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Abstract

A method to determine the position and pose of an
active camera-head by aligning a 3D model of its sur-
rounding environment with an observed 2D image is
proposed. The camera-head is mounted on a mobile
robot and freely moves in a 3D space. We aim at vi-
sual feedback to correct the estimation error of its posi-
tion and pose obtained from dead reckoning. Since the
nuclear power plant where the robot moves about con-
sists of many pipes without particular marks, most of
features in the observed images are occluding edges of
the pipes. For robustly finding 3D-2D point correspon-
dences on the occluding edges, two-type predicted im-
ages which are calculated from the 3D environmental
model by a graphics system (eg. OpenGL etc) are used
as follows: 1) 3D model points which correspond to the
observed occluding edges are quickly obtained from the
predicted depth image; 2) The predicted intensity im-
age is used to select only the 3D model points which are
expected to appear clearly in the observed image. As
a result, point correspondences between the observed
image and the 3D model can be robustly found even
in complicated scenes. Preliminary experiments using
actual plant mock-up have shown that the method is
promising.

1 Introduction

When the task of inspecting some environment is
given to a robot, it is effective that the robot freely
changes view points while freely moves around. Based
on this philosophy, we have mounted a high-performance
active camera head on a mobile robot aiming at au-
tonomous inspection of nuclear power plants like shown
in Fig.1a. Here, it is quite important to accurately
know the position and pose of the camera both to
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Figure 1: Experimental environment: (a) plant-
mockup; (b) its partial models consisting of 17 cylin-
ders.

navigate the robot among the pipes and to compare
the observed images with the normal states modeled
in the computer. If we know the initial state of the
robot, the current camera state in world coordinates
can be calculated from the set values of its actuator
modules. However, almost always, the values include
some errors owing to many factors, such as tire slips,
backlash of gears and so on. Therefore, we need to
correct the values.

When a 3D model of the environment surrounding
a camera is given, it is possible to know the position
and pose of the camera by aligning the 3D model with
the observed image. This strategy has a merit that
the camera coordinates is directly calibrated with the
environment which is inspection target. This subject
is equal to the determination of the position and pose
of a 3D rigid object from its 2D view, which is a fun-
damental and important problem in computer vision
research. One typical approach for this purpose is
feature-based one: it first extracts features(eg. edges,
corners) and matches them between the 3D model and
its 2D view. Once the 3D-2D point correspondences
are obtained, the position and pose of the model can
be quickly calculated (ex. [1]). Usually, however,
neither robust feature extraction nor robust feature
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Figure 2: Scheme of determination of the position and pose of a camera using occluding edges

matching are easy. Observed images in our subject
are also one of difficult images to extract and match
the features, because complex combination of simple
pipes produces complicated edges without prominent
feature points. Additionally, the specular reflections
on the surface of pipes increases the complexity of the
features.

As described above, since the position and pose of
the camera-head is autonomously controlled, its ap-
proximate values is known in advance. In such a case,
it is an effective strategy to iteratively transform the
3D model towards the correct position and pose using
the corresponding pairs between the observed and the
model points, which are matched on the basis of the
closeness at each state[2]. In [3], a 3D-2D registration
method with similar strategy realized quick alignment
of a 3D model of brain vessels with the observed X-ray
images. The method can be extended so as to deter-
mine the relative position and pose of a camera by
aligning a 3D model of its surrounding environment
with the observed image. As described in the paper,
to obtain high ratio of correct 3D-2D point pairs is
indispensable for the strategy to work well. Although
it is a way for this purpose to adopt some statistical
method like M-estimation[4], even in the case, it is de-
sirable that the ratio of correct pairs are high from the
beginning.

In this paper, we propose to effectively use two-

type predicted images which are calculated from the
3D environmental model by a graphics system (eg.
OpenGL etc) for obtaining robust 3D-2D point cor-
respondences. The predicted depth image is used to
quickly calculate the contour generator that is the 3D
line on the model’s surface corresponding to the oc-
cluding contour in the observed image. The predicted
intensity image is used to select only model points
which are expected to appear clearly in the observed
image. In Section 2, the whole scheme is described
with explanations on each elemental process. The ex-
periments using actual plant mock-up are shown with
discussion on the accuracy of the results in Section 3.

