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Abstract—We propose a method of virtually flattening the
surface of a clothing item to a two-dimensional plane using the
geodesic distance over the surface of the item. If a clothing item is
flatly opened on a table, the recognition of the item is much easier
than that of the same item having an arbitrary shape. However,
it is difficult and troublesome to physically flatten a clothing item
from its arbitrary shape automatically. We therefore propose to
develop the surface of the clothing item held in the air into a two-
dimensional shape using three-dimensional observation data of
the surface. To this end, boundary points of the observed clothing
region are sampled as start/end nodes for calculating geodesic
lines, the lengths of which become two-dimensional distances
between the points when the surface is flattened to a plane. To
robustly calculate geodesic lines using a three-dimensional point
cloud of the surface, we adopt a method that interpolates the
depth and normal direction at any point on the surface using
the element-free Galerkin method. The shortest path along the
surface between two points on the surface is then calculated
using these depths and normal directions in the framework of the
“zero-length spring analogy”. The two-dimensional coordinates
of the points on the plane are obtained by solving simultaneous
equations determined by the geodesic distances. We also propose
a method of using the flattened view for the classification of
clothing type and detection of important parts of clothing.
Preliminary experiments using long-sleeve shirts and trousers as
clothing items demonstrate the promise of the proposed methods.

I. INTRODUCTION

Home and rehabilitation robots are expected to play an
important role in an aging society and it will become necessary
for robots to automatically handle daily objects including
clothing items. The large deformation of clothing items that
is accompanied by complex self-occlusion makes the task
of recognizing items challenging. A model-driven approach
works well when the geometrical model of the item of
interest is known in advance [1][2]. However, without this
previous knowledge, the problem is more difficult owing to
the tremendous variation in clothing shapes.

Most studies on the subject have tried to first spread the
clothing item using a fixed sequence of actions. Osawa et
al. [3] proposed a method that re-grasps the lowest point
of a clothing item twice to reduce the deformation varia-
tion. However, the shapes that form after the actions are
not necessarily discriminating and there is often undesired
twisting of the item. Hue et al.[4] proposed a method of
finding the appropriate grasping point for opening an item
into a small number of limited shapes from a sequence of
three-dimensional (3D) data obtained from various viewing

directions. However, the success rate of opening in their
experiments was not enough high. Triantafyllou et al. [5]
proposed a method of flattening clothing items while allowing
half-folded shapes and matched the flattened item with a
foldable template. However, it remains difficult to robustly
bring clothing into such flat shapes with only one fold.

Doumanoglou et al. [6] used 3D features extracted from
depth images of clothing items to classify the clothing category
and to detect the position to hold according to the random
forests algorithm. Although they obtained good results even
for items different from those used in the learning stage, their
methods require approximately 30,000 observation data for
training to achieve good results. It is uncertain if the learned
classifier still works when the situation (i.e., the robotics and
3D sensors) changes.

If the material of the clothing item is relatively thick, the
shape of the item when the item is held by one hand is
sufficiently informative to tell the clothing type and size. In
fact, a human can imagine the flattened shape from a three-
dimensionally deformed shape. Our aim is to realize this
“virtual flattening” function by transforming the 3D surface
into a two-dimensional (2D) shape. Hereafter, we refer to the
shape after virtual flattening as the flattened view. In this paper,
by limiting ourselves to the case that most of one side of a
clothing item that is held in the air can be observed from
one direction, we propose a fundamental method for virtually
flattening the clothing surface on a plane using the geodesic
distance of the surface. Although our previous paper [7] also
used geodesic distances in estimating the flattened view, that
method approximates the geodesic lines with the contours of
horizontal cross sections of a clothing surface . Although that
method is effective for the purpose of recognizing the clothing
state in the situation that the geometrical model of the clothing
item is given in advance, the accuracy is insufficient when
generally recognizing the shape without prior knowledge.

In the present paper, we propose a totally different method,
which calculates geodesic distances more properly and formu-
lates the flattening of the observed 3D surface as a problem
of solving simultaneous equations given by the geodesic
distances between the points on the surface. Section II explains
a method of calculating the geodesic distance between two
points on a surface using a 3D point cloud of the surface.
Section III describes the formulation of the virtual flattening of
a clothing surface using equations determined by the geodesic
distances. Section IV describes methods of recognizing the



clothing item using the flattened view. After experimental
results are presented in Section V, the results and future topics
of research are discussed in Section VI.

