. This
makes that reference to the object of some type cannot simply stored into the a array
which is pointed by a reference to an array of the that class. In the above example,
if an reference to Integer is stored into a array through the reference to an array of
Objects which actually points an array of Strings, and if the array is also pointed by
another reference whose type is an array to Strings, user can later get the reference
stored as an reference to String, which is a violation of type restriction. To prevent
this to happen, JVM dynamically check the type of reference against the dynamic type
of the array in store time.

If the system forbids assignments of a reference to an array of descriptors into
an variable with type of array of descriptor, invalid reference will never created with

9

{

Integer ip = new Integer(0);

String[] as = new String[1];

Object[] ao = as; This is valid
ao[0] = ip; If this is allowed,
String s = as[0]; this get an reference ip as String

}

Figure 2.3: Example code which needs dynamic type check of array

array handling. This solution is restrictive, but simple and complete. Otherwise,
system can allow such assignments with object existence check at runtime. In this
approach, existence check is required when both two conditions are met:

1. static type of a reference to the array is array of descriptor, in according with
type inducted at verifier stage.

2. dynamic type of the array, to which value is to stored, is an array of object.

Although second condition is only determinable on runtime, first one is fully deter-
minable at verifier stage. Therefore, verifier can limit this check to the instructions
which meet the first conditions, in the way same as CHECKCAST and INSTANCEOF in-
structions.

2.6 Safety

2.6.1 About type safety

Type safety of references is very important to guarantee the safety of JVM. JVM
assumes that any codes which passes the verifier does not make any reference which
does not point to any object, and that any object pointed by the reference is an
instance of some sub-class of the reference’s type. If this assumption fails, safety is
completely compromised and user may perform any operation which is invalid to do.
To proof the type safety of references before execution, JVM must check following
conditions statically.

1. For each instructions, depth of the stack is always same, independent from exe-
cution path.

2. For each instructions, the types of operands on the stack must be subtype of the
types of the instructions accepts.

3. All (static/dynamic) member of some class must typed statically to one type.

10

4. For each local locations such as stack or local variables, it stored value is used
at some instruction as some type, it must be stored as some subtype of the type
in all execution path which reaches the instruction.

If these conditions are met, all operands of all instruction in the bytecode properly
have the type which the instruction accept.

The descriptor extension breaks the separation between integers and references
which the original JVM assumes. Therefore, I extend the type system for the de-
scriptors and assure that all references are either (1) proved to be valid reference, in
the way the verifier of original JVM does; or (2) constructed from descriptor and its
validity is checked explicitly with CHECKCAST instruction.

2.6.2 Higher order security

Although type safety is most important part of JVM’s security, not all security can
be saved with it. There is aspects of security such as information privacy, which is
more higher aspects than type safety. This extension assures the proper execution of
bytecode and keeps the world outside JVM safe from attack, but data which is inside
JVM is not secured. User can guess the address of the secret object as integer and
cast it to reference through descriptor. Also, any class object may be acquired in
the same way, so that some secret class may be accessible through Reflection API of
JVM 1.1. This problem is exist when more than one programs are running on same
Virtual Machine (including system tasks implemented in Java or JVM language), for
example on AWT, applets, and mobile agents.

To solve this, I guess that some access managements is needed. Further detailed
work is needed for this problem, but I propose one possible solution. We can parti-
tioning each program apart into each “execution region”, and add the identification of
execution region to all objects it allocates. When some program is to coerce descrip-
tor to reference, matching of identification is checked in addition to existence check
and type check. In my opinion, this check is not needed for other instructions, since
ordinary operations on references are already safe to this attack.

2.7 Required modification to implement descriptor

extension

One property for extension which I regard as important is ease of implementation.
This extension is carefully designed to keep modification to existing system smaller
and easier. Required work for implementing this extension on usual existing JVM is
as follows:

1. implement some object identify mechanism for existence check (see section 2.2)

11

2. modify GC to handle descriptor correctly (see section 2.4)

3. modify CHECKCAST instruction handler to check object existence

4. modify array store handler to accept descriptor as an operand

5. add primitive Descriptor type and support methods (see section 2.3)

6. modify verifier to analyze data flow of descriptors

I suppose these modifications are not too hard to implement on any existing JVM
systems.

