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Abstract. A quick method to obtain the 3D transformation of a 3D free-
form shape model from its 2D projection data is proposed. This method
has been developed for the real-time registration of a 3D model of a cere-
bral vessel tree, obtained from pre-operative data (eg. MR Angiogram),
to a X-ray image of the vessel (eg.Digital Subtraction Angiogram) taken
during an operation. First, the skeleton of the vessel in a 2D image is
automatically extracted in a model-based way using a 2D projection of a
3D model skeleton at the initial state (up to £20 degree difference in ro-
tation). Corresponding pairs of points on the 3D skeleton and points on
the 2D skeleton are determined based on the 2D Euclidean distance be-
tween the projection of the model skeleton and the observed skeleton. In
the process, an adaptive search region for each model point, which is de-
termined according to the projected shape, effectively removes incorrect
correspondences. Based on a good ratio of correct pairs, linearization of
a rotation matrix can be used to rapidly calculate the 3D transformation
of the model which produces the 2D observed projection. Experiments
using real data show the practical usefulness of the method.
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1 Introduction

This work is being developed to aid the endovascular treatment of intracranial
aneurysms by coil embolisation. In current practice, the neuroradiologist guides a
catheter through a vessel while viewing its 2D projection (X-ray angiogram). It is
hard for a neuroradiologist to visualize the complex 3D shapes of the vessels from
one 2D projection, even with the 3D shape information from pre-operative data
(eg. MR A(ngiography)). To help the neuroradiologist’s understanding, Wilson
and Noble[l] developed a method for reconstructing a 3D model of cerebral
vessels from slices of MRA data. Fig. 1a shows a result of the reconstructed 3D
model. If this 3D structure is superimposed on a 2D intra-operative X-ray image
and the location of the catheter is displayed on the 3D reconstruction, it may
aid the neuroradiologists in accurately deciding how they should manipulate the
catheter. For this purpose, real-time determination of the posture and position
of the 3D model from its 2D projection is required.



The determination of the position and posture of a 3D model from its 2D
view is a fundamental and important problem in Computer Vision research. In
the case that the object has some prominent features (points, edges etc) that
can be robustly extracted and matched between the 3D model and its 2D view,
the approach based on feature-matching can be taken. However, usually both
robust feature extraction and robust feature matching are not easy, especially
in the case of a free-form object. The iterative closest point (ICP) algorithm|[2],
originally developed for 3D-3D rigid registration, has appropriate characteristics
for free-form shape registration. The basic idea of the method is to use iterative
transformations of the 3D model towards the correct position and posture using
the corresponding pairs between the observed and the model points, which are
matched on the basis of the closeness at each state. If the initial position and
posture is not far from the correct position and posture, so that the correspond-
ing pairs include a high ratio of correct pairs, the model can converge to the
correct state. For registration of a 3D model registration to its 2D view, that is,
for obtaining the best 3D transformation of a model which produces a given 2D
view, the difficulties of the extension of this approach are mainly two-fold:

I) The difficulty of finding correct pairs between the projection of the 3D model
and the observed 2D view using only the 2D distance, and;

IT) Even after finding the pairs, it is not easy to feedback the 2D difference to
the 3D transformation of the model.

Concerning (I), in [3], the tangent of the projection of the 3D model and
the observed 2D curve was used to decrease the number of bad correspondences.
Although the effectiveness of using such additional attributes (curvatures, grey
level etc) in addition to the geometrical distance has been shown in 3D-3D
registration of free-form objects[4], it is not so effective in the 3D-2D case for two
reasons: a) the tangent on the 2D image is not an invariant feature; and b) the
projection of the complex 3D model often causes complicated self-overlapping,
where the robust calculation of geometric features can be difficult.

