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Abstract— This paper describes an ultrasonic tagging
system developed for robustly observing human activity
in a living area. Using ultrasonic transmitter tags with
unique identifiers, the system is shown through experimental
application to be able to track the three-dimensional motion
of tagged objects in real time with high accuracy, resolution
and robustness to occlusion. The use of an ultrasonic system
is desirable because of its low cost and use of commercial
components, and the proposed system achieves high accuracy
and robustness through the use of many redundant sensors.
The system employs multilateration to locate tagged objects
using one of two estimation algorithms, a least-squares
optimization method or a random sample consensus method.

I. I NTRODUCTION

Information processing services centered around human
activity in the real world has attracted increased attention
recently [1]. Human-centered applications require the fa-
cility to observe and recognize activities as a basis, and
the present paper describes a method for observing and
recognizing behaviors robustly and in real time based on
sensorizing objects in the real world.

Generally, the problem of human behavior recognition
can be formulated as a kind of pattern recognition problem
as follows.

P�Ŵ �Y � � max
Wi

P�Y �Wi�P�Wi�

P�Y �
� (1)

whereP�Wi�Y � denotes the posterior probability that the
meaning of an observed behavior patternY is Wi, P�Y �
denotes the probability that a behavior patternY will be
observed,P�Wi� denotes the probability that the behavior
meaningWi will occur, and P�Y �Wi� denotes the condi-
tional probability. Thus, the problem of human behavior
recognition becomes that of searching for the maximum
posterior probabilityP�Ŵ �Y �.

Two problems complicate the recognition of human
behavior: the ability to observe a behavior patternY

robustly, and the efficient recognition of meaningW from
the observed pattern. Without solving the first problem,
equation (1) cannot be formed. Without tackling the
second problem, guaranteeing a solution to the equation
within the time frame demanded by the application is
impossible.

As a method for efficient recognition of behaviors,
the idea of object-based behavior recognition has been
proposed [2]. In theory, the behavior of handling objects
in an environment such as an office or home can be recog-
nized based on the motion of the objects. However, when
applying the method to real environments, it is difficult
to even achieve an adequate level of object recognition,
which is the basis of the method.

Separating the problems of object recognition and be-
havior recognition is becoming increasingly realistic with
the progress in microcomputers, sensor, and wireless net-
works technology. It has now become possible to resolve
object recognition into the problems of sensorizing objects
and tagging the objects with identification codes (IDs),
and to address behavior recognition separately through the
development of applied technology.

The present authors have developed a three-dimensional
ultrasonic location and tagging system for the fundamental
function of robustly tracking objects. This system en-
ables a new approach of tag-based behavior recognition.
In terms of cost and robustness against environmental
noise, the ultrasonic system is superior to other location
techniques such as visual, tactile, and magnetic systems.
A number of ultrasonic location systems have already
been proposed or commercialized [3], [4], [5]. However,
the work [3] does not describe a method for improving
the robustness, accuracy, and resolution of position, and
although Shih [4] proposed a robust estimation method by
“direct substitution”, the system had difficulty in main-
taining accuracy of position and calculation in real time.



The system presented in the present paper is developed
specifically to address the issue of robustness and accuracy
in real time.

The ultrasonic location system calculates the three-
dimensional (3D) position of an object by trilateration
based on three distance measurements. Like other loca-
tion sensing systems such as motion capture, the system
requires more than a certain minimum number of receivers
to eliminate the effect of occlusion and outliers. The
system is comparably inexpensive due to the availability
of cheap ultrasonic receivers, which also makes it possible
to increase the number of ultrasonic receivers to mitigate
undesirable effects. An ultrasonic location system there-
fore provides significant advantages in terms of robust
positioning, high accuracy, and high resolution through
the collection of redundant distance data.

This research focuses on the development of a function
for estimating the 3D position of objects with high accu-
racy, high resolution and robustness to occlusion through
the use of redundant distance data. This paper describes
the 3D position estimation function and the results of
experiments conducted in a regular room area. In the next
secton, the developed 3D ultrasonic tagging system is first
introduced briefly. Section III describes the algorithms for
estimating the 3D position of objects in detail. Trilater-
ation or multilateration algorithms have been proposed
in the field of aerospace[6], [7]. This paper presents the
multilateration algorithms applicable to a more general
case that multiple ultrasonic receivers are put on arbitrary
positions. The results of experimental application of the
system are then presented and discussed.

