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Abstract—A method for detecting the position and orientation
of freely curved pipes is proposed for the purpose of bin picking.
We assume that the geometrical model of the object of interest
is given and the bin of objects can be observed using a widely
available low-cost 3D sensor. As freely curved pipes do not have
distinguishable feature points, typical feature-based matching
methods cannot be applied directly in this case. Although the
iterative closest point (ICP) algorithm [1] is a suitable strategy
for registering a 3D model with free-form surfaces to its observed
3D data, two difficulties arise when applying the ICP algorithm
in the case where the background is filled with objects with the
same shape. One of these is the initial estimation of the position
and orientation of an object from among similar shaped point
clouds. The other difficulty is robust point matching between the
3D model and the observed data belonging to a single object. To
solve these issues, we investigated two key ideas: 1) estimation
of pipe orientation by checking the shape of the cross-section of
the observed 3D data while changing cutting directions of the
sections; and 2) point matching based on ridge lines with respect
to the camera direction. Experiments using actual observed data
show the effectiveness of the proposed method.

I. INTRODUCTION

Many studies have focused on localization of an object
for bin picking (e.g. [2],[3],[4],[5],[6]), which is required
in various situations, such as requesting parts from stock
to assemble into a product. Although both two-dimensional
(2D) and three-dimensional (3D) observations have been used
for this purpose, recently, along with the popularization of
low-cost 3D sensors such as the Kinect, 3D point clouds
have become easier to obtain at low cost and with little
complexity. In fact, there has been much interest from small-
and medium-sized enterprises to build a low-budget automatic
bin-picking system using such sensors. In many industrial
scenarios including such requests, target objects are rigid (non-
articulated, non-deformable) and the geometrical model of the
object is available in advance. Thus, in this paper, our research
is based on these conditions.

For bin picking, it is essential to detect and localize objects
lying on top of other objects, thereby allowing them to be
picked out first. This is generally a non-trivial task since an
object must be localized against a cluttered background with
many of the same features.

Most existing methods perform this localization by aligning
the model with the observed data. These methods can be
classified into three types according to the features used to
match the model with the observed data, namely: 1) salient

feature points (e.g., corners and marks); 2) shape primitives
(e.g., spheres and cylinders); and 3) generic features.

If objects of interest have distinguishable feature points, the
first approach works in a relatively simple and fast way. For
example, Rahardja et al. [3] detected circular holes on a target
object by using ellipse fitting in images captured by stereo
cameras. However, since the target is observed from only one
direction in bin picking, this strategy is applicable only when
enough features can be viewed from any direction.

In the case where objects of interest consist of basic
primitive shapes like spheres and cylinders, geometrical char-
acteristics of such primitives are reliable clues to determine
the position and orientation. Nieuwenhuisen et al. [7] used
subgraph matching, where nodes of the graph are instances of
simple shapes such as cylinders and planes.

The third approach calculates more generic features on the
surface. Kirkegaard et al. [8] used differential geometrical
features that characterize the surface in a small region around
a point of interest. However, features based on differential
geometry are often unstable in practical scenes, especially in
the case where 3D point clouds are obtained using a low-
resolution 3D sensor. Avoiding the use of differential features,
Buchholz et al. [9] used four-dimensional features that are
fixed by a pair of points on a surface, the distance between the
two points, and three angles fixed by the normal of the points.
Matching these features between the model and observed data
produces many hypotheses of the location. These hypotheses
are checked and refined by the iterative closest point (ICP)
algorithm [1]. The ICP algorithm iteratively finds the best
matching of two surfaces based on correspondences of the
closest pairs of points.

Although this algorithm is theoretically applicable to arbi-
trary shapes, in reality, it is not that straightforward because
too many false hypotheses can be produced depending on the
shapes. For example, in their work [9], Buchholz et al. had to
remove a planar area that produces many similar features.

If the target object consists of free-form curved surfaces, the
first and second approaches cannot be used since the objects do
not contain both salient feature points and shape primitives.
The third approach is applicable, but is expected to require
high computational time owing to the large number of similar
features. Freely curved pipes, as illustrated in Fig. I, are one
such example.