II. CALCULATION OF GEODESIC DISTANCE

Although many methods of calculating the geodesic line
using finite element meshes have been proposed [8][9], few
studies have calculated a geodesic line from meshfree 3D data.
Grossman et al. [10] proposed a voxel-based geodesic distance
estimation method mainly for texture mapping. Both the mesh-
based and the voxel-based methods assume uniformly dense
3D data of objects, that is not always kept in the case of 3D
point clouds obtained by a range sensor or stereo cameras. In
addition, the accuracy of those methods is limited in principle
since they approximate the geodesic distances with a sequence
of straight lines connecting adjacent triangle patches or voxels.
For the calculation of a smooth geodesic line more directly
from a 3D point cloud, the approach proposed by Kawashima
et al. [11] that calculates geodesic lines in a meshfree way is
effective. We follow their approach except for their method of
obtaining a numerical solution .

A. Surface interpolation using the element-free Galerkin
method (EFGM)

When analytically calculating geodesic lines of an arbitrary
curved surface observed as a 3D point cloud, it is important
to represent the surface with appropriate local approximation
functions. Here, we represent the surface at x = (x, y) as
z(x) and obtain the local approximation functions at x using
the EFGM[12]. With this approach, we can approximate the
local surface function with continuous partial derivatives from
a 3D point cloud in a meshfree manner. Specifically, z(x) is
approximated by a polynomial function comprising m terms.
In a 2D domain, the polynomial basis vector can be, for
example, (1, x, y)(m = 3) or (1, x, y, x2, xy, y2)(m = 6).
We use m = 3 and thus have

z(x) =

3∑
j=1

pj(x)aj(x) = PT (x)a(x), (1)

PT (x) = (1, x, y), a(x) = (a1(x), a2(x), a3(x))
T .

The coefficient vector a(x) is locally determined at each
x using the moving least-squares approximation: a(x) is
determined by minimizing the weighted function

J =

Nr0∑
l=1

w(rl)(z(xl)− zl)
2, (2)

rl = |x− xl| ,
where w(r) is a weight function defined by the distance

between the target point, x, and observed points xl(l =
1, · · · , Nr0) within a fixed distance, r0. In this study, a fourth-
order spline function is used as the weight function following
[11]:

w(rl) =

{
1− 6 rl

r0

2 + 8 rl
r0

3 − 3 rl
r0

4 if 0 ≤ rl ≤ r0
0 if r0 < rl

. (3)

Fig. 1. Surface interpolation and geodesic line

The advantage of this formulation is that the depth and
its first derivative can be continuously determined even when
using the linear base function.

The depth and normal at x are calculated using the resultant
a(x):

z(x) = a1(x) + a2(x)x+ a3(x)y, (4)

n(x) = (a2(x)/D, a3(x)/D, 1/D), (5)

D =
√
a2(x)2 + a3(x)2 + 1.

The green points in Fig. 1 show an example of surface
interpolation along the line y = −x + 10 using a 3D
point cloud (red points) sampled from the surface of z =√
25− (x− 5)(x− 5) .

B. Numerical solution obtained using the zero-length spring
analogy

To calculate the geodesic line between two points, Ps and
Pe, we set M nodes on the surface to represent the line PsPe =
P1P2....PM , where Ps = P1, Pe = PM and Pi = (xi, yi, zi).

The problem of obtaining the geodesic distance of PsPe can
be set as minimizing Ltotal given by:

Ltotal =

M−1∑
i=1

Li, (6)

Li =
√
(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2.

Because of the term including z(x) determined by Eq. (4),
Ltotal is a complex function. To stably solve the minimization,
we make the zero-length spring analogy. Specifically, we
assume that each segment PiPi+1 is a spring connecting two
nodes, Pi and Pi+1, with a basis length (the length at neutral
time ) of zero and a spring constant k. The total length of all
springs, Ltotal, is a minimum when the spring system comes
into equilibrium.

Because each node is constrained to move on the surface,
when a force F is exerted on a node, Pi, only the component
of F along the surface, F̃ , affects the movement of Pi:

F̃ = F − (F · ni)ni, (7)



where ni = (nxi , nyi , nzi) is a unit vector in the normal
direction at Pi. Because the force exerted on Pi is only from
two springs, the x component of F̃ for Pi is

F̃x = −ki−1(1− n2
xi
)(xi − xi−1)

+ ki(1 + n2
xi
)(xi+1 − xi) + Ci, (8)

Ci = ki−1nxi((yi − yi−1)nyi + (zi − zi−1)nzi)

+ kinxi((yi+1 − yi)nyi + (zi+1 − zi)nzi).