II. U LTRASONIC TAGGING SYSTEM

A. System configuration

Figure 1 shows the system configuration for the 3D
ultrasonic tagging system. The system consists of an ultra-
sonic receiving section, an ultrasonic transmitting section,
a time-of-flight measuring section, a network section,
and a personal computer. The ultrasonic receiving section
receives ultrasonic pulses emitted from the ultrasonic
transmitter and amplifies the received signal. The time-
of-flight measuring section records the travel time of the
signal from transmission to reception. The network section
synchronizes the system and collects time-of-flight data
from the ultrasonic receiving section. The positions of
objects are calculated based on more than three time-
of-flight results. The sampling frequency of the proposed
system is 50 Hz.

Figure 2 shows a photograph of the prototype network
and time-of-flight measurement components, which are
to be attached to a wall. Figure 3 is a photograph of
the tagging unit (transmission unit), which consists of an
ultrasonic transmitter, a wireless communication unit, a

Fig. 1. Configuration of 3D ultrasonic tagging system

microcomputer (FLASH PIC) and power (two alkaline AA
batteries).

Fig. 2. Network and time-of-flight measurement components

Fig. 3. Ultrasonic tag

The room used to conduct the experiments is shown
in Fig. 4. The room was 3�5�3�5� 2�7 m in size, and
was fitted with 307 ultrasonic receivers embedded in the
wall and ceiling. Tags were attached to various objects,
including a cup and a stapler as shown in Fig. 5. Some
objects were fitted with two transmitters. The purpose of
the experimental room is to clarify the effect of the use of
redundant sensors. More than 300 receivers do not mean



that the algorithms described in the next section need
such a large number of sensors. In actual usage, a smaller
number of receivers can be used.

Fig. 4. Room with embedded ultrasonic sensors for prototype devel-
opment

Fig. 5. Example of attaching tags to objects

III. U SE OF REDUNDANT ULTRASONIC RECEIVERS

A. Trilateration

The ultrasonic tagging system calculates the 3D position
of an object by trilateration using three distance measure-
ments. Two methods of trilateration are investigated for
use with the proposed system: multilateration based on a
least-squares method using redundant distance data, and
multilateration based on robust estimation.

The basic principle of triangulation can be described by

�xi� x�2��yi� y�2��zi� z�2 � l2
i � �i � 1�2�3�� (2)

where li denotes the distance measured by theith ultra-
sonic receiver at position�xi�yi�zi� from the ultrasonic
transmitter at�x�y�z�, as shown in Fig. 2. Thus, the posi-
tion �x�y�z� of an ultrasonic transmitter can be calculated
given three distance measurementsli�i � 1�2�3� obtained
by three receivers that do not lie on the same line.

B. Multilateration: Basics

The estimation errorεi can be defined by

l2
l1

l3

P=(x,y,z): intersection point

Fig. 6. Intersection point

εi �
���li�

�
�xi� x�2��yi� y�2��zi� z�2

��� � (3)

By solving the minimization problem

�x̂� ŷ� ẑ� � min
�x�y�z�

n

∑
i

εi� (4)

we can estimate the optimal value�x̂� ŷ� ẑ�.
The minimization problem of Eq. (4) involves the

solution of a non-linear equation and therefore requires
repetitive numerical computation. Shih [4] proposed a
direct substitution method to solve Eq. (4) that involved
substituting random and arbitrary�x�y�z� into Eq. (4) and
adopting the coordinate giving the minimum error as the
optimal value. This method is a robust estimation (M-
estimator), but involves large calculation cost to guaran-
tee the accuracy of the estimated position. For ultimate
accuracy, it would therefore be necessary to evaluate all
possible coordinates�x�y�z�. However, such calculation is
not suitable for real-time application.

C. Multilateration method 1: linearization of the mini-
mization problem

To obtain an algorithm suitable for accurate estimation
in real time, Eq. (4) may be linearized to allow an
analytical solution.

Using distance datali� l j and the receiver positions
�xi�yi�zi���x j �y j�z j�, we obtain the following spherical
equations for the possible position of the target.

�xi� x�2��yi� y�2��zi� z�2 � l2
i � (5)

�x j � x�2��y j � y�2��z j � z�2 � l2
j � (6)

By subtracting Eq. (6) from Eq. (5), we obtain an equation
for intersecting planes between the spheres, as shown in
Fig. 7.

2�x j � xi�x�2�y j� yi�y�2�z j� zi�y �

l2
i � l2

j � x2
i � y2

i � z2
i � x2

j � y2
j � z2

j (7)



l2
l1

l3

P=(x,y,z): intersection point

α: intersection plane

Fig. 7. Planes of intersection between spheres used to give the estimated
position

By inputting pairs of�i� j� into the above equation, we
obtain simultaneous linear equations, as expressed by

AP � B� (8)

where P �

�
�

x
y
z

�
� � (9)

A �

�
�

2�x0� x1� 2�y0� y1� 2�z0� z1�
2�x0� x2� 2�y0� y2� 2�z0� z2�
2�x0� x3� 2�y0� y3� 2�z0� z3�

�
� � (10)

B �

�
����

l2
1� l2

0� x2
1� y2

1� z2
1� x2

0� y2
0� z2

0
l2
2� l2

0� x2
2� y2

2� z2
2� x2

0� y2
0� z2

0
l2
3� l2

0� x2
3� y2

3� z2
3� x2

0� y2
0� z2

0
...

