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A Non-interleaving Timed Process

Algebra and a Process Logic for

Verifying Composition of Agents

Yoshinao Isobe Kazuhito Ohmaki

We present formal frameworks tCCA, tLCA, and

tICCA for verifying composition of agents. Behav-

iors of composite agents are described in tCCA and

specifications for them are described in tLCA. Since

consistency between specifications in tLCA is unde-

cidable as proven in this paper, we propose to use

intermediate specifications described in tICCA in-

stead of directly checking the consistency, and then

give useful propositions for verifying composition of

agents in tICCA.

1 Introduction

We are members of a project called ESP (Evo-

lutionary System Project). The purpose of ESP is

to develop an agent-system where agents can evolve

by spontaneously moving over networks, combining

with other agents, and communicating with them.

In such systems, unexpected behavior such as dead-

locks may be caused by composition of agents. To

avoid unexpected behavior, the members of ESP

are discussing an agent-system where each agent

has specifications, and if specifications between

two agents are not consistent, then they cannot

combine. These agents are modeled as shown in
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Fig.1 The image of agents with specifications

Fig.1. In ESP, we are studying how to formally

verify consistency between specifications. This pa-

per presents a process algebra tCCA to describe be-

haviors of composite agents, a process logic tLCA to

describe specifications, and a process algebra tICCA

to describe intermediate specifications, and then

shows useful propositions for effectively verifying

composition of agents.

tCCA (a timed Calculus of Composite Agents)

is a non-interleaving timed process algebra. Many

non-interleaving process algebras have already been

proposed (e.g. in [1] [4] [8] [14]) by considering local-

ity or causality between actions, and many timed

process algebras also have been proposed (e.g. in

[3] [5] [15] [20]). The features of tCCA are summa-

rized as follows:

(1) non-interleaving: it is possible to observe

which agents have performed actions,

(2) durational action: the passage of time is

needed for executing any action.

By the feature (1), concurrent behavior is explic-
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itly distinguished from interleaving behavior. The

feature (2) removes unnatural situations such that

actions can infinitely be performed in a finite time.

Note that each feature is not new. For example,

(1) is expressed in Distributed CCS [8] and (2) is

discussed in [3]. The purpose of this paper is not

to propose a new process algebra, but to show rela-

tions between a process algebra and a process logic

with considering both of the features (1) and (2).

tLCA (a timed Logic for Composite Agents) is a

process logic for describing specifications for agent-

behaviors described in tCCA. As shown in Fig.1, if

each agent agi has a specification si (i.e. each be-

havior Pi satisfies si), then it is important to verify

the consistency between s1 and s2 before composi-

tion of ag1 and ag2. However, we prove that the

consistency is undecidable in Section 4.

tICCA (a timed Intermediate Calculus of Com-

posite Agents) is a timed basic process algebra.

Since the consistency in tLCA is undecidable,

we use intermediate specifications (also called im-

specifications) between behaviors (tCCA) and speci-

fications (tLCA). Im-specifications express abstract

behaviors of agents by hiding uninteresting actions

because verification often considers some actions

(not all actions). Therefore, the number of states

in im-specifications can decrease. In Section 5, we

show how to verify composition of agents in tICCA

instead of in tCCA.

The outline of this paper is as follows: Sections 2

and 3 define tCCA and tLCA, respectively. Section 4

shows that satisfiability in tLCA is undecidable us-

ing undecidability of the membership problem in

unrestricted grammars [9]. Then, Section 5 presents

tICCA to use im-specifications. Section 6 and Sec-

tion 7 discuss related works and our approach, re-

spectively. Section 8 concludes this paper. The

omitted proofs are given in the Appendix.

2 Process Algebra tCCA

In this section, tCCA is defined for describing be-

haviors of composite agents. At first, it is assumed

that a set Nac, ranged over by a, b, · · ·, of action-

names are given. Then, the set Act, ranged over by

α, β, · · ·, of actions is defined as: Act = Nac ∪ {1},
where the time action ‘1’ represents the passage

of one time-unit, where a time-unit is an abstract

unit of time, and it may be a second, a minute, or

a clock of CPU. Also, it is assumed that a set Nag,
ranged over by ψ,ϕ, · · ·, of agent-names are given.

Then, the set ActS of single-actions is defined as:

ActS = {a@ψ : a ∈ Nac, ψ ∈ Nag}, and subsets

of ActS are represented by µ, ν, · · ·. Especially, if

a subset µ of ActS contains one single-action a@ψ,

at most, for each agent-ψ, then µ is a multi-action.

Thus, the set ActM of multi-actions is defined as:

ActM = {µ : µ ⊆ ActS,∀a@ψ ∈ µ.
∀b@ϕ ∈ µ− {a@ψ}. ψ 
= ϕ}

A multi-action {ai@ψi : i ∈ I} ∈ ActM repre-

sents that agents-ψi (i ∈ I) simultaneously perform
actions-ai, respectively, where action-a and agent-

ψ are an action named a and an agent named ψ,

respectively. Thus, the number of actions which an

agent can simultaneously perform is one at most.