12

Chapter 3

Implementing descriptor

extension

In this chapter I express the implementation for the descriptor extension. I imple-
mented subset of the extension on Kaffe 1.0.b3.

3.1 Implemented features

In my implementation, because verifier of Kaffe 1.0.b3 is incomplete, I have not mod-
ified the verifier.1 In addition to this, in spite of the discussion in section 2.3, to
minimize the modification to Kaffe and Kawa Scheme in test phase, current imple-
mentation uses existing java.lang.Object class as the representation of descriptors.
This makes following additional changes essential:

1. Because virtual method invocation through the reference of type java.lang.Object,
additional runtime check of object existence is needed to be inserted before those
invocations by JIT.

2. Special handling for the array of java.lang.Object is needed.

3. All native methods which takes Java.lang.Object as arguments needed to be
modified.

4. Checks for object existence is needed for value of frequently-used java.lang.Object

at GC and CHECKCAST.

Especially, 3. makes modification for the system very huge. Currently, I bypassed such
methods temporally, but for type safeness this can not be neglected. In addition to this,
existence check introduced by 1. and 4. slows execution of existing Java code, which is

1Of course, this shows that Kaffe 1.0.b3 is not type-safe.

13

shown later. Knowledge about these problems are acquired through experiment, and
to resolve these, I decided to implement complete part of the extension described in
this thesis in near future.

3.2 Object management and garbage collector

To implement the extension, system firstly must be able to know whether pointer
is referring some object or not, and it is difficult for general languages. However, as
described in the section 2.4, it is likely for JVM to have the way to perform similar tests,
and therefore this requirement is not too unrealistic. In Kaffe, memory management
routines keep track of the address and usage of all allocated memory including objects,
and system can determine the usage of memory blocks only from memory location
address. In my implementation object existence check is performed in three step:

1. Check whether reference points the top of the some allocated memory block
actually

2. Check the memory block found is currently marked in use

3. Check recored usage of the memory block is one of four types which is correct
Java object type, out of eighteen

First two step is already implemented for conservative GC, and only the last step is
implemented additionally. If and only if these three conditions are met, some object
is at the location pointed by the reference.

Secondly, garbage collector must be able to handle descriptor like conservative GC.
Because of the reason described in section 2.4, Kaffe’s original GC routine walks Java
operand stack with conservative GC technique, and therefore no change is required
for descriptor extension and operand stack. On the other hand, Kaffe does not per-
form conservative GC on class instances. Once the type of the object is determined
from virtual function table pointer, locations where references are exist in the object
memory space is fixed. Kaffe keeps track of this information in the class information
structures. During class loading, Kaffe copies the bitmap from the class information
of its superclass and construct it for the additional members which is not inherited
from superclass.

With my extension, conservative GC is needed for descriptor member. I created
second bitmap in class information, which records whether each member is descriptor
or not. Combined with first bitmap, these bitmap keeps 2 bits of information for each
member. Descriptor member have 1 for corresponding position of both bitmap, and
Reference have 1 in only original bitmap. Immediate members such as integers and
booleans have 0 in both. Action of the garbage collector is defined as follows:

14

(0-0): value is a immediate GC ignores this value.

(0-1): value is a reference GC marks and traces the object referred by this refer-
ence without any dynamic checking.

(1-1): value is a descriptor GC first checks object existence and marks only if ob-
ject is exist there.

3.3 Modified instructions

Modification for JIT is needed for four instructions. First two is CHECKCAST and
INSTANCEOF. These two functions are implemented as C routine in Kaffe and JIT emits
function call in output native code for these instruction. Therefore, modification for
these instructions are done at C-language level. I added object existence check for the
routine of both instructions. If check fails, INSTANCEOF simply returns 0 and return to
JIT-generated code. For the failure case of CHECKCAST instruction, I generate special
diagnostic message and throws new ClassCastException object.

Next one is for AASTORE. This instruction stores reference (or descriptor) into array,
and implemented in C language also. In my extended implementation, class check is
bypassed when dynamic type of the array is Object. Because class check required
by JVM specification is done by using same routine as INSTANCEOF, modification for
object existence check is already done.

Last one is for INVOKEVIRTUAL. This instruction is processed by JIT level and
no corresponding C language routine which is called in execution time is not exist.
Extended implementation inserts native code for CHECKCAST instruction in JIT time
if called method is of Object class.