Concerning (IT), most proposed methods take similar approaches to a gradi-
ent descent method (eg. [5]) to find the best 3D transformation which minimizes
the sum of 2D distances between corresponding pairs (or maximizes the sim-
ilarity between the projection of the model and the observed data) over the
six degrees of freedom. However, such approaches are time consuming and are
not suitable for use in real-time applications. Fortunately, to address this prob-
lem, the Active Vision Research field has made advanced steps towards real-time
object tracking from time-sequential 2D images. One solution that has been pro-
posed is to linearize the 3D non-linear transformation[6]. The main difference
between their application and ours is that, in their case, the feature correspon-
dences are easier to find since special features (like corners) can be used. To use
thier approach, we need to solve the problem (I) and robustly obtain a high ratio
of correct pairs.

In this paper we propose a fast registration method which overcomes the
two difficulties noted above as follows. Concerning (I), the model-based strategy
plays an important role both in extracting the vessels from the X-ray image and
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Fig.1. The 3D model of the cerebral vessels and a digital subtraction angiography
(DSA) image of the same vessels: (a) the 3D model of both carotid circulations; (b)
a skeleton of the left internal carotid circulation; (¢) a DSA image of the left internal
carotid circulation.

in finding correct point matching pairs between the vessel and the 3D model.
In particular, the search area for finding the corresponding observed points is
effectively adjusted for each point in the 3D model depending on the shape of the
model projection, so that most of the wrong pairs are excluded. Secondly, con-
cerning (IT), taking advantage of the high-ratio of correct pairs obtained by the
first process, the 3D transformation of the model is calculated using separation
of the translation effect and linearization of the rotation matrix. Although the
correct position and posture of the model is not obtained at once, because of in-
accurate matching pairs and linearization errors, the 3D model quickly converges
to the correct state by iterating the point matching and model transformation
processes.

2 Model-based 2D vessel extraction

2.1 Preprocessing

The input to our method is a skeleton of the 3D vessel model (eg. Fig.1b), ob-
tained from the full 3D vessel reconstruction (Fig. 1a)[7], and a digital subtrac-
tion angiography (DSA) image of the vessels (eg. Fig. 1c). For full automation,
the region of interest (which is almost a circle) is extracted from the X-ray image
with simple image processing. The small black rectangle containing text is also
removed from the region of interest.

2.2 Initial localization

Here we briefly explain our 3D coordinate frame, (X,Y, Z). The X-ray source of
the X-ray machine is defined as the origin of the coordinate system. The image
plane is on the Z = f plane, where f is the distance between the source and
the plane. The X and Y axes are defined as the same directions as I and J



Fig. 2. Model-based extraction of 2D vessel skeleton: (a) initial translation (t,t,) of
3D model (from black to white points); (b) resultant extraction (white lines).

of the image coordinates respectively. The 3D vessel model is placed between
the source and the image plane and perspectively projected to the image. The
model’s initial position and posture is approximately known.

In the registration process we use n points which have been sampled at reg-
ular intervals from the 3D model skeleton. The 3D coordinates of these points
are X; = (X;,Y], Zi)T(i = 1,...n). The 3D transformation of the model is rep-
resented by R(the 3 x 3 rotation matrix) and T = (t,,t,,t.) " (the translation
vector). The 2D projections of the 3D model points after the transformation of
R and T have the 3D coordinates (z;,y;, f) ', where z; = fX!/Z!, y; = fY!/Z!
and Xlz' =RX,; +T.

When real X-ray images are acquired, the patient’s head is immobilized, and
the X-ray source and the image plane are rotated together around the head. Here,
inversely, we rotate the model (head) to give the same effect as the X-ray system
rotation. Since the rotation angle of the system is known from the graduations,
the position and posture of the 3D model can be estimated approximately. This
includes about + 20 degrees error in rotation and about (£100,£100,£200)(mm)
in translation, since the position and posture of the head is not calibrated and is
changed a little during the acquisition of the X-ray images. It is this calibration,
or determination of the change in the patient position and orientation between
MR and X-ray, that we wish to find.

In Fig. 2a black points represent the projection of the 3D model skeleton at
its initial state. Using simple template matching between the projected shape of
the 3D model skeleton at its initial state and the X-ray image, t,,t, is roughly
estimated so that the projection optimally overlaps the dark regions (possible
vessel regions) . In the case of Fig. 2a, the model is translated by ( -14.8, 39.8,
0.0)(mm); the white points show the projection of the model after the transla-
tion.