2 Basic scheme of 3D-2D alignment

2.1 Whole procedures

Fig. 2 shows a scheme of our strategy for determin-
ing the position and pose of a camera by aligning the
3D model with occluding edges in an observed image.
Suppose that an image is observed by a camera whose
initial position and pose are estimated (eg. data from
dead reckoning). Because of the estimation error, the
projection of the environmental model on the observed
image is deviated as shown in Fig. 4d. The concrete



procedures to correct the deviation are as follows:

i) Calculation of 3D model points
The 3D model points corresponding to the observed
edges are calculated from the 3D environmental model
according to the initial estimated state of the camera.

ii) 3D-2D point matching
Observed edge points corresponding to the 3D model
points are determined based on the closeness on the
observed image.

iii) Calculation of 3D transformation
The current position and pose of the camera is re-
newed to satisfy the 3D-2D point correspondences.

By iterating the processes from i) to iii), the pre-
dicted view is converging to the observed image and
the correct position and pose of the camera are ob-
tained. The details of each process are explained in
the following subsections.

2.2 Calculation of 3D model points

This process is done quickly by reading the 3D co-
ordinates of the edge points of the depth image calcu-
lated by a graphics system. White points in Fig. 4e
show 3D model points calculated in such a way. The
intensity image predicted by the graphics system is
also used as follows:

• Only model points which are expected to robustly
extract are selected.
When the strength of edge is predicted to be

weak, the corresponding 3D model points are re-
moved away.

• Expected grey levels around the projection of the
3D model points are used as their attributes.
In the experiments of this paper, the maximum

gradient direction around the projection of the
model points are used.

2.3 3D-2D point matching

Basically, the observed and the model points are
matched on the basis of the closeness of the 2D dis-
tances between the observed edge point and the pro-
jected points of the 3D model points on the image. In
addition to the basis, the following devices are taken
to improve the ratio of correct pairs.

• Territory-based matching

The territory-based 3D-2D matching uses anisotropic
search regions determined automatically from the pro-
jected shape of the model to prevent the bad influence
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Figure 3: Territory-based 3D-2D matching: (a) corre-
spondences based on only closeness in the 2D distance;
(b) correspondences using territory-based search re-
gions.

caused by lack of observed features, You can see the
effect in the example of the registration of a 3D model
of a blood vessel with its X-ray image shown in Fig.
3. The black points in Fig. 3a are the projection of
the 3D model, shown at the upper left of the image.
Since the given position and pose of the 3D model is
a little different from the actual ones, the points are
deviated from the observed vessel appearing as grey
shadows. The white lines in Fig. 3a show the fea-
tures, the skeleton of the vessels, extracted from the
observed image. Because of lack of observed features
and complex self-overlapping, the 3D-2D pairs defined
based on the closeness in the 2D image plane include
many undesirable pairs as shown with the black lines.
On the other hand, if we use territory-based search
restriction as shown in Fig. 3b, undesirable pairs are
automatically excluded.

• Consistency of directional attributes

The maximum gradient directions around the ob-
served edges are classified into eight directions. The
corresponding attributes of the model points are deter-
mined from the maximum gradient directions around
the projection of the 3D model points in the predicted
intensity image. Only the points having the same di-
rectional attributes can be paired.

2.4 Calculation of 3D transformation

Once 3D-2D pairs are obtained, the 3D transfor-
mation of the model to satisfy the relations is quickly
calculated using the following equations.

The observed image coordinates corresponding to
n model points, u = (u1, v1, u2, v2, ...un, vn)T can be
expressed as a function of the parameters determining
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Figure 4: Experiment 1: (a) observed image; (b) edges in the observed image (classified by different grey levels);
(c) front and top views of the 3D model; (d) projection of the model at the initial estimated state; (e) front and
top views of the 3D model points (white points); (f) projection of the 3D model points on the observed edge
image; (g) projection of the 3D model points after initial 2D translation; (h) projection of the 3D model points
after convergence; (i) projection of the 3D model after convergence.

transformation of the model, q, when all other viewing
parameters (including camera parameters) are known:

u = F(q). (1)

Here, in this case, q = (tx, ty, tz, rx, ry, rz)
T , where

tx, ty, tz and rx, ry, rz represent translation along the
(x, y, z) axis and rotation around the (x, y, z) axis re-
spectively. We assume that uo is observed, qc is an
initial (close) estimation q of its state, and uc con-
tains the projected coordinates at qc. By expanding
Equation 1 in a Taylor series around uc and taking
terms up to first order, we obtain:

uo = uc +
∂F

∂q
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Then, the q consistent with uo is obtained by adding
the following ∆q to qc:

∆q =

[

∂F

∂q

∣

∣

∣

∣

uc

]†

(uo − uc) . (4)
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Figure 5: Example of localization result: (a) observed
image; (b) measured state; (c) initial state; (d) result

Here, [A]
†

represents the pseudo-inverse of matrix
A. Because of the first-order approximation leading
to Equation 2 and inaccurate matching pairs, the ob-
tained solution may include some errors, and an iter-
ative calculation using the obtained q as a new qc for
each step leads to convergence to the correct state.