Supposing Pi moves gently in a viscous fluid with a fluid
coefficient γ, the equilibrium equation of the force in the x
direction acting on Pi at time t is

Ai

⎛
⎝ xi−1

xi

xi+1

⎞
⎠+ Ci + γ

δxi

δt
= 0, (9)

Ai =
(
ki−1na,i −ki−1na,i − kinb,i kinb,i,

)
na,i = (1− n2

xi
), nb,i = (1 + n2

xi
).

Supposing γ is a large negative value, the points hardly
move for Δt = 1; i.e., Ci,t � Ci,t+1, nt � nt+1. Hence, for
all points, Pi(i = 1, · · · ,M),

Atxt+1 +Ct = −γ(xt+1 − xt), (10)

where xt = (x1,t, x2,t, · · · , xM,t)
T , Ct =

(C1,t, C2,t, · · · , CM,t)
T , and At is a tridiagonal banded

matrix. By applying the same analysis to the y direction,
equations for one step of the successive approximation are
obtained as

xt+1 = (Ax,t + γI)−1(γxt −Cx,t), (11)

yt+1 = (Ay,t + γI)−1(γyt −Cy,t). (12)

At each iteration, zt+1 and nt+1 are calculated using Eqs.
(4) and (5) with (xt+1,yt+1).

The blue points in Fig. 1 show an example of the geodesic
line obtained after the convergence of the successive approx-
imation, using the green line as its initial position.

III. CALCULATION OF THE FLATTENED VIEW

A. Basic formulation

We assume that a clothing surface can be flattened onto a
2D plane, (u, v). Then, if we consider N points on the clothing
surface, Pi(xi, yi, zi), i = 1, · · · , N , the flattening can be
formulated as the problem of calculating the 2D coordinates
of Pi on the plane when the surface is flattened, (ui, vi).

These coordinates should satisfy the equation√
(ui − uj)2 + (vi − vj)2 = Gi,j , (13)

where Gi,j is the geodesic distance between Pi and Pj on the
surface.

Although the number of equations of the form of Eq. (13)
is NC2 if we consider all combinations of N points, not all
are necessarily required as long as the number of equations
related to one point is more than two, which is the number of

Fig. 2. Point pairs for calculating geodesic distances

unknowns for the point. By representing the use/disuse of Gi,j

as B(i, j) = {1, 0}, the flattening becomes the minimization
problem of the equation

H(u,v) =
N−1∑
i=1

N∑
j=i+1

B(i, j)(
√
(ui − uj)2 + (vi − vj)2 −Gi,j)

2.

(14)

The solution is then obtained by solving 2N simultaneous
equations, where the two equations for each Pi are

∂H(u,v)

∂ui
= 0,

∂H(u,v)

∂vi
= 0.

B. Problem setting for clothing

As noted in Section I, the present paper assumes that almost
all of one side of a clothing item is observed when the item is
held by a robot hand in the air. We then choose points from the
boundary of the observed clothing region, Pi(xi, yi, zi), i =
1, · · · , Nb, as shown by red points in Fig. 2.

Before considering the constraints regarding geodesic dis-
tances, the conditions related to the neighboring points, Pin

for Pi, are introduced to keep the local shape:√
(ui − uin)

2 + (vi − vin)
2 = Ei,in , (15)

Ei,in =
√
(xi − xin)

2 + (yi − yin)
2 + (zi − zin)

2,

in = {i− 2, i− 1, i+ 1, i+ 2}.
Because the gravity force pulls the item in the vertical

direction, folds on the surface occur mainly in the hori-
zontal direction. We thus select point pairs for calculating
the geodesic distance such that the points of a pair have
similar height; the points that have the closest height, Pih0

,
are selected as the pair Pi as shown by thick blue lines in Fig.
2. Points close to Pih0

are then used for additional pairs as
shown by thin blue lines.

Then, (u,v), which satisfy Eq. (15) and



√
(ui − uih)

2 + (vi − vih)
2 = Gi,ih (16)

ih = {ih0, ih0 ± id}
in accordance with least-square-error standards are obtained

by the minimization of H ′(u,v):

H ′(u,v) =
Nb∑
i=1

(
√
(ui − uin)

2 + (vi − vin)
2 − Ei,in)

2

+

Nb∑
i=1

(
√

(ui − uih)
2 + (vi − vih)

2 −Gi,ih )
2. (17)

In the experiments reported in the present paper, Nb = 30
and id = 2 are used.