In this paper, we propose a method that can work for such
pipes by using the characteristics of the pipe shapes effectively.978-1-4673-7929-8/15/$31.00 c© 2015 IEEE



Fig. 1. Example of a model and the observations

Our main contribution is twofold. First, the proposed method
obtains an initial estimation of the position and orientation of
a pipe for the ICP algorithm based on imperfect segmentation
results of the pipe. It estimates the principal axis of the
pipe by checking the cross-section of the segmented region
while changing the cut direction of the section. Second, the
method enables robust and fast point correspondences in the
ICP process by using ridge lines with respect to the camera
direction instead of all the points on the surface. The newly
proposed feature for point matching, called the Z-ridge, has
advantages such as good observability and robustness to noise.

In Sections II, III, and IV, we describe, respectively, the
preprocessing and both these proposals. In Section V, experi-
mental results using actual observations are discussed.

II. PREPROCESSING

A. Observed data

As previously noted, we assume the use of a widely
available low-cost 3D sensor for observing a pile of objects
in a box. Fig. I shows examples of observations taken by the
ASUS Xtion and the model of pipes dealt with in this study.
Here, the distortion of the original 3D point clouds obtained by
the sensor have already been corrected by a sensor calibration
method [10]. Although color information of the 3D points is

Fig. 2. Preprocessing: segmentation of pipes lying on others

also obtained, we use only the depth information. In the depth
images of Figs. I and 2, 3D points are represented by gray dots.
Fig. 2(b) shows a different view of part of the observation with
the axes of the 3D coordinates we set. The 3D sensor is set
directly above the bin so that the view direction, the Z-axis of
our coordinates, coincides with the direction of gravity.

Observed 3D points are restored in a Z-buffer image, the
pixel width of which is 1 mm, zimg[j][i]; the Z-coordinate
of a 3D point (X,Y,Z) is stored at zimg[round(Y)][round(X)],
where function round(x) returns the integer closest to real
number x. Using this Z-buffer image, the normal direction of
each point is calculated in advance by plane fitting using the
points stored in the point’s neighboring pixels.

B. Segmentation of pipe regions from the background

When picking up an object from the bin, the situation in the
bin changes and must be observed again before the next action.
Therefore, we set our goal as localization of only those pipes
that are easily picked up, that is, pipes lying on top of other
pipes. To extract regions corresponding to such pipes, first,
core regions that are expected to belong to the uppermost pipes
are extracted and then, these core regions are expanded into
the neighboring pixels. The resultant regions with sufficient
length to cover the entire shape are selected as possible pipe
regions. The algorithm flow is shown in Algorithm 1 with the
details given below:

1. Extraction of core regions
Regions with upward normals are extracted as core
regions. First, pixels with a normal (Nl) that is close to
the vertical direction (Nv) = (0, 0,−1), are extracted,
using the condition Nl · Nv > Nth1. Then, the region



Algorithm 1 Extract candidate regions
1. Extract connected regions with upward normals as core
regions (area condition: An ≥ Ath)
2.
for Each core region, n do

2.1 Expand the region
while Neighboring pixels satisfying the condition below
exist do

if The normal of pixel i, neighboring any boundary
pixel of the region Ni, is close to the normal of
boundary pixel j, Nj ,
(NiNj > Nth1) then

Merge the pixel into the region
end if

end while
2.2 Calculate the furthest distance between points in the
region, lmax

if lmax > aL then
Select the expanded region as a region corresponding
to a pipe lying on others

end if
end for

composed of pixels connected with 8-connectivity to
each other, An, is selected if it is larger than the fixed
area threshold Ath, (An > Ath). The green region in
Fig. 2(c) shows an example of the result.

2. Expansion of core regions
The core regions are expanded to points surrounding
these regions if the normal direction of the points change
continuously from the boundary of the region. The light
green region in the lower left of Fig. 2(c) shows the
result after expanding one of the core regions.

