: この文書について...
: 確率ネットワークと知識情報処理への応用
: 謝辞
-
- Akiba 94
-
Akiba, T. and Tanaka, H.: A Bayesian approach for user modelling in dialogue
systems, Proc. of the International Conference on Computational
Linguistics, pp. 1212-1218 (1994).
- Breese 92
-
Breese, J.: Construction of Belief and Decision Networks, J. of
Computational Intelligence, Vol. 8, No. 4, pp. 624-647 (1992).
- Buntine 91
-
Buntine, W.: Theory refinement on Bayesian networks, Proc. of the 7th
Conference on Uncertainty in Artificial Intelligence, pp. 52-60 (1991).
- Castillo 97
-
Castillo, E., Gutierrez, J., and Hadi, A.: Expert Systems and
Probabilistic Network Models, Springer-Verlag (1997).
- Charniak 93
-
Charniak, E. and Goldman, R.: A Bayesian model of plan recognition,
Artificial Intelligece, Vol. 64, pp. 53-79 (1993).
- Cooper 90
-
Cooper, G. F.: The Computational Complexity of Probabilistic Inference using
Bayesian Belief Networks, Artificial Intelligence, Vol. 42, pp.
393-405 (1990).
- Cooper 92
-
Cooper, G. and Herskovits, E.: A Bayesian method for the induction of
probabilistic networks from Data, Machine Learning, Vol. 9, pp.
309-347 (1992).
- Cowell 99
-
Cowell, R. G., Dawid, A. P., Lauritzen, S. L., and Spiegelhalter, D. J.:
Probabilistic Networks and Expert Systems, Springer-Verlag (1999).
- Dean 89
-
Dean, T. and Kanazawa, K.: A model for Reasoning about Persistence and
Causation, Computational Intelligence, Vol. 5, No. 3, pp. 142-150
(1989).
- Dean 91
-
Dean, T. and Wellman, P.: Planning and Control, Morgan Kaufmann (1991).
- Dempster 77
-
Dempster, A., Laird, N., and Rubin, D.: Maximum likelihood from incomplete data
via the EM algorithm, Journal of Royal Statististical Society B,
Vol. 39, pp. 1-38 (1977).
- Forbes 93
-
Forbes, J., Huang, T., Kanazawa, K., and Russel, S.: The BATmobile: Towards a
Bayesian Automated Taxi, Proc. of the 14th International Joint
Conference on Artificial Intelligence, pp. 1878-1885 (1993).
- Friedman 97
-
Friedman, N., Goldszmidt, M., Heckerman, D., and Russell, S.: Challenge: Where
is the Impact of Bayesian Networks in Learning?, Proc. of the 15th
International Joint Conference on Artificial Intelligence, pp. 10-15
(1997).
- Geiger 93
-
Geiger, D. and Heckerman, D.: Inference Algorithms for Similarity Networks,
Proc. of the 9th Conference on Uncertainty in Artificial Intelligence,
pp. 326-334 (1993).
- Geiger 94
-
Geiger, D. and Heckerman, D.: Learning Gaussian Networks, Proc. of the
10th Conference on Uncertainty in Artificial Intelligence, pp. 235-243
(1994).
- Geiger 95
-
Geiger, D. and Heckerman, D.: A characterization of the Dirichlet distribution
with application to learning Bayesian networks, Proc. of the 11th
Conference on Uncertainty in Artificial Intelligence, pp. 196-207 (1995).
- Haddawy 99
-
Haddawy, P.: An Overview of Some Recent Developments in Bayesian Problem
Solving Techniques, AI Magazine special issue on Bayesian Techniques
Plus..., Vol. 20, No. 2, pp. 11-20 (1999).
- Heckerman 95
-
Heckerman, D., Geiger, D., and Chickering, D.: Learning Bayesian networks: the
combination of knowledge and statistical data, Machine Learning,
Vol. 20, pp. 197-243 (1995).
- Horvitz 98
-
Horvitz, E., Breese, J., Heckerman, D., Hovel, D., and Rommelse, K.: The
Lumiere Project: Bayesian User Modeling for Inferring the Goals and Needs of
Software Users, Proc. of the 14th Conference on Uncertainty in
Artificial Intelligence, pp. 256-265 (1998).
- Jensen 96
-
Jensen, F.: An Introduction to Bayesian Networks, University College
London Press (1996).
- Jordan 98
-
Jordan, M., Ghahramani, Z., Jaakkola, T., and Saul, L.: An Introduction to
Variational Methods for Graphical Models, Learning in Graphical Models,
pp. 105-161 (1998), Kruwer Academic Publisher.
- Kabashima 99
-
Kabashima, Y. and Saad, D.: Belief Propagetion vs. TAP for decoding corrupted
messages, Europhys. Letter, Vol. 44, No. 5, pp. 668-674 (1999).
- Kappen 99
-
Kappen, H. J. and al., et : Approximate inference in medical diagnosis,
Pattern Recognition Letters (1999).