3.4 Modification for Java library

Support functions described in section 2.3 is added. In this implementation these
routines are added to class java.lang.Object. I added the prototype definition for
the source code of Java library and compiled it into .class file. Substance for these
method is in dynamically-linked library (DLL) and linked dynamically by name iden-
tification. I added small two identity function to DLL.

15

Chapter 4

Implementing Scheme with

descriptor extension

Kawa Scheme is the almost-full-featured Scheme implementation on the JVM. Kawa
have closure compiler and Scheme closures are compiled into Java bytecode at defini-
tion time to provide fast execution. The compiler in Kawa produces JVM instructions
directly, which is fully JVM specification compliant. I extend this system with de-
scriptor extension and solved the problem mentioned in Section 1.3.

4.1 Representation of Scheme value

In my new implementation, Scheme’s values are represented as descriptor. Signed
integers which can be represented by 30bit are called fixnum and represented as de-
scriptor coerces from integer. Its encoding is 4n +1 for integer n, which is always odd
number. Other objects such as cons cells, vectors, big numbers etc. are represented
as boxed objects (as same as original Kawa Scheme) and handled by the descriptors
coerced from the references. By the encoding of fixnums and the rule described in
section 2.1, those two groups of descriptors are easily determinable by checking least
significant two bits of the descriptor.

4.2 Modification for procedure interface

In Kawa scheme, all procedures are represented as an instance which is subclass of
kawa.lang.Procedure. Most procedure have corresponding class in which actual
job is defined as method. JVM does not have first-class functions, but this tech-
nique emulates the first-class functions in small cost and with extendibility. The class
kawa.lang.Procedure have six abstract method, from apply0 to apply4 for invoca-
tion with each 0 to 4 arguments, and applyN for call with any number of arguments.

16

Compiled code calls specific routine for pre-determined number of arguments for ef-
ficiency, and interpreter calls applyN for generality. To make implementation easier,
some glue classes are defined and mediation between those functions are done auto-
matically. For example, kawa.lang.Procedure2 class have only one abstract method
apply2, and apply{0,1,3,4} are defined to generate runtime error. applyN is defined
to first check number of the arguments and then calls apply2 only if just 2 arguments
are given. All two-argument procedures are defined by inheriting Procedure2 and
defines own apply2 routines.

I extend this interface to keep interchangeability in some extent and use descriptors
effectively. I first defined helper function which converts descriptor-expressed integer
into original-compatible boxed object. I then defined more six interfaces dapplyX

(X is one of {0,1,2,3,4,N}) in Procedure class. In Procedure class these meth-
ods are defined that they converts all arguments with the helper function and the
calls corresponding applyX with converted arguments. Results are back-converted to
descriptor representation. Then I define new interface DProcedure (Descriptor Pro-
cedure) which is subclass of Procedure. It has dapplyX as abstract member and all
applyX are defined to call corresponding dapplyX . DProcedureX is also defined as
analog to ProcedureX .

Because descriptors and references share almost same syntactical properties except
for member access, All methods which does not care about the numeric arguments are
not needed to be re-implemented. For example, the Scheme function car simply casts
the arguments to Pair class and take .car member from it. Because casting non-
reference descriptor to any class always fails, original routine also works with descriptor
representation. So, all changes needed are change its superclass from Procedure1 to
DProcedure1. Also, numerical functions which is not used frequently at least with
integer arguments are not changed. They pass arguments through the bridge routine
defined in Procedure class and perform operations as same as original Kawa Scheme.
Some I/O procedures such as read and display are also modified to handle fixnum
correctly.

Finally, frequently-used numeric operations are re-implemented with descriptor
extension. These operations are defined as the sequence of routines which emits Java
bytecode and inlined into body of the function which calls such procedures. The inlined
routine first check whether the given descriptor is fixnum and handles both type of
values appropriately. If both arguments are fixnum, calculation is done directly. For
example, adding two integers represented by descriptors can be performed by adding
two fixnum-descriptors and decrement it by 1. If the calculation overflows or one
or more arguments are not fixnum, the operation is performed by a support routine
which is implemented by Java language. It is defined as static method in class of each
procedure and handles both fixnums and references correctly but slowly. Example are

17

shown in Appendix A.