3. Selection of uppermost pipes
If a pipe lies on top of other pipes, most of the upper
parts of the pipe can be observed. This can be deter-
mined using the longest 3D distance between the points
in the region. The four light purple regions in Fig. 2(d)
show an example of the result, with the threshold for
the selection set to aL, a = 0.7 and L is the longest
distance between the points furthest from each other in
the 3D model.

Please note that each resultant region corresponds to the
pipe that includes the core region before expansion.

III. ESTIMATION OF POSITION AND ORIENTATION

If the region corresponding to one pipe is only segmented,
the principal axis of inertia of the 3D data of the region gives
a close estimate of that of the corresponding pipe. However,
segmentation can sometimes fail as shown in Fig. 3(b). Here,
because the pipes are in close contact with each other, the
region swells out into neighboring pipes (light-purple region),
while expanding the core region colored blue. As a result, the
principal axis of the region is different from that of the pipe

Fig. 3. Estimation of orientation

corresponding to the core region, as shown by the blue line in
Fig. 3(e).

To estimate the correct orientation even in such cases, we
adopt a different method to estimate the orientation, based on
the characteristics of the pipe shape. First, the depth of the
region is raster scanned into a one-dimensional signal with
the direction of the scan, θ. Red (green) arrows in Fig. 3(b)
show an example for θ = 0◦(90◦). During the scan, the
values of the pixels in the segmented region only are included
in the signal; that is, the signal comprises a sequence of
cross-sections. The two graphs in Fig. 3(c) show the resultant
signals for θ = 0◦ and 90◦, respectively. When the region
is scanned in a direction perpendicular to the principal axis



Fig. 4. Z-ridge of pipe-1

Fig. 5. Example of ICP process using Z-ridge (pipe-2)

of the corresponding pipe, the signal should include cross-
sections, the width of which is close to the pipe diameter,
R, and the narrowest of all the directions. Since our 3D
sensor, like most vision sensors, cannot measure a surface with
the normal almost perpendicular to the camera direction, the
narrowest width is not the same as the diameter, R, but a little
smaller. Taking this into consideration, we count the number
of cross-sections in each signal with width 0.9R ∼ 1.0R.
Fig. 3(d) shows the transition of the number relative to θ. The
angle giving the maximum number is detected as the direction
perpendicular to the principal axis of the pipe. The orange line
in Fig. 3(e) shows the resultant direction.

This process determines an angle around the Z-axis in the

XY-plane only. However, considering that most pipes lying
on others are almost horizontal, we think we can ignore
angles around the X- and Y-axes. Once this direction has been
determined, a line segment is drawn in the direction passing
the centroid of the core region and with length equal to the
width of the observed area in the direction. The orange line
in Fig. 3(e) shows an example. The center point of the line
segment (the red point in Fig. 3(e)) and its direction is used
to determine the initial position and orientation of the model
in the ICP registration process.

Algorithm 2 Register model to candidate regions
for Each candidate region, n do

1. Estimate principal axis direction
2. Detect Z-ridge points Po

for Initial states, m (1 ∼ 6) do
2.1 Set model at the state
2.2 Register the model to the region
while until convergence do

2.2.1 Calculate Z-ridge points Pm from the model
at the current state
2.2.2 Find closest point pairs between Pm and Po

2.2.3 Transform the model based on the least square
error

end while
2.3 Record the converged state, m̂, with the minimum
residual error, Rm̂

if Residual error, Rm̂ < Rmin then
Rmin = Rm̂, M = m̂

end if
end for
3.
if Rmin < Rth then

Locate the model at state M
end if

end for

IV. REGISTRATION BY ICP USING Z-RIDGE

A. Feature for point correspondences

When registering a 3D model to its 3D observed point cloud
within the framework of ICP, in general, points for matching
are sampled regularly from all the model surfaces that are
visible from the current view direction. Here, assuming that
all surface points are not necessarily required to fix the position
and orientation of pipes, we propose using a kind of ridge line
instead of using points from the entire surface. Concretely,
points that are local minima of the Z-coordinates along the
direction of the Y-axis under the condition that the object (or
observed 3D data corresponding to the object) is placed so
that its principal axis coincides with the X-axis. The green
lines in Fig. 4 show some examples. Henceforth, we refer to
the line as a Z-ridge.