�
���� � (11)

The position�x̂� ŷ� ẑ� can then be calculated by a least-
squares method as follows.

P � �AT A��1AT B� (12)

This method minimizes the square of the distance between
the planes expressed by Eq. (7) and the estimated position.
The algorithm is described in detail in Fig. 8. In actual
usage, the rank of matrixA must be considered.

D. Multilateration method 2: Robust estimation by
RANSAC

Data sampled by the ultrasonic tagging system is easily
contaminated by outliers due to reflections. Method 1
above is unable to estimate the 3D position with high
accuracy if sampled data includes outliers deviating from a
normal distribution. In the field of computer vision, robust
estimation methods that are effective for sampled data
including outliers have already been developed. In this
work, the random sample consensus (RANSAC) [8], [9]
estimator is adopted to eliminate the undesirable effects
of outliers. The procedure is as follows.

Rank(A)=1 Rank(A)=2 Rank(A)=3
(Collinear) (Non-coplanar)(Coplanar)

Solution is determinate.
A single solution exists.
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Solution is indeterminate.
At most two solutions exist.

Solution is indeterminate.
Infinite solutions exist.

A position cannot be fixed.

Candidate
of solution

If there are conditions to select
one solution from the two,
a single position can be fixed.

x0 is the minimum norm solution.

3) Select a single solution using 
    conditions such as

n is a base vector of nullspace of A.

1) Solve the minimum norm solution

2) Solve two positions using 
    the equations below.

),,( iiii zyxP =

A single position can be fixed.

Simultaneous equations of plane
on which an intersection line between the two spheres

0xn

Candidate
of solution

Candidate
of solution

Candidate
of solution

Fig. 8. Algorithm for estimating 3D position by a least-squares method
considering the rank ofA

1) Randomly select three distances measured by three
receivers (jth trial).

2) Calculate the position�xc j �yc j�zc j� by trilateration
using Eq. (2).

3) Calculate the errorεc ji for all receivers (i �
0�1� ����n) by Eq. (13), and find the medianεm j of
εc ji.

4) Repeat steps 1 to 3 as necessary to find the combi-
nation of measurements giving the minimum error,
and adopt the corresponding 3D position.



εc ji �
���li �

�
�xi � xm j�

2��yi � ym j�
2��zi � zm j�

2
���

(13)

εm j � med j �εc ji� (14)

�x̂� ŷ� ẑ� � min εm j (15)

IV. EXPERIMENTAL APPLICATION
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Fig. 9. Relationship between resolution and the number of sensors for
the least-squares method (left) and RANSAC (right)
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Fig. 10. Resolution in thex andy directions (left) andz direction (right)
(grid size: 2�2 mm)

A. Resolution

Figure 9 shows the relationship between the number of
receivers and the deviation of the estimated position for
4, 6, 9, 24, and 48 receivers in the ceiling. To compare
the effect of the RANSAC method and that of the least-
squares method, one receiver is selected randomly and
500[mm] is added to the distance data of the selected
receiver as outlier. Each point was derived from 30 estima-
tions of the position. The 5 lines in the figures represent
estimation for 5 different locations of the transmitter. The
resolution increases with the number of receivers, and the
RANSAC method provides a more stable estimation with
higher resolution compared to the least-squares method.

The resolution in thex, y, andz directions is illustrated
in Fig. 10, which shows the probability density distribution
for 1000 estimations using RANSAC. The resolution in
x and y directions is about 15 mm, while that in thez
direction is about 5 mm.
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Fig. 11. Relationship between positioning accuracy and the number of
receivers for the least-squares method (left) and RANSAC (right)

B. Positioning accuracy

Figure 11 shows the relationship between the number of
receivers and the error of the estimated position for 4, 6,
9, 24, and 48 receivers. The error is taken as the distance
from the position measured by a visual motion capture
system. One receiver is selected randomly and 500[mm]
is added to the distance data of the selected receiver as
outlier. Each point was derived from 30 estimations of the
position. The 5 lines in the figures represent estimation for
5 different locations of the transmitter. The error decreases
as the number of receivers is increased, and the RANSAC
method is appreciably more accurate with fewer receivers.
It is considered that the least-squares method is easily
affected by outliers, whereas the RANSAC method is not.