Subsets of the set ActM of multi-actions are repre-

sented by M,N, · · ·.
It is also assumed that a set Kbh, ranged over

by K, · · ·, of behavior-constants is given. Then, the

set Bh, ranged over by P,Q, · · ·, of behaviors is the

smallest set which contains the following expres-

sions:
K : Recursion (K ∈ Kbh),

I : Idling,

a.P : Prefix (a ∈ Nac),

P � Q : Timeout,
∑

i∈I Pi : Summation (I an indexing set),

where P, Pi, Q are already in Bh. Also, the set

CBh, ranged over by C,D, · · ·, of concurrent behav-
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iors is the smallest set which contains the following

expressions:

P@ψ : Naming (P ∈ Bh,ψ ∈ Nag),
C|D : Composition (Agn(C) ∩Agn(D) = ∅),
C\M : Restriction (M ⊆ ActM ),

where C,D are already in CBh. The function Agn :

CBh → 2Nag is defined as follows: Agn(P@ψ) =

{ψ}, Agn(C|D) = Agn(C)∪Agn(D), and Agn(C\
M) = Agn(C). To avoid too many parentheses,

these operators have the binding power such that:

Prefix > Timeout > Summation > Naming > Re-

striction > Composition. Notation C ≡ D repre-

sents that C and D are syntactically identical.

Each operator is briefly explained as follows. The

behavior a.P represents that an agent can perform

action-a and thereafter behaves like P . Here, it

is important that the passage of one time-unit is

always necessary for executing any action. An ac-

tion a(n) which needs n time-units (n ≥ 1) for its

execution is inductively defined as follows:

a(1).P ≡ a.P,
a(n+ 1).P ≡ a.a(n).P.

Here, note that ‘a’ of a.P does not represent ‘1’.

Alteration by time is represented by the Timeout

operator �.
∑

i∈I Pi behaves like Pj for some j ∈ I , and the

choice is made by the first action of Pj except for

the time action 1. The passage of time must be

made by all behaviors Pi (i ∈ I). This operator

corresponds to ‘strong choice’ in TCCS [15]. We

also use a short notation for binary choice as fol-

lows: P1 + P2 ≡
∑

i∈{1,2} Pi.

Meaning of each behavior-constant is given by

a defining equation. It is assumed that for every

behavior-constant K ∈ Kbh, there is a defining

equation of the form K
def
= P for some P ∈ Bh,

where P can contain behavior-constants. Thus,

we can express recursive behavior by behavior-

constants.

P �Q now behaves like P and behaves like Q after

one time-unit. Thus, P �(n) Q which behaves like

P until n time-units pass and behaves like Q after

that is defined as:
P �(0) Q ≡ Q,

P �(n+1) Q ≡ P � (P �(n) Q).

Furthermore, (n).P which behaves like P after n

time-units are defined as: (n).P ≡ I �(n) P .

The Naming operator @ defines that an agent

named ψ behaves like P by P@ψ. The function

Agn is used for uniquely assigning an agent-name.

The concurrent behavior (C|D) concurrently exe-

cutes C andD. C\M can execute only multi-actions

contained in the set M ∪ {∅}.
Note that Prefix is not µ.P but a.P . For example,

(a.b.I@ψ|c.I@ϕ)\{µ1, µ2} cannot be expanded to

µ1.µ2.I, where µ1 = {a@ψ} and µ2 = {b@ψ, c@ϕ}.
It means that the number of actions which an agent

can simultaneously perform is one at most.

Semantics of behaviors and concurrent behav-

iors is given by the labelled transition systems

〈Bh,Act, { α−→: α ∈ Act}〉 and 〈CBh,ActM , { µ−→:

µ ∈ ActM}〉, respectively, where the sets α−→ and
µ−→ of transitions are the smallest relations satis-

fying the inference rules in Figs.2 and 3.

As shown in the rules Id, Act2, Sum2, Rec in

Fig.2, behavior of agents does not alter by the pas-

sage of time 1 without the Timeout operator �. The

rules TO1,2 show that the timeout process of P is

ignored in P �Q, and the timeout process of P �Q

is Q.

The rule Name1 in Fig.3 assigns an agent-name

ψ to an action a performed by the agent-ψ, and

Com combines all simultaneously performed ac-

tions into a multi-action. On the other hand, the

passage of time cannot be observed as shown in

Name2. Thus, the passage of one time-unit for

behaviors is
1−→, and one for concurrent behaviors

is
∅−→. From the inference rules in Figs.2 and 3, it

is easily proven that the passage of time is always

possible (i.e. for any C, for some C′, C
∅−→ C′),

and alteration by the passage of time is determinate



4 コンピュータソフトウェア ( 4 )

Name Hypothesis ⇒ Conclusion

Id ⇒ I
1−→ I

Act1 ⇒a.P
a−→ P

Act2 ⇒a.P
1−→ a.P

Sum1 ∃i ∈ I. Pi a−→ P ′⇒∑
i∈I Pi

a−→ P ′

Sum2 ∀i ∈ I. Pi 1−→ P ′
i ⇒

∑
i∈I Pi

1−→∑
i∈I P

′
i

TO1 P
a−→ P ′⇒P � Q

a−→ P ′

TO2 ⇒P � Q
1−→ Q

Rec K
def
= P, P

α−→ P ′⇒K
α−→ P ′

Fig.2 Inference rules for
α−→⊆ Bh × Bh

(note: a ∈ Nac, α ∈ Act = Nac ∪ {1})

Name Hypothesis ⇒ Conclusion

Name1 P
a−→ P ′⇒P@ψ

{a@ψ}−→ P ′@ψ

Name2 P
1−→ P ′⇒P@ψ

∅−→ P ′@ψ

Com C
µ−→ C′,D

ν−→ D′⇒C|D µ∪ν−→ C′|D′

Res C
µ−→ C′, µ ∈M ∪ {∅}⇒C\M µ−→ C′\M

Fig.3 Inference rules for
µ−→⊆ CBh × CBh

(i.e. if C
∅−→ C′ and C

∅−→ C′′, then C′ ≡ C′′).