4.3 Changes for compiler, etc.

Function compiler also need some modification. Firstly, it changed to emit call to
dapplyX , to use extended interface. Next, handling of constants in the program are
changed. Because fixnum constants cannot be used with Java’s standard methods
for Object, it must be handled specially. This change needed investigation on the
structure of Kawa’s compiler, but modification is still not so large. Also, compiler for
bridging routine to native Java class is also needed to be changed.

Other changes required for Kawa to work is on following areas:

• Initial environment and procedure class autoloader: to clarify function’s ability
to be inlined before loading

• Bytecode handling routines: because of incompleteness of original routine

18

Chapter 5

Experiments

5.1 Performance on Scheme code

To evaluate performance of modified Kawa Scheme, I measured the execution time
of two integer calculation. One is the Fibonacci function fib(25), which defined as
follows.

(define (fib x)

(if (< x 2)

1

(+ (fib (- x 1)) (fib (- x 2)))))

The other is the decimal 1000 decimal places of the value π, calculated by every 4
digits with the program contained in scm distribution. The evaluation is performed
on Sun Ultra Enterprise 4000 (UltraSPARC 168MHz) and Solaris 2.5.1. Kaffe nor-
mally performs stack-overflow checking on runtime, but it is disabled to evaluate pure
calculation and garbage-collection time.

Table 5.1 shows that this extension improves the performance of integer operation
with Scheme code on the large scale. For both example, execution speed is about
twenty times as the original implementation.

5.2 Performance on existing Java code

To test the performance on existing Java code, I chose five test from benchmark test
suite “Spec JVM98”[9]. Other tests are omitted because they are unfortunately not
properly runnable on Kaffe. For each test, execution time is measured five times and
the total time is compared between the original JVM and the modified one. Table 5.2
shows the result of the evaluation. Environment used to evaluation is the same as the
test of the previous section.

19

test program original modified ratio

Fibonacci 53 2.9 −94.5%
Pi 1029 42 −95.9%

(unit: sec.)

200

400

600

800

1000

(unit: sec.)

53

2.9

Fibonacch (×10)

1029

42

Pi

: original

: modified

Table 5.1: Performance improvement of Kawa Scheme with the descriptor extension

The penalty shown in the table 5.2 is supposed not to be a substantial problem of
the extension but to be the implementation problem described in section 3. It is caused
by the unessential runtime check for object existence with invoking method defined
in java.lang.Object, and with applying the CHECKCAST/INSTANCEOF instructions to
references. The variation of the performance penalty is appeared because the frequency
of the instructions which cause those unessential check vary dramatically among those
programs, along with the properties of the programs. Those penalty might be removed
with the importation of new descriptor class, with implementation of verifier and with
optimization using static type informations.

20

test program original modified ratio

201 compress 93.013 93.921 +1.0%
202 jess 76.559 77.717 +21.1%
213 javac 117.308 129.222 +10.2%
222 mpegaudio 163.226 166.376 +1.9%
228 jack 415.189 435.654 +4.9%

(unit: sec.)

100

200

300

400

500

(unit: sec.)

93.0 93.9

compress

76.6 77.7

jess

117.3 129.2

javac

163.2 166.4

mpegaudio

415.2
435.7

jack

: original

: modified

25%

50%

75%

100%

125%

(orig. = 100%)

93.0 93.9

compress

76.6

77.7

jess

117.3
129.2

javac

163.2 166.4

mpegaudio

415.2 435.7

jack

: original

: modified

Table 5.2: Performance penalty for existing Java code with the descriptor extension

21

Chapter 6

Related work

Olin Shivers [8] describes his DirectDescriptor extension to the same means very
briefly. His extension rules all references to have odd numbers as native representation.
Also, DirectDescriptor, which is virtually a subclass of Object, holds 31bit of state
and expressed by even numbers. Integers are converted to DirectDescriptor by one
bit shift, and DirectDescriptor to integers by compile time change of view. Superior
point of his extention is that higher order security mentioned in Section 2.6.2 is kept.
This is because unsecure reference is never generated by those restrictions. However,
even the discussion in his note is very brief, I suppose that the modification for JVM
which is needed to implement the extension is large, and also performance penalty for
existing code is difficult to eliminate on recent CPU architectures.