Figure 12 shows the 3D distribution of error for 1400
measured positions in the room. The figures show that
the error is lowest (20–80 mm) immediately below the 48
receivers in the ceiling, increasing toward the edges of the
room.

The results of experiments for evaluating accuracy and
resolution demonstrate that it is possible to improve accu-
racy and resolution by increasing the number of receivers,
and that the undesirable effect of outliers can be mitigated
through the use of RANSAC estimation.

C. Robustness to occlusion

As in other measuring techniques such as vision-based
methods, it is necessary to increase the number of sensors
to solve the problem of sensor occlusion, where the line of
sight to the target object is obstructed by other objects such
as walls or room occupants. In the present tagging system,
the problem of occlusion occurs often when a person
moves or operates an object. These situations give rise to
two separate problems; a decrease in the number of usable
sensors for the target, and an increase in reflections due
to obstruction and movement. As one of the most typical
situations where occlusion occurs, this section focuses on
occlusion due to a hand.

Figure 13 shows how the error increases and the number
of usable sensor decreases as a hand approaches an object
fitted with an ultrasonic transmitter for the least-squares
and RANSAC methods. Although the error increases
significantly by both methods when the hand approaches
the object, the RANSAC method is much less affected



Fig. 12. 3D distribution of error in the experimental room

than the least-squares method. This demonstrates that the
proportion of outliers increases when occlusion occurs,
and that RANSAC is more robust in this situation because
it can mitigate the effect of such outliers.
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Fig. 13. Accuracy of the ultrasonic tagging system when occlusion due
to a hand occurs

D. Real-time position measurement

Figure 14 shows the measured trajectory for a person
moving a cup to a chair, the floor, and a desk. The
figure demonstrates that the system can robustly measure
the positions of the objects in most places of the room
regardless of occlusion by a hand or body.

In the current system, the sampling frequency is about
50 Hz. This frequency decreases to 50�n Hz when n
objects are being monitored. However, it is possible to
maintain a high sampling frequency by selecting which
transmitters to track dynamically. For example, a trans-
mitter can be attached to a person’s wrist, and the system
can select transmitters in the vicinity of the wrist to
be tracked, thereby reducing the number of transmitters
that need to be tracked at one time and maintaining the
highest sampling frequency possible. Figure 15 shows the
measured trajectory in a dynamic selection mode. The red
sphere in the figure shows the position of the hand.

Fig. 14. Measured trajectory for moving a cup around the room

Fig. 15. Dynamic selection of transmitters

E. Recognition of human behavior

Figure 16 shows the measured trajectories when several
objects are moved one after another (see video). Behavior
recognition is performed by interpreting the change of
state using the ultrasonic tag.
Output example .....,
04:03:55 place yellow cup on desk
04:04:05 hold mobile phone
04:04:12 place mobile phone on floor
04:04:19 hold chair
04:04:31 place chair on floor
04:04:34 hold trash
04:04:40 place trash on floor
04:04:46 hold stapler



chair
cup

trash

cell phone

documents

stapler

Fig. 16. Trajectories for movement of several objects one after another

04:04:52 place stapler on desk
04:04:59 hold documents
04:05:13 staple documents with stapler .....

V. CONCLUSION

A 3D ultrasonic tagging system that provides robust
observation of human activity was presented. The ultra-
sonic tagging system consists of an ultrasonic transmit-
ter/receiver, a wireless communication unit and a host
computer, and can implemented at low cost. The system
measures the 3D position of any object fitted with an
ultrasonic transmitter with a unique ID.

In order to estimate the 3D position with high accuracy,
high resolution, and robustness to occlusion, the authors
propose two estimation methods, one based on a least-
squares approach and one based on RANSAC.

The system was tested in an experimental room fitted
with 307 ultrasonic receivers; 209 in the walls and 98 in
the ceiling. The results of experiments conducted using
48 receivers in the ceiling for a room with dimensions
of 3�5�3�5�2�7 m show that it is possible to improve
the accuracy, resolution, and robustness to occlusion by
increasing the number of ultrasonic receivers and adopting
a robust estimator such as RANSAC to estimate the 3D
position based on redundant distance data. The resolution
of the system is 15 mm horizontally and 5 mm vertically
using sensors in the ceiling, and the total spatially varying
position error is 20–80 mm. It was also confirmed that the
system can track moving objects in real time, regardless
of obstructions.

Further development of the system will include re-
finement of the method for measuring the 3D position
with higher accuracy and resolution, miniaturization of
the ultrasonic transmitters, development of a systematic
method for defining and recognizing human activities
based on the tagging data and data from other systems, and

development of new applications based on human activity
data.
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