The Z-ridge of an object changes according to the rotation
angle around the X-axis as shown in Fig. 4. So, while the
orientation of the model does not coincide with the actual



(a) (b)

Fig. 6. Convergence characteristics

orientation of the observed pipe, the Z-ridge calculated from
the model and that calculated from the observed data do not
correspond exactly with each other. Nevertheless, we found
that the Z-ridge still works as a feature for matching within the
framework of the ICP algorithm, where iterative calculations
using not exact, but close point correspondences cause the
model to converge to the correct state. Fig. 5 shows an example
of the convergence process using artificially created observed
data (yellow points) by rotating the model (dark purple) by
80 degrees around the X-axis. Here, orange lines illustrate
correspondences between the modelfs Z-ridge points (green
points) and the observed Z-ridge points (blue points). Several
iterations, during which Z-ridges of the model are recalculated
at each state, align the model in the correct position and
orientation.

Using Z-ridge points instead of all the surface points has
three advantages and one disadvantage. First, since the ridge
compactly represents the 3D shape, it offers an effective
way of decreasing the number of points for point matching
and reduces computational time. Second, the Z-ridge suffers
from less occlusion than all the surface points owing to its
good observability from the camera. Third, the Z-ridge tends
to cause fewer incorrect point correspondences than all the
surface points since it is distant from the points of other
pipes even when the pipes are in close contact with each
other. The disadvantage is that using the Z-ridge may cause
registration inaccuracy. We reconsider these characteristics in
the discussion in Section V.

B. Necessary number of initial states

As we can estimate the principal axis direction using the
method described in Section III, the remaining degrees of
freedom about the orientation are the two opposite directions
along the axis and the rotation around the axis. The number
of initial states needed to converge to the correct state in this
situation depends on the shapes. The required number can

be estimated in advance by means of a test using synthetical
observation data like that shown in Fig. 5. Fig. 6(a) shows the
residual errors after convergence to the synthetic observation
data created by rotating the model around the principal axis
while increasing the rotation angle at 10-degree intervals. As
can be seen, the model converges to the correct orientation
within ±80◦, ±70◦, and ±100◦ for pipe-1, pipe-2, and pipe-3,
respectively. These results indicate that trials from three initial
states, 0◦, 120◦, 240◦ can converge to the correct orientation.

Similarly, the allowable translation difference for correct
convergence can be tested to determine how dense we should
set the initial positions. Fig. 6(b) shows the residual errors
after convergence to the synthetic observation data created by
moving the model by 5 cm in the X-, Y-, and Z-directions,
respectively. As can be seen in all the experiments except those
in the X-direction, the model converges to the synthetic data
in all cases. In the case of X-translation of pipe-1 (pipe-2),
translation within 3 cm (4 cm) is acceptable. Because, in our
case, translation errors are expected to be within these limits,
correct convergence is expected from one initial estimation
position only.

Of course, these results are for cases without noise. How-
ever, addition of Gaussian noise to the synthetic data has a
negligible effect on the results. Therefore, we determine the
number of initial states for the experiments in Section V based
on these results. Concretely, for each candidate region, six
(2x3) states are used as initial states for the ICP processes: two
opposite directions along the principal axis and three rotation
angles in each direction.

The algorithm flow corresponding to Sections III and IV is
shown in Algorithm 2.

V. EXPERIMENTS

Experiments were conducted using 10 observations of each
pipe captured by an ASUS Xtion sensor, as shown in Fig. I,
giving a total of 30 observations. As noted in Section I, we



(a) Pipe-1

(b) Pipe-2

(c) Pipe-3

Fig. 7. Comparison of the results of Z-ridge points and all points

used only the depth information and not RGB. The 3D model
of each pipe is given in stl format.

The number of pipes lying on top of other pipes was
manually counted in all images: 43, 40, and 71 for pipe-
1, pipe-2. and pipe-3, respectively. Of these, the number of
pipes localized by the proposed method were 40/43, 35/40,
and 52/71, respectively. In all our experiments, whether the
model converges to an observed region was determined based
on the average residual distance between corresponding pairs
of the model and the observed data. A manually set threshold
was used to judge this.