- Koller 97
-
Koller, D. and Pfeffer, A.: Learning probabilities for noisy first-order rules,
Proc.of IJCAI'97, Nagoya, pp. 1316-1321 (1997).
- Larranaga 96
-
Larranaga, P., Poza, M., Yurramendi, Y., Murfa, R., and Kujipers, C.:
Structure learning of Bayesian networks by genetic algorithms: a performance
analysis of control parameters, IEEE Trans. on Pattern Analysis and
Machine Intelligence, Vol. 18, pp. 912-926 (1996).
- Lauritzen 88
-
Lauritzen, S. and Spiegelhalter, D.: Local computations with probabilities on
graphical structures and their application to expert systems, Journal of
the Royal Statistical Society B, Vol. 50, pp. 157-224 (1988).
- Lauritzen 89
-
Lauritzen, S. and Wermuth, N.: Graphical Models for Associations Between
Variables, Some of which are Qualitative and Some Quantitative, Anals.
of Statistics, Vol. 17, pp. 31-57 (1989).
- Mackay 96
-
Mackay, D.: Turbo Decoding as an Instance of Pearl's Belief Propagation
Algorithm, submitted to IEEE Journal on Selected Areas in
Communication (1996).
- Motomura 00
-
Motomura, Y. and Hara, I.: Bayesian Network Learning System based on Neural
Networks, to appear in the proc. of int. symp. on Theory and
Application of Softcomputing 2000 (2000).
- Paass 88
-
Paass, G.: Probabilistic Logic, Non-Standard Logics for Automated
Reasoning (eds. Smets,P., Mamdani,A., Dubois,D. and Prade,H.) (1988),
Academic Press.
- Pearl 88
-
Pearl, J.: Probabilistic Reasoning in Intelligent Systems, Morgan
Kaufmann, CA (1988).
- Poole 93
-
Poole, D.: Probabilistic Horn abduction and Bayesian networks, Artificial
Intelligence, Vol. 64, pp. 81-129 (1993).
- Rabiner 93
-
Rabiner, L. and Juang, B.: Foundations of Speech Recognition,
Prentice-Hall (1993).
- Russell 95
-
Russell, S. and Norvig, P.: Artificial Intelligence, A modern approach,
Prentice Hall (1995), 邦訳: 古川康一監訳,エージェントアプローチ
人工知能,共立出版 (1997).
- Sato 00
-
Sato, T. and Kameya, Y.: A Viterbi-like algorithm and EM learning for
statistical abductuion, to be presented at the UAI-2000 workshop on
Fusion of Domain Knowledge with Data for Decision Support (2000).
- Spiegelhalter 93
-
Spiegelhalter, D. J., Lauritzen, S. L., Dawid, A. P., and Cowell, R. G.:
Bayesian analysis in expert systems, Statistical Science, Vol. 8, pp.
219-247 (1993).
- Suzuki 93
-
Suzuki, J.: A construction of Bayesian networks from databases based on an MDL
principle, in Proc. of the 9th Conference on Uncertainty in Artificial
Intelligence, pp. 266-273 (1993).
- Tanaka 00
-
Tanaka, T.: A theory of Mean Field Approximation, Advances in Neural
Information Processing Systems, Vol. 11, pp. 351-357 (2000), MIT Press.
- Thiesson 98
-
Thiesson, B., Meek, C., Chickering, D., and Heckerman, D.: Learning Mixtures of
DAG Models, in Proc. of the 14th Conference on Uncertainty in Artificial
Intelligence, pp. 504-513 (1998).
- Whittaker 90
-
Whittaker, J.: Graphical Models in Applied Multivariate Statistics, John
Wiley and Sons (1990).
- Wiegerinck 98
-
Wiegerinck, W. and Barber, D.: Mean Field Theory based on Belief Networks for
Approximate Inference, Proc. of the International Conference on
Artificial Neural Networks, pp. 499-504 (1998).
- 乾 97
-
乾, 徳永, 田中:意志決定理論に基づく 発話プランニング, 人工知能学会論文誌,
Vol. 12, No. 5, pp. 760-769 (1997).
- 宮川 98
-
宮川雅巳:グラフィカルモデリング, 朝倉書店 (1998).
- 市川 00
-
市川誠(ゲストエディタ):特集:21世紀の玩具とロボティクス, ロボット学会誌,
Vol. 18, pp. 1-50 (2000).
- 石塚 97
-
石塚満(訳):15章: 確率的推論システム, 古川康一監訳,エージェントアプローチ
人工知能, pp. 439-473 (1997), 共立出版.
- 本村,佐藤 00
-
本村, 佐藤:ベイジアンネットワーク-不確定性のモデリング技術-,
人工知能学会論文誌, vol.15, No.4, pp. 575-582, (2000).
- 本村 00
-
本村陽一:ベイジアンネットワーク,
電子情報通信学会誌, vol.83, No.8, pp. 645-646, (2000).
平成13年1月24日