3 Experiments

3.1 Alignment using actual images

Fig.1a shows our experimental environment, a plant-
mockup. A robot with an active camera head moves
around in the environment. 17 pipes in this envi-
ronment are selected and modeled with cylinders in

OpenGL as shown in Fig.1b. The 3D world coordi-
nate system is defined as shown in Fig. 4c so that the
x and z axes lie in the horizontal floor face; the y axis
completes the left-handed coordinate system, and is
in the vertical direction.

Fig. 4a is an observed image. Fig. 4b is the
edge image, obtained by thresholding the differenti-
ated data calculated with Canny operator[5]. The
maximum gradient directions around the edges are
classified into eight directions and represented with
different grey levels. Fig. 4c shows a front and a top
views of the partial model represented with cylinders
in OpenGL. In the top view, the white circle and the
white line sticking out from the point illustrate the
position and the view direction of the camera. In Fig.
4d, the predicted view of the pipes at the position and
pose given by the data from dead reckoning. Pipes
are displayed with black color to be easy to see. The
measuring error causes the deviation of the predicted
view from the actual pipes. Fig 4e shows a front and
a top views of the 3D model points (white points)
obtained from the edges of the predicted depth im-
age. Since the occluding edges which are expected to
appear as weak edges are excluded based on the pre-
dicted intensity image, the occluding edges with the
background of similar color pipes are not selected. As
the same manner as the edges of observed image, the
maximum gradient directions around the projection of
the 3D model points in the predicted intensity image
are classified into eight directions and become the at-
tribute of each model point. In Fig. 4f, the model
points are overlaid on the observed edge image with
different grey levels describing the attributes.

Since a little change in camera angle causes a big
translation in the image, such translation should be
taken into consideration when we use the closeness
on the image as a clue to determine the 3D-2D point
correspondences. Concretely, the projected 3D model
points are two dimensionally translated on the im-
age to search for the best position where the model
points overlapped on the edges with the same direc-
tion attribute. Fig. 4g shows the position after this
initial translation. The 3D-2D point correspondences
obtained by the territory-based matching at this po-
sition are illustrated with white lines. The camera is
relatively moved to the 3D transformation calculated
by inputing the corresponding pairs to Equation 4.
At the new state, the same processes except the 2D
translation on the image are iterated. In this example,
the camera was converged to the state which gives the
projection of the model as shown in Fig. 4h, i after
10 iterations. The camera movement from the initial
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Figure 6: Experiment 3: Corrections of the position and pose of the camera while moving the camera in the
environment.

state was (35.3, 0.69,−60.5)(mm) translation and 3.7
degree rotation around the axis (−0.65, 0.068,−0.76).
Computational time was 2.1 sec for initial translation
and 0.2 sec for a loop of calculation of the 3D model
points, 3D-2D matching and renewal of the position
and pose of the camera, and hence the total time was
4.1 sec (Pentium II(333MHz)).

3.2 Accuracy in 3D localization

We examined accuracy of the 3D localization cal-
culated from the proposed 3D-2D alignment method
by comparing with manual measurements.

Fig. 5a shows an example of the images observed
by a camera mounted on the robot. The position and
pose of the camera head was manually measured with
great care and illustrated in the top view of Fig. 5b.
The accuracy of the manual measurement is about
±5mm in translation and ±3 degrees in rotation. Be-

cause of this slight error, the projection of the model
at the state shows a little deviation from the observed
image as shown in Fig. 5b.

We intentionally add some errors to the camera
state and use it as the initial estimate. Fig. 5c shows
the projection of the 3D model when giving the cam-
era state after adding (50,0,50) mm translation and
5 degree rotation around the y axis to the measured
state. In the top view, the white circle shows the cur-
rent camera position, while the gray circle overlapped
by the white circle shows the measured state. Fig. 5d
shows the result after correcting the camera state by
the method described in Section 2. The model is well
aligned with the image. Nevertheless, as shown in the
top view, the translation error occurred mainly in the
view direction, which is about 90 mm.