Andrew W. Appel and David R. Hanson [1] describes one method for implement-
ing copying garbage collection with ambiguous reference (i.e. descriptor) briefly. They
assume that object is self-identify, so that existence check is done by small cost. Ap-
plying copying garbage collection for Kaffe implementation is under experimentation
by Tanaka [10], concurrently with my experiment.

22

Chapter 7

Conclusion and future work

I extended JVM to handle new type named descriptor which can be handled as both
integers and references, without breaking JVM’s type safety, to support dynamically-
typed languages efficiently on the virtual machine. I implemented the extension to
existing virtual machine, and I also implemented Scheme system on it and evaluated
the speed of calculation. Usage of descriptor makes integer operation, which is one
of the most frequently-used operation in Scheme language, about twenty times faster.
I also constructed the frame work to make this extension accepts existing Java code
without any performance penalty.

Further work is needed to implement the verifier which proofs the type safety of this
virtual machine. More performance improvements are available with the information
generated by the verifier. In addition to this, more security-related features might be
needed to use this extension with network applications such as applets and agents.

23

References

[1] Andrew W. Appel and David R. Hanson. Copying garbage collection in the pres-
ence of ambiguous references. Research Report CS-TR-162-88, Department of
Computer Science, Princeton University. June 1988.

[2] Nick Benton et. al. Compiling standard ML to Java bytecode. In Proceedings
of the ACM SIGPLAN International Conference on Functional Programming
(ICFP ’98). January 1999.

[3] Per Bothner. Kawa: the Java-based Scheme system. in Lisp Users Conference.
November, 1988. Available from http://www.cygnus.com/~bothner/kawa/ .

[4] James Gosling, Bill Joy and Guy Steele. The Java Language Specification.
Addison-Wesley, 1996.

[5] Aubrey Jaffer. SCM. Interpreter is available from
http://www-swiss.ai.mit.edu/~jaffer/SCM.html .

[6] Richard Kelsey, William Clinger, and Jonathan Rees (editors). Revised5 report
on the algorithmic language Scheme. February 1998.

[7] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley, 1996.

[8] Olin Shivers. Supporting dynamic languages on the Java virtual machine. April
1996. Available from http://www.ai.mit.edu/~shivers/javaScheme.html.

[9] Standard Performance Evaluation Corporation. SPEC JVM98 Benchmarks. 1998.
Information is available online from http://www.spec.org/osg/jvm98/ .

[10] Yoshizumi Tanaka. Copying garbage collection in the presence of uncertain point-
ers. Senior Thesis. University of Tokyo. February 1999 (to be published).

[11] Tim Wilkinson. Kaffe – a free virtual machine to run Java code. Information and
implementation are available from http://www.transvirtual.com/kaffe.html .

24

Appendix A

Example output code

produced by extended Kawa

compiler

This is output of the compiler with the following simple Scheme code.

(define (f x) (+ x 5))

Push the argument x and 5 onto stack. Integer 21 in instruction 1 is tagged value
of fixnum 5.

0: aload_1

1: bipush 21

Check tag of the arguments on stack before calculation. Value is fixnum if v and 3 = 1.
If one of the arguments are not fixnum, jump to instruction 50.

3: dup2

4: iconst_3

5: iand

6: iconst_1

7: if_icmpne 50

10: dup

11: iconst_3

12: iand

13: iconst_1

14: if_icmpne 50

Branch according to the sign of the first operand, for overflow check.

17: iflt 35

25

The routine for positive operand. Add operands and subtract 1.

20: dup2

21: dup_x1

22: iadd

23: iconst_1

24: isub

25: dup_x1

If result is smaller than second operand, overflow is occurred. Then jump to instruction
50.

26: if_icmpgt 50

Throw away dust on the stack and go to instruction 54.

29: dup_x2

30: pop2

31: pop

32: goto 54

The routine for negative operand.

35: dup2

36: dup_x1

37: iadd

38: iconst_1

39: isub

40: dup_x1

41: if_icmplt 50

44: dup_x2

45: pop2

46: pop

47: goto 54

If type check is failed or overflow is occurred, control reaches here. Call Java-implemented
routine to handle.

50: pop

51: invokestatic #20=<Method kawa.standard.plus_oper.addTwo

(java.lang.Object java.lang.Object) java.lang.Object>

The final instruction returns result to caller.

54: areturn

26