We also use a behavior-constant P 〉Q for each

P,Q ∈ Bh defined as follows:

P 〉Q def
=

∑{a.(P ′ 〉Q′) : P
a−→ P ′, Q

1−→ Q′}
∪{a.Q′ : Q

a−→ Q′}
�
∑{(P ′ 〉Q′) : P

1−→ P ′, Q
1−→ Q′}

The constant (P 〉Q) represents an interrupt for P

by Q. Thus, it usually behaves like P but behaves

like Q after Q has performed an action (not 1). In

this definition, Q can alter (Q
1−→ Q′) by the pas-

sage of time even before the interrupt.

In the rest of this section, we give an example

of expression in tCCA. It is interaction between a

researcher and a pizza-worker. In this example, a

time-unit is a minute. At first, the behavior RES

of the researcher is defined as follows:
RES

def
= order.( study(30).I

〉 (receive.eat(20).I
�(60)cancel.angry(10).I))

The researcher orders a pizza, and then studies for

30 minutes, but if he receives the pizza, then he

stops studying and eats the pizza for 20 minutes.

However, if 60 minutes have passed, then he can-

cels the order and is angry for 10 minutes. For

example, the following transition is possible:

RES
order−→ (

study−→ )15
receive−→ (

eat−→)20 I,

where (
α−→)n represents

α−→ · · · α−→ with n occur-

rences of
α−→. In addition, since the researcher can

rest during study, he may cancel the order before

finishing the study as follows:

RES
order−→ (

study−→ )10 (
1−→)45

(
study−→ )5

cancel−→ (
angry−→ )10 I,

where (
1−→)45 means that the researcher does not

anything for 45 minutes. This idle time (i.e.

study(20).I
1−→ study(20).I) is inferred by Act2.

Note that n of the Timeout operator �(n) decreases

without respect to his actions by the definition of

the constant (· · · 〉 (· · · �(n) · · ·)).
Next, the behavior PIZ of the pizza-worker is de-

fined as follows:
PIZ

def
= accept.( bake(15).drive(10).deliver.I

〉 canceled.I)
If the pizza-worker accepts an order, then he bakes

a pizza for 15 minutes, and then drives for 10 min-

utes, and finally delivers the pizza. However, the

order may always be canceled. In the fastest case,

the pizza-worker can deliver the pizza after 25 min-

utes (bake(15) and drive(10)), but the order may

be canceled if he is idle as follows:
PIZ

accept−→ (
1−→)10 (

bake−→)15

(
1−→)30 (

drive−→ )5
canceled−→ I.

Finally, the researcher and the pizza-worker are

concurrently combined as follows:

RP ≡ (RES@bob|PIZ@john)\Mrp

where bob and john are names of the researcher

and the pizza-worker, respectively. And Mrp is the

set of feasible multi-actions in RP and is given as

follows:
Mrp = Msync ∪Mr ∪Mp

∪{µ ∪ ν : µ ∈Mr, ν ∈Mp}
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bob
john

order

accept
bake 15

study 20
drive 10

receive

deliver

eat 20
time

10
5

Fig.4 A transition-sequence by RP

where Msync, Mr, and Mp are given as follows:

Msync = {{order, accept}, {receive, deliver},
{cancel, canceled}}

Mr = {{study}, {eat}, {angry}},
Mp = {{bake}, {drive}}

where agent-names bob and john to be appended

to each action are omitted (e.g. {order, accept}
is the abbreviation of {order@bob, accept@john}).
Msync is the set of multi-actions which must syn-

chronize between the researcher and the pizza-

worker. Mr and Mp are the sets of multi-actions

which can independently or simultaneously be per-

formed by the researcher and the pizza-worker, re-

spectively. For example, an order must synchronize

with an acceptance, and the pizza-worker can bake

and drive while the researcher is studying. For ex-

ample, the following transition can be inferred and

it means that the researcher rests for 10 minutes

after the order, and then studies for 20 minutes,

and then receives the pizza, and then eats it.

RP
{order,accept}−→ (

{bake}−→ )10 (
{study,bake}−→ )5

(
{study}−→ )5 (

{study,drive}−→ )10
{receive,deliver}−→

(
{eat}−→ )20(I@bob|I@john)\Mrp

This transition-sequence is depicted in Fig.4.

3 A Process Logic tLCA

Although specifications can be expressed in pro-

cess algebras, process logics such as Hennessy-

Milner logic [12] or µ-calculus [18] have an advantage

of not always requiring to specify the full behavior

of systems. For example, in process logics, spec-

ifications can be loosely expressed by possibilities

〈a〉 or disjunctions ∨; and they can be refined by

necessities [a] and conjunctions ∧. In this section,

a process logic tLCA is defined to describe specifi-

cations for concurrent behaviors in tCCA.

First, it is assumed that a set Ksp, ranged over by

K, · · ·, of specification-constants (also called Con-

stants) is given. Then, the set Sp, ranged over by

s, t, · · ·, of specifications is the smallest set which

contains the following expressions:

K : Recursion (K ∈ Ksp),

〈µ〉s : Possibility (µ ∈ ActM ),

[µ]s : Necessity (µ ∈ ActM),
∧

i∈I si : Conjunction (I an indexing set),
∨

i∈I si : Disjunction (I an indexing set),
where s, si are already in Sp. And subsets of Sp are

represented by σ, ρ, · · ·. These operators have the

binding power such that: {Possibility, Necessity}
> Conjunction > Disjunction. The following short

notations are also used for the true tt, the false ff,

and so on.
tt ≡ ∧

i∈∅ si, s1 ∧ s2 ≡
∧

i∈{1,2} si,

ff ≡ ∨
i∈∅ si, s1 ∨ s2 ≡

∨
i∈{1,2} si,

〈µ〉1s ≡ 〈µ〉s, 〈µ〉n+1s ≡ 〈µ〉〈µ〉ns,
[µ]1s ≡ [µ]s, [µ]n+1s ≡ [µ][µ]ns,

〈ai@ψi : i ∈ I〉s ≡ 〈{ai@ψi : i ∈ I}〉s,
[ai@ψi : i ∈ I ]s ≡ [{ai@ψi : i ∈ I}]s.