IV. RECOGNITION USING THE FLATTENED VIEW

Because the shape of the flattened view is hardly affected
by physical deformation, it should be useful for various
recognitions, such as the classification of the clothing category.
For the classification, we represent the common model of
each category using likelihood images, I(i, j), in a manner
similar to that employed by Hue et al.[4]. Figure 3 (a)
shows the concept of likelihood images. Each pixel of the
likelihood image represents the possibility of the boundary
of the flattened shape of each category. By combining typical
shapes of the same category into one image or using statistical
models such as the active shape model[13], likelihood images
that represent within-class shape variation due to different
designs are available.

When classifying the flattened view of an observed item
using the likelihood images, the size of the view is normalized
using the vertical length, and the contour of the view is then
set on each likelihood image so that the holding position
coincides with the likelihood image. The consistency between
the contour and the likelihood image of each category is
simply measured using R:

R =

∑Nc

n=1 I(in, jn)

Nc
, (18)

where Nc is the number of pixels of the contour and (in, jn)
denotes the coordinates of contour point n(n = 1, · · · , Nc))
on the image. The category having the highest R is selected.

For the automatic handling of a clothing item by a robot, the
positions of important parts, such as the corners of the bottom,
are also essential information. The flattened view is also useful
for obtaining such information. Similarly to how the whole
shape was considered, we store the possibility of each part
in a likelihood image. To this end, at the same time that the
likelihood image of the whole shape is made, the distribution
of each important part is also recorded in a different layer of
a multilayer likelihood image of each category. In the case
of Fig. 3(b), the likelihoods of the bottom-corner layer and
armpit layer are superposed on the whole-shape likelihood

Fig. 3. Likelihood images for recognition: (a) likelihood images of each
category; (b) concept of a multilayer likelihood image.

image using red and green respectively. Once an observed
item is classified into a category using the whole-shape layer
likelihood image, other layers for important parts are referred
to so as to detect the parts by searching for the characteristic
features of each important part only in the area with high
possibility (e.g., the red part for bottom corners). As such
points are found on the flattened view, the 3D positions of the
parts also become known in the 3D observation data via the
view.

V. EXPERIMENTS

A. Geodesic distance on measured surface

To examine the accuracy of geodesic lines on actually
measured surface, a piece of paper with a line drawn on it (Fig.
4(a)) was deformed and measured using a trinocular stereo
camera[14]. On each depth image of the observed surface (Fig.
4(b)), the 2D coordinates corresponding to the points S and E
in Fig. 4(a) were manually given. The 3D coordinates of the
points were read from the depth image and used as the start and
end points for calculating the geodesic line. Fig. 4(c)(d) show
the geodesic lines (D and C in Table 1) obtained by the method
described in Section II, where grey dots in the middle and right
images represent observed 3D points. The green points show
the surface interpolation along the straight line connecting S
and E on the depth image, while the red points show the
resultant geodesic lines using the green points as the initial
lines. Table 1 shows the results of five different deformations.
In three cases (A, B and D in Table1), the geodesic lines
got close to the drawn line and the difference in length from
the actual value, 200 mm, was less than 2.1 mm. In the two
remaining cases, calculated geodesic lines partially deviated



Fig. 4. Experiment 1: Geodesic distance on measured surface: (a) Paper used
in the experiment; (b) observed 3D data (D, C); (c) geodesic line of D; (d)
geodesic line of C.

Table 1 Accuracy of geodesic lines on measured range data

Data A B C D E

Length of initial line (mm) 215.5 217.4 236.4 219.0 241.7
Length of geodesic line (mm) 200.1 202.1 209.1 200.6 207.4
Error rate (%) 0.05 1.1 4.6 0.3 3.7

from the drawn line as marked by a orange circle in Fig, 4(d)
and the length errors were about 7 mm and 9 mm. These
deviations occurred around the part where the 3D data of the
surface is lacked as we can see a white gap in the 35 degrees
up view of Fig. 4(d). From these results, we estimate the error
of the geodesic line as around 1% without observation lacking
along the line, while 5% for the case with the lack.

B. Flattened view of 3D observation data

Experiments were conducted using three observation data
sets for long-sleeve shirts and three observation data sets for
trousers. Since these items are easily held at the tip of a sleeve
or leg by grasping the lowest part after picking up them placed
in an arbitrary shape (e.g., [4]) , we used observations for
such situations. For the experiments, after taking 3D data from
different directions, the 3D data for which almost all one side
of an item is observed were manually selected. Figure 5(a)
shows an example of the flattening process in the case of
a long-sleeve shirt. The red lines in Fig. 5 show geodesic
lines calculated using the method described in Section II. The
blue line shows the resultant flattened view obtained using the
method described in Section III. The view was globally well
obtained, although parts around the armpits were not produced
because points around the armpit were not detected owing to

(a)

(b)

Fig. 5. Flattening of 3D observation data

the occlusion of the part. To avoid such situations, observations
need to be made from different directions.