We have done similar experiments using more than
10 images observed at various locations. In all the
experiments, 3D models are well aligned with observed



images and 3D localization is converged. This showed
the robustness of the method in such a complex scene.
However, the translation error in the view direction
appears in all cases.

3.3 Analysis of error factors

The factors causing the 3D localization errors can
be counted up as follows:

1. Pixel quantization

2. Inexact camera internal parameters

3. Inaccuracy of the 3D models

4. Wrong 3D-2D correspondences

The accuracy of our 3D model is based on the man-
ual measurement and about ±5mm in translation and
±3 degrees in rotation. Since we calculate the cam-
era state from the 3D-2D corresponding pairs based on
least-squares estimation at the present, the wrong cor-
respondences left at the final state deteriorate the ac-
curacy. However, these errors should produce random
errors in the 3D localization. From the observation
of the clear tendency for the error to be translation
in the view direction, we focus on the two suspicious
factors, pixel quantization and the focal length of the
camera internal parameters.

To analyze the effect of these errors, we conducted
experiments using synthetic images [6]. As a result, it
was found the error in the 3D location caused by the
quantized error is small: the translation and rotation
errors are about 0.6 mm and 0.03 degrees in a similar
situation to Fig.5. This accuracy is supported by the
fact that the method uses lots of 3D-2D corresponding
pairs which distributed in a whole image (in this case,
about 120 pairs).

On the other hand, the 3D location error caused by
the inaccurate focal length was proved so large that
cannot be disregarded. When giving a shorter focal
length for synthetic views, the location deviated fur-
ther in the view direction. In the situation in Fig. 5,
the magnitude of the translation error in the view di-
rection is about −36mm per 0.1 mm error in the focal
length.

After this observation, we carefully measured the
angle of the field of view of the actual camera to cal-
culate the focal length. We found it is actually 48
degrees, although we had used the focal length corre-
sponding to 50 degree angle of the field of view. In the
case of data in Fig. 5, translation error in the view di-
rection is decreased from 90 mm to 4mm by correcting
this camera parameter.

Fig. 6 shows the some other results after correct-
ing the focal length. In the top views, the white circle

shows the resultant camera position, while the gray
circle overlapped by the white circle shows the initial
state given by adding some errors to each measured
state. Although the measured states are also displayed
with the black circle in the top views, they are hardly
seen because the white circles almost perfectly over-
lapped. In most of cases, the differences between the
calculated final state and the measured state are less
than ± 30mm translation and ± 3.0 degree rotation.

In the paper [6], we proposed usage of two cameras
for compensating the error cased by the inaccurate
focal length, for the case that it is difficult to know
the accurate values especially when a robot need to
change the camera focus and/or zoom during a se-
quential task.

4 Summary and Conclusions

We proposed a method to determine the position
and pose of the camera using occluding edges with
the condition that the 3D environmental model and
an approximate initial state are given. The character-
istics of the method are as follows:

1) Quickness.

• Only 3D model points corresponding to the ob-
served features are calculated rapidly from the
predicted depth image.

• The structures and connectivity of correspond-
ing features do not need to be extracted.

2) Robustness.

• Model points which are expected to vaguely ap-
pear on the observed image are removed away.

• Territory-based search restriction and usage of
the edge directional attribute raise the ratio of
the correct pairs of 3D-2D point correspondences.

The results of the preliminary experiments show
that the proposed method robustly aligns the 3D model
of an environment with observed images despite of
noisy complex scene with specular reflections. As far
as we know, it is the first 3D-2D alignment method
which can use so complicated occluding edges as the
clue to determine the position and pose of an object.
Allowable initial estimation error is about 10 cm trans-
lation and 10 degree rotation, which is enough bigger
than actual estimation errors from dead reckoning.

We also investigated accuracy of the 3D localiza-
tion obtained by the proposed method. From the ex-



perimental results, the method seems to offer 3D lo-
calization accuracy within at most ±30mm in trans-
lation and ±3 degrees in rotation. These values are
enough for the purpose of the robot navigation in nar-
row spaces of the plant. Aiming at applying to the
tasks which requires more accuracy[7], we will investi-
gate more the influences of the error factors noted in
Section 3.3.

Our future work will focus on detection of abnor-
mality in the environment. Once an observed image
is accurately aligned with the 3D model, simple sub-
traction of the predicted view from the observed im-
age can tell difference from the normal state, such as a
surface defect of pipes and so on. We plan to conduct
experiments on this matter aiming at autonomous in-
spection.
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