The Possibility 〈ai@ψi : i ∈ I〉s requires that all
agents-ψi (i ∈ I) can simultaneously perform ai re-

spectively, and then s can be satisfied after that.

The Necessity [ai@ψi : i ∈ I ]s requires that if all
agents-ψi simultaneously perform ai respectively,

then s must always be satisfied after that. Since

C
∅−→ C′ is always possible and determinate, the

requirements of 〈∅〉s and [∅]s are equal.
It is assumed that for every Constant K ∈ Ksp,

there is a defining equation K
def
= s for some s ∈ Sp,

and each Constant is guarded by Possibilities or Ne-

cessities. For example, K
def
= 〈µ〉K is guarded and

K
def
= K ∧ 〈µ〉K is not guarded. This recursive re-

quirement corresponds to maximum fixpoint. Since

tLCA has no minimum fixpoint, it cannot be ex-

pressed that a specification s is eventually satisfied

(in a finite expression), but it can be expressed that

s is satisfied by n time-units pass instead.
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Next, a function DC : Sp → 22Sp

is inductively

defined as follows:
DC(〈µ〉s) = {{〈µ〉s}},
DC([µ]s) = {{[µ]s}},

DC(
∧

i∈I si) = {
⋃

i∈I σi : ∀i ∈ I. σi ∈ DC(si)},
DC(

∨
i∈I si) =

⋃
i∈I DC(si),

DC(K) = DC(s), if K
def
= s.

This function is used for translating any specifi-

cation s into a disjunctive normal form such that
∨{∧{s′ : s′ ∈ σ} : σ ∈ DC(s)}.
Then, satisfaction relation between a concurrent

behavior (in tCCA) and a specification (in tLCA) is

defined by using this function DC.

Definition 3.1Let ν ⊆ ActS. A set R ⊆ CBh×Sp
is a (ν)-satisfaction-subset, if (C, s) ∈ R implies

that for some σ ∈ DC(s), the following conditions

(i) and (ii) hold for every µ, µ′′ ∈ ActM , s′ ∈ Sp,
and C′′ ∈ CBh,
(i) if 〈µ〉s′ ∈ σ, then for some C′ and µ′,

C
µ′
−→ C′, µ

.
=ν µ

′, and (C′, s′) ∈ R,

(ii) if [µ]s′ ∈ σ, C µ′′
−→ C′′, and µ

.
=ν µ

′′,

then (C′′, s′) ∈ R,

where the (ν)-restricted equivalence relation
.
=ν

over multi-actions is defined as follows:

µ1
.
=ν µ2 if and only if µ1 ∩ ν = µ2 ∩ ν.

Then, if (C, s) ∈ R for some (ν)-satisfaction-subset

R, then C satisfies s with respect to ν, written

C |=ν s. For the special case ν = ActS, C |=ActS s

is abbreviated to C |= s.
The parameter ν in |=ν is used for partial verifi-

cation and the set ν of single-actions are called an

available set. Although |=ν can be indirectly de-

fined from |= (e.g. C |=ν 〈µ〉tt iff C |= ∨{〈µ′〉tt :

µ
.
=ν µ

′ ∈ ActM}), we directly define |=ν for con-

venience and effective verification. The satisfaction

relation |=ν is the largest (ν)-satisfaction-subset

and such definition style is similar to one of bisimi-

larity [12]. This satisfaction relation can be verified

by algorithms similar to ones for bisimilarity.

The following expected properties hold.

Proposition 3.1Let ν ⊆ ActS, µ ∈ ActM , C ∈
CBh, s, si ∈ Sp. Then,

(1) C |=ν 〈µ〉s
⇔ ∃(µ′, C′). (C

µ′
−→ C′, µ

.
=ν µ

′, C′ |=ν s)

(2) C |=ν [µ]s

⇔ ∀(µ′, C′). ((C
µ′
−→ C′, µ

.
=ν µ

′)⇒ C′ |=ν s)

(3) C |=ν

∧
i∈I si ⇔ ∀i ∈ I. C |=ν si

(4) C |=ν

∨
i∈I si ⇔ ∃i ∈ I. C |=ν si

(5) C |=ν K ⇔ ∃s. (C |=ν s, K
def
= s)

The following short notations are useful for ex-

pressing requirements for the passage of time:

s ∨〈0〉 t ≡ t,
s ∨〈n+1〉 t ≡ s ∨

∨{〈µ〉(s ∨〈n〉 t) : µ ∈ ActM},
s ∨[0] t ≡ t,

s ∨[n+1] t ≡ s ∨
∧{[µ](s ∨[n] t) : µ ∈ ActM},

s ∧〈0〉 t ≡ t,
s ∧〈n+1〉 t ≡ s ∧

∨{〈µ〉(s ∧〈n〉 t) : µ ∈ ActM},
s ∧[0] t ≡ t,

s ∧[n+1] t ≡ s ∧
∧{[µ](s ∧[n] t) : µ ∈ ActM}.

The specification s ∨〈n〉 t (resp. s ∨[n] t) requires

that s can be satisfied before n time-units pass or

t can be satisfied after that, for some (resp. any)

execution path. On the other hand, s ∧〈n〉 t (resp.

s ∧[n] t) requires that s is always satisfied until n

time-units pass and t is satisfied after that, for some

(resp. any) execution path.

The example of the researcher and the pizza-

worker in Section 2 is used again. Since the pizza-

worker can bake a pizza for 15 minutes and can

drive and deliver for 10+1 minutes, the researcher

can begin to eat in 26 minutes after an order as

follows:
RP |= s1 ≡ 〈order@bob, accept@john〉

(〈eat@bob〉tt ∨〈27〉 ff),
where (〈eat@bob〉tt ∨〈27〉 ff) requires that the re-

searcher ‘bob’ can eat in 26 minutes because ff can-

not be satisfied. However, since the pizza-worker

can idle, the researcher can not always begin to eat

it as follows:
RP 
|= s2 ≡ 〈order@bob, accept@john〉

(〈eat@bob〉tt ∨[27] ff).
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where note the difference between ∨〈27〉 in s1 and

∨[27] in s2. The specification s1 implies that the re-

searcher can eat before 26 minutes pass if the pizza-

worker works hardly (i.e. for some execution path).

On the other hand, s2 implies that the researcher

can eat before 26 minutes pass without respect to

the pizza-worker (i.e. for any execution path).

Furthermore, the following satisfaction relation

holds because the researcher never eats until 26

minutes pass.

RP |= 〈order@bob, accept@john〉
([eat@bob]ff ∧[26] tt).

Local specifications for the researcher bob can be

easily verified by |=νbob , where νbob = {a@bob : a ∈
Nac}. For example, it can be verified that the re-

searcher can receive a pizza just after study for 30

minutes as follows: RP |=νbob sbob, where

sbob ≡ 〈order@bob〉〈study@bob〉30〈receive@bob〉tt
The satisfaction relation |=νbob makes partial veri-

fication for bob possible by hiding actions of john.

It is important to note that RP 
|= sbob because the

pizza-worker john must bake the pizza and then

drive while the researcher bob is studying if the be-

havior of john is considered.

4 Satisfiability

Before two agents combine, it is useful for avoid-

ing unexpected behavior to verify consistency be-

tween their specifications. In tLCA, the consistency

between s and t is replaced to satisfiability of s ∧ t
defined as follows.

Definition 4.1Let s ∈ Sp. s is satisfiable if and

only if for some C ∈ CBh, C |= s.
In this section, we show that satisfiability in tLCA

is undecidable by translating the membership prob-

lem in unrestricted grammars [9] into the satisfia-

bility problem in tLCA. At first, action-sequence

grammars G, a specification GR(G), and a concur-

rent behavior CB(G) are defined for proving the

undecidability.

Definition 4.2A tuple G = 〈A, a0, λ〉 is an action-

sequence grammar, where A ⊆ Nac is a finite set

of action-names, a0 ∈ Nac is the initial action-

name, and λ is a finite set of rewriting rules such

that : λ ⊆ (A∗ − {ε})×A∗, where A∗, ranged over

by ã, b̃, · · ·, is the set of finite action-sequences ob-

tained by concatenating zero or more action-names

in A. The symbol ε is the empty action-sequence,

thus ãε = εã = ã.

Definition 4.3Let G = 〈A, a0, λ〉 be an action-

sequence grammar. The G-language L(G) is de-

fined as follows : L(G) = ⋃
n≥0

L(n)(G), L(0)(G) =

{a0}, and L(n+1)(G) = {ã1b̃ã2 : ∃ã. ã1ãã2 ∈
L(n)(G), (ã, b̃) ∈ λ}.
By Definition 4.2, action-sequence grammars are

unrestricted grammars because there is no restric-

tion on rewriting rules. It is known that the mem-

bership problem (ã ∈ L(G) or ã /∈ L(G) ?) in such

grammars is undecidable.

Next, we define a finite-state specification GR(G)

for each G.

Definition 4.4Let p, q ∈ Nag and G = 〈A, a0, λ〉
be an action-sequence grammar (note: p, q are not

variables but instances). The finite-state specifica-

tion GR(G) is defined from G as follows:

GR(G)
def
= RW(G)∧EQ(q,p)

(G) ∧ ∂〈a0@p〉∂〈end@p〉tt
RW(G)

def
=

∧{[ã@p]∗〈b̃@q〉∗EQ(p,q)

(G) : (ã, b̃) ∈ λ}
∪{∂[a@p]∂〈a@q〉RW(G) : a ∈ Aend}

EQ
(ψ,ϕ)

(G)

def
=

∧{∂[a@ψ]∂〈a@ϕ〉EQ(ψ,ϕ)

(G) : a∈Aend}
where Aend = A ∪ {end}, end ∈ Nac, end /∈ A,

and specifications 〈ã@ψ〉∗s and [ã@ψ]∗s are short

notations defined as follows:

〈ε@ψ〉∗s ≡ s, 〈aã′@ψ〉∗s ≡ ∂〈a@ψ〉〈ã′@ψ〉∗s,
[ε@ψ]∗s ≡ s, [aã′@ψ]∗s ≡ ∂[a@ψ][ã′@ψ]∗s

Furthermore, for any specification s, a Constant ∂s

is defined as follows: ∂s
def
= s ∧ [∅]∂s.

The part EQ
(q,p)

(G)
copies execution-sequences of

agent-q into agent-p. And RW(G) copies execution-

sequences of agent-p into agent-q, rewriting accord-

ing to rules (ã, b̃) ∈ λ. The Constant ∂s is necessary
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for waiting while another agent performs actions.

Consequently, GR(G) requires agents to perform all

the action-sequences contained in L(G) as shown

in the following lemma.

Lemma 4.1If C |= GR(G) and ã ∈ L(G), then for

some C′, C
{ã end@p}
=⇒ C′, where C

{a1···an @ψ}
=⇒ C′

if and only if C (
∅−→)∗

{a1@ψ}−→ (
∅−→)∗ · · · ( ∅−→)∗

{an@ψ}−→ (
∅−→)∗ C′, where (

∅−→)∗ is the passage of

zero or more time-units.

Then, a concurrent behavior CB(G) is defined for

each G.

Definition 4.5Let p, q ∈ Nag and G = 〈A, a0, λ〉
be an action-sequence grammar. Then, the concur-

rent behavior CB(G) is defined as follows:

CB(G) ≡ Bh(G)@p | Bh(G)@q,

Bh(G) ≡
∑

n≥0
Bh(G,n),

Bh(G,0) ≡ a0.end.I,

Bh(G,n+1) ≡ Rw(G)(Bh(G,n)),

where Rw(G)(P ) is defined as follows:

Rw(G)(P ) ≡
∑{b̃.P ′ : P

ã−→ P ′, (ã, b̃) ∈ λ}
∪{a.Rw(G)(P

′) : P
a−→ P ′}

where ã.P is defined as: ε.P ≡ P , ab̃.P ≡ a.̃b.P .

And P
ε−→ P ′ represents P ≡ P ′, and P

aã′
−→ P ′

represents P
a−→ P ′′ ã′

−→ P ′ for some P ′′.

Lemma 4.2 shows that any action-sequence ex-

ecuted by CB(G) is contained in L(G). And

Lemma 4.3 shows that CB(G) satisfies GR(G).

Lemma 4.2If CB(G)
{ã end@p}
=⇒ C′, then ã ∈ L(G).

Lemma 4.3 CB(G) |= GR(G)

Finally, the following result is obtained from

Lemmas 4.1, 4.2, and 4.3.

Theorem 4.4 Satisfiability in the process logic

tLCA is undecidable.

Proof Let G = 〈A, a0, λ〉 be an action-sequence

grammar. Then, we show that the following rela-

tion holds because ã /∈ L(G) is undecidable.
(GR(G) ∧ [ã end@p]∗ff) is satisfiable ⇔ ã /∈ L(G)

Only if part (⇒): By the assumption, for

some C, C |= (GR(G) ∧ [ã end@p]∗ff). Now assume

that ã ∈ L(G). Thus, by Lemma 4.1, C {ã end@p}
=⇒ C′

because C |= GR(G). However, this contradicts the

assumption C |= [ã end@p]∗ff. Hence, ã /∈ L(G).
If part (⇐): We show the contraposition. As-

sume that (GR(G) ∧ [ã end@p]∗ff) is not satisfi-

able. By Lemma 4.3, CB(G) |= GR(G). There-

fore, CB(G) 
|= [ã end@p]∗ff because if CB(G) |=
[ã end@p]∗ff then CB(G) |= (GR(G) ∧ [ã end@p]∗ff)

and this contradicts the assumption. This unsat-

isfaction (CB(G) 
|= [ã end@p]∗ff) implies that for

some C′, CB(G)
{ã end@p}
=⇒ C′. Hence, by Lemma 4.2,

ã ∈ L(G).

5 A Process Algebra tICCA

In this paper, our purpose is to show how to

avoid unexpected behavior caused by composition

of agents. For example, suppose that agent-ψ and

agent-ϕ behave like P and Q (described in tCCA),

and must satisfy s and t (described in tLCA), re-

spectively. Then, it is a useful method for avoid-

ing unexpected behavior to verify the consistency

between s and t before agent-ψ and agent-ϕ com-

bine. However, there is no algorithm for verifying

the consistency as shown in Theorem 4.4. To solve

this problem, although it is expected to use a de-

cidable and useful subclass of tLCA, we have not

been able to define such subclass yet.

The other solution is to directly verify whether

P@ψ|Q@ϕ satisfies s∧t (i.e. P@ψ|Q@ϕ |= s∧t), or
not. There are algorithms for verifying the satisfac-

tion relation |=. However, the number of reachable
states of concurrent behavior explosively increases

with concurrency level. To decrease the number of

states, it is useful to hide useless actions for verifica-

tion because verification often considers only some

actions (not all actions). Therefore we propose to

use a process algebra tICCA for expressing inter-

mediate specifications (also called im-specifications)

between concurrent behaviors (tCCA) and specifi-

cations (tLCA). In tICCA, the number of reach-
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able states can decreases by hiding uninteresting

actions. In such approach, it is important to know

which actions can be hidden. In this section, we

show how to verify composition of agents in tICCA

instead of in tCCA.

First, it is assumed that a set Kim, ranged over

by K, · · ·, of im-Constants is given. Then, the set

ISp, ranged over by S, T, · · ·, of im-specifications is

the smallest set which contains the following ex-

pressions:

K : Recursion (K ∈ Kim),

0 : Stop,

µ;S : (Insistent) Prefix (µ ∈ ActM ),
⊕

i∈I Si : (Weak) Summation

where S, Si, T are already in ISp. These operators

have the binding power such that: Prefix > Sum-

mation.

It is important that the Prefix is not a.S but

µ;S, comparing with tCCA. The multi-action µ is

directly prefixed to S, and the execution of µ is

not delayed (i.e. µ;S 
 ∅�−→ µ;S). For Summation
⊕

i∈I Si, the choice is made even by a time pas-

sage
∅�−→. This operator is similar to ‘weak choice’

in TCCS [15]. We use a short notation for binary

selection as follows: S1 ⊕ S2 ≡
⊕

i∈{1,2} Si. Fur-

thermore, it is assumed that for every im-Constant

K ∈ Kim, there is a defining equation K
def
= S

for some S ∈ ISp, and also that an idling im-

Constant for each S ∈ ISp is defined as follows:

∂S
def
= S ⊕ ∅;∂S. Although the symbol ∂ has al-

ready been used for s ∈ Sp in Definition 4.4, we

use the same symbol ∂ for s and S because their

function is the same.

Semantics of im-specifications is given by the

labelled transition system 〈ISp,ActM , { µ�−→: µ ∈
ActM}〉, where the set

µ�−→ of transitions is the

smallest relation satisfying the rules in Fig.5.

Then, we define im-Constants S|T , S \M , and

S/ν, for each S, T ∈ ISp,M ⊆ ActM , and ν ⊆ ActS

Name Hypothesis ⇒ Conclusion

I.Act ⇒ µ;S
µ�−→ S

W.Sum ∃i ∈ I. Si µ�−→ S′ ⇒ ⊕
i∈I Si

µ�−→ S′

Rec K
def
= S, S

µ�−→ S′ ⇒ K
µ�−→ S′

Fig.5 Inference rules for
µ
−→ ⊆ ISp × ISp

as follows:
S|T def

=
⊕{(µ ∪ ν);(S′|T ′) : S

µ�−→ S′, T
ν�−→ T ′}

S\M def
=

⊕{µ;(S′\M) : S
µ�−→ S′, µ ∈M ∪ {∅}}

S/ν
def
=

⊕{(µ ∩ ν);(S′/ν) : S
µ�−→ S′}

Next, the satisfaction relation between a concur-

rent behavior and an im-specification is defined.

Definition 5.1Let ν ⊆ ActS. A set R ⊆ CBh×ISp
is a (ν)-im-satisfaction-subset, if (C,S) ∈ R im-

plies that the following conditions (i) and (ii) hold

for every µ ∈ ActM ,

(i) if C
µ−→ C′, then for some S′,

S
µ∩ν�−→ S′ and (C′, S′) ∈ R,

(ii) if S
µ�−→ S′, then for some µ′ and S′,

µ = µ′ ∩ ν, C µ′
−→ C′, and (C′, S′) ∈ R.

Then, if (C,S) ∈ R for some (ν)-im-satisfaction-

subset R, then C satisfies S with respect to ν, writ-

ten C !ν S. For a special case, C !ActS S is writ-

ten C ! S. The bisimilarity ∼ for S ∼ T is defined

in the same way as C ! S.

By hiding uninteresting single-actions a@ψ /∈ ν,
the number of states of im-specifications can de-

crease. The set ν of single-actions in !ν is also

called an available set, similarly to the case of |=ν .

For example, Cabc ≡ a.b.I@ψ|c.I@ϕ satisfies the

following Sabc and Sb with respect to the available

sets ν1 = {a@ψ, b@ψ, c@ϕ} and ν2 = {b@ψ}, re-
spectively (i.e. Cabc !ν1 Sabc and Cabc !ν2 Sb).

Sabc ≡ ∂({a@ψ};∂({b@ψ};∂{c@ϕ};∂0
⊕{c@ϕ};∂{b@ψ};∂0
⊕{b@ψ, c@ϕ};∂0)

⊕{c@ϕ};∂{a@ψ};∂{b@ψ};∂0
⊕{a@ψ, c@ϕ};∂{b@ψ};∂0)

Sb ≡ ∂∅;∂{b@ψ};∂0
The transition graphs of Sabc and Sb are shown in
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{c
@

ϕ}

{a@ψ}

{a@
ψ,c@

ϕ}

Sabc
{b@ψ}

Sb
{b@ψ}

{c
@

ϕ}

{c
@

ϕ}

{a@ψ} {b@ψ}

{b@
ψ,c@

ϕ}

Fig.6 The transition graphs of Sabc and Sb

Fig.6. The im-specification Sb concisely expresses

behavior with respect to the single-action b@ψ.

The following Propositions 5.1 and 5.2 show how

the (ν)-satisfaction relation !ν is preserved by the

operators | and\of concurrent behaviors. The con-
dition (res(act(C),M, ν) ⊆ M) in Proposition 5.2

is a sufficient condition for preserving the (ν)-

satisfaction relation !ν when the concurrent behav-
ior C is restricted within M . In order to gain the

sufficient and necessary condition, since transitions

in C must be considered, we present the simple (but

useful) sufficient condition which considers only ac-

tions in C. Intuitively, the condition (res) requires

that restricted single-actions must be included in

the available set ν.

Proposition 5.1If Agn(C1) ∩ Agn(C2) = ∅ and

C1 !ν1 S1 and C2 !ν2 S2, then C1|C2 !ν S1|S2,

where ν = (ν1↓Agn(C1)) ∪ (ν2↓Agn(C2)), where

ν↓Ψ is a subset of ν defined as follows: ν↓Ψ =

{a@ψ ∈ ν : ψ ∈ Ψ}.
Proposition 5.2If res(act(C),M, ν) ⊆ M and

C !ν S, then C \M !ν S \M ′, where M ′ =

{µ∩ν : µ ∈M}, the function res : 2ActM×2ActM×
2ActS → 2ActM is defined as follows:

res(M0,M, ν) = {µ0 ∈M0 : ∃µ ∈M ∪ {∅}.
µ0

.
=ν µ, µ0 
= ∅},

and the function act : CBh → 2ActM is defined as

follows: act(P@ψ) = {{a@ψ} : a ∈ acn(P )} ∪ {∅},
act(C1|C2) = {µ1 ∪ µ2 : µ1 ∈ act(C1), µ2 ∈
act(C2)}, act(C\M) = (act(C) ∩M) ∪ {∅}, where

acn(P ) is a set of action-names occurring in P .

Thus, act(C) is the set of feasible multi-actions in

C at most.

The following Proposition 5.3 is used for hiding

uninteresting actions, in other words, for obtaining

a more abstract im-specification S/µ than S. Fur-

thermore, Proposition 5.4 shows that C |=ν s can

be verified by S |=ν s if C !ν S, where S |=ν s is

defined by replacing
µ−→ in Definition 3.1 with

µ�−→.

Thus these propositions mean that verification-cost

of C |=ν s can decrease.

Proposition 5.3 If C !ν S, then for any µ ⊆
ActS, C !ν∩µ S/µ.
Proposition 5.4 Assume that C !ν S. Then,

C |=ν s if and only if S |=ν s.

The example of the researcher and the pizza-

worker in Section 2 is used again. Now, assume

that the available sets are given as follows:

νr={order@bob, receive@bob, cancel@bob},
νp={accept@john, deliver@john, canceled@john}
Then, an im-specification Sr of the researcher

RES@bob with respect to νr and an im-specification

Sp of the pizza-worker PIZ@john with respect to

νp are given as follows (i.e. RES@bob !νr Sr and

PIZ@john !νp Sp):

Sr ≡ ∂{order@bob};S(60)
wait,

S
(n+1)
wait ≡ ∅;S(n)

wait ⊕ {receive@bob};∂0,
S

(0)
wait ≡ ∂{cancel@bob};∂0,

Sp ≡ ∂{accept@john};S(25)
work,

S
(n+1)
work ≡ ∂(∅;S(n)

work ⊕ Sc),
S

(0)
work ≡ ∂({deliver@john};∂Sc ⊕ Sc),
Sc ≡ {canceled@john};∂0.

Then, Propositions 5.1 and 5.2 show that RP ≡
(RES@bob|PIZ@john)\Mrp !νr∪νp (Sr|Sp)\M ′

rp

because res(act(RES@bob|PIZ@john),Mrp, νr ∪
νp) ⊆ Mrp, where M

′
rp = Msync ∪ {∅}. Further-

more, by Proposition 5.3, RP !νr (Sr|Sp)\M ′
rp/νr.
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Here, if S′
r is given as follows, then we can show

that S′
r ∼ (Sr|Sp)\M ′

rp/νr.

S′
r ≡ ∂{order@bob};S(60,25)

wait′ ,

S
(n+1,m+1)

wait′ ≡ ∅;S(n,m)

wait′ ⊕ ∅;S(n,m+1)

wait′ ,

S
(n+1,0)

wait′ ≡ ∅;S(n,0)

wait′ ⊕ {receive@bob};∂0,
S

(0,m)

wait′ ≡ ∂{cancel@bob};∂0.
This implies that RP !νr S

′
r.

Although both of Sr and S
′
r are im-specifications

with respect to the researcher bob (i.e. νr), Sr shows

an abstract behavior of the independent researcher,

and S′
r shows an abstract behavior of the researcher

dependent with the pizza-worker. For example, Sr

shows that the researcher can immediately receive

a pizza after the order because Sr does not con-

sider to make pizza. On the other hand, S′
r shows

that the researcher cannot receive a pizza until 25

minutes pass because the pizza-worker must bake

it for 15 minutes and drive for 10 minutes before

the delivery.

Now, we consider how to verify RP |=νr sr, where

sr ≡ 〈order@bob〉(〈receive@bob〉tt ∨〈26〉 ff). At

first, we can prove that S′
r |=νr sr according to Def-

inition 3.1. Hence, by Proposition 5.4, we have that

RP |=νr sr because RP !νr S
′
r. The verification-

cost of S′
r |=νr sr is lower than one of RP |=νr sr

because the numbers of states of S′
r and RP are 390

and 34, 991, respectively.

6 Related Work

Many process algebras based on non-interleaving

semantics have been proposed (e.g. in [1] [4] [8] [14])

by considering locality or causality between actions,

and process logics with locality have also been given

(e.g. in [1]). Also, many timed process algebras

such as TCCS [15] or TPL [5] have been proposed,

and a uniform framework has also been proposed

for extending arbitrary process languages with dis-

crete time [20]. Furthermore, a timed process alge-

bra which has durational actions has been proposed

and a process logic for the process algebra has been

presented [3]. However, satisfiability in such process

logics has not been discussed.

Many temporal logics for non-interleaving traces

(also called Mazurkiewicz’s traces [11]) have been

proposed (e.g. in [6] [10] [16] [19]), and satisfiability

has been studied. However they have not consid-

ered the passage of time. In these non-interleaving

non-timed temporal logics, a kind of commutativ-

ity of concurrent requirements holds. For exam-

ple, if time is not considered, two specifications

〈a@ψ〉〈b@ϕ〉tt and 〈b@ϕ〉〈a@ψ〉tt are equal be-

cause agent-ϕ does not alter its own state while

agent-ψ performs action-a. In [10] [17], satisfiability

problems in several non-interleaving temporal log-

ics can be translated into a recurring tiling problem

which has been shown to be undecidable. The es-

sential property for the translation is the commu-

tativity of concurrent requirements as mentioned

above.

On the other hand, the commutativity of concur-

rent requirements does not hold in tLCA. For ex-

ample, 〈a@ψ〉〈b@ϕ〉tt and 〈b@ϕ〉〈a@ψ〉tt are not

equal in tLCA because agent-ψ consumes one time-

unit for performing the action-a and agent-ϕ can

alter its own state in the passage of time. Hence,

undecidability in tLCA cannot be directly proven

from the results in [10] [17]. Furthermore, it is im-

portant to note that we have proven undecidabil-

ity in tLCA without Disjunction and Eventuality, as

shown in the specification (GR(G)∧[ã end@p]∗ff) in

the proof of Theorem 4.4. Disjunction and Even-

tuality were necessary for proving undecidability in

[10] [17].

7 Discussion

In this section, we discuss our