In the case of trousers, because one leg is folded when
the trousers are held at the tip of the other leg, it is almost
impossible to find 3D data including all of one side of the
item. Instead, in the experiments of this paper, we consider
the flattened view of the item after one leg is folded as shown
in Fig. 5(b). In this example, 3D observation data for the part
of the upper leg marked by the yellow circle in the figure
was largely lacking. As a result, some boundary points of the
observed clothing region correspond to points inside the leg.
This fact was reflected in the flattened view, as marked by
the orange circle. The zigzag contour of the uppermost part
was due to the twisting of the part in the real world. The
magnitude of this flaw should be lessened if we use the 3D
data of observations made from the direction perpendicular to
the normal of the part.

C. Classification

Using the resultant flattened views, we also conducted
preliminary experiments on category classification. Although,



Fig. 6. Process of building a model likelihood image

Fig. 7. Recognition using the flattened view

as noted in Section IV, a common model should be built to
absorb the shape variation within the same category, this time,
common models that have been calculated from one typical
shape model of each category were temporarily used. Figure
6 shows the process of creating the likelihood image. After
one clothing model with a typical shape of one category was
selected, the shape when the clothing is held at the tip of a
sleeve or leg was simulated using Maya [15](Fig. 6(a)). The
flattened view of the simulated 3D shape was calculated using
the proposed method as shown in Fig. 6(c) using the geodesic
distances (red lines in Fig. 6(b)). To absorb the size and design
variation of each category, the resultant contour is expanded
and then smoothed using a Gaussian function. Figure 6(e)
shows the likelihood image for a long-sleeve shirt that faces
left (LS-L). In addition to this example, the likelihood images
of a long-sleeve shirt that faces right (LS-R), trousers that face
left (TR-L) and trousers that face right (TR-R) were prepared.

The flattened views of six observation data sets were clas-

Fig. 8. Preliminary trial of detecting important parts

sified by setting the contours of the views on each likelihood
image at the holding position after normalizing the size using
the vertical length of the flattened view. Because the holding
position slightly changes depending on how the robot hand
grasped the item, the highest consistency R obtained while
moving the contour horizontally on the image was used. Figure
7 shows the results for all six flattened views on the likelihood
image that gives the highest consistency. In the case of Fig.
7(b), a part around one bottom corner was not seen in the
observation data. As a result, boundary points around the part
were inside the body. This situation manifests as the convex
region marked by the orange circle. Again, the twisting of legs
and sleeves in the real world adversely affected the results for
some parts of the clothing. Despite these partial errors, all
flattened views were correctly classified.

Using the result of Fig. 7(a), a trial of detecting important
parts was performed as shown in Fig. 8. The points that have
a characteristic feature in the high-possibility region of the
likelihood image of each important layer were detected in the
flattened view: convex points for bottom corners and concave
points for armpits. Large red and green points in Fig. 8(a)
show the detected points. Then, by re-projecting the points to
the original observed 3D data, these characteristic points were
detected as shown in Fig. 8(b).

VI. CONCLUSION

We proposed a method of virtually flattening a clothing
surface on a 2D plane using an observed 3D point cloud. To
this end, a method of stably calculating the geodesic distance
between two points on the surface was proposed. Surface
interpolation using the EFGM and a numerical solution based
on a zero-length spring analogy allow the proposed method
to work well in practice even when the observation data are
lacking or have an uneven point distribution as shown in our
first experiment.



Because geodesic distances between surface points are 2D
distances of the points in the flattened view, the proposed
method calculates the view by solving simultaneous equations
given by the geodesic distances. In our second experiment,
the flattened views were globally well obtained, although there
were partial errors due to occlusions in the observed 3D data.

The obtained flattened view is useful for the recognition of
observed items. In our third experiment, we showed that the
views are effective for classification of the clothing category.
In addition, a preliminary trial on the detection of important
parts of clothing demonstrated the good prospects of using
the flattened view as a mediator between common models and
items having a deformed shape.

Although we used 3D data of observations made from
one viewing direction in this paper, the experimental results
indicate the necessity of using data of several observations
made from different viewing directions to accurately flatten
one whole side. However, because the clothing item may be
partially deformed when rotated for observation from different
directions, it is another challenging subject to integrate sets of
3D data of observations made at different times. We expect
that flattened views will also be useful in solving this problem.
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