Fig. 7(a), (b), and (c) shows examples of the results for
pipe-1, pipe-2, and pipe-3, respectively. The resultant regions
of Algorithm 1 are shown as purple regions with a blue core
region in the second column of Fig. 7 (and Fig. 9). The orange
lines show the estimated direction of the principal axis. Most
of these angles are within 10 degrees of the manually obtained
ground truth.

To clarify the effect of using the Z-ridge instead of the whole
visible surface, results using points sampled regularly from all
visible surfaces are shown in the fourth column of Fig. 7 (and
Fig. 9). Whereas ICP using surface points often failed to find
the correct localization, ICP using the Z-ridge mostly yielded
correct localizations. For example, in Fig. 7(a), all four pipes
not lying under any other pipes, were correctly localized.

Fig. 8 illustrates the reason for this difference using the case

of the third pipe from the left in Fig. 7(b). The orange line in
Fig. 8(a) shows the principal axis estimated for the blue core
region. The convergence process from the initial state closest
to the actual state of the six initial states derived from the
principal axis, is shown in Fig. 8(b) and (c). Here, blue and
green points represent the observed surface/Z-ridge and model
surface/Z-ridge, respectively, while the orange lines show
point correspondences between the model and observed data.
Registration using all surfaces was contaminated by incorrect
correspondences with the 3D points of the neighboring pipes.
On the contrary, registration using the Z-ridge succeeded in
finding most desirable correspondences by eliminating the
effect of those 3D points. The rightmost column shows the
resultant location.

Regarding pipe-1 and pipe-2, the positions and orientations
were almost correctly obtained as shown in Fig. 7(a) and (b).
For pipe-3, however, deviations from the correct orientation
occasionally appeared as shown in Figs. 7(c) and 9(b). The
reason for this may be that the shape of pipe-3 closely matches
part of a torus, which has shape invariance with respect to the
rotation of the center axis of the torus. Another possible factor
is that only small parts of the pipe were observed depending
on the view direction. These factors pose difficulties not only
for the proposed method, but for all methods.

Fig. 9(a) and (b) shows examples of pipe-2 and pipe-3
that include mis-localization. In the case of Fig. 9(a), strong



Fig. 8. Registration processes for the third pipe from the left in Fig. 7(b)

specular reflection contaminated the original 3D observation
causing a lack of 3D data for certain pipes demarcated by
red dashed circles. The preprocessing process failed to extract
certain parts of two pipes that were incorrectly located.

In the case of Fig. 9(b), one pipe demarcated by a blue
dashed circle was located upside down at a different position.
This occurred because the Z-ridges of the two objects were
unfortunately connected. This can be avoided by checking the
length of observed Z-ridges.

VI. CONCLUSION

A method for localizing freely curved pipes for the purpose
of bin picking has been proposed. Free-form shaped objects
lying in a pile of the same objects are generally difficult to
localize, mainly because there is no particular feature that
specifies exact point-to-point correspondences between the
model and the observed data. In this paper, we showed that a
ridge line with respect to the camera direction (Z-ridge) can be
used to find point correspondences within the framework of the
ICP algorithm. A Z-ridge has some good characteristics; one
of these is its good observability arising from the fact that the
normal at the ridge is parallel to the view direction. In addition,
for smoothed convex objects, the Z-ridge can be determined
for any view of the object. Another advantage is that the Z-
ridge is less affected by outliers since the line is generally
set apart from background points. Experimental results using

actual observations showed that these advantages are evident
in practice and work well.

One of the problems in the experiments was that strong
specularity tends to contaminate the 3D data around the Z-
ridge. Another issue is that, in the case of strongly curved
pipes, often only small parts of the pipes can be observed;
these are not sufficient to determine the exact location of the
pipes.

Although we deal only with pipes having an almost uniform
diameter in the experiments in this paper, the strategy should
be extendable to pipes with more complicated conditions.
Extension of the shape generality is one of our future research
topics. We are also constructing a complete picking and
placement system by combining the proposed method with
advanced planning and manipulation technologies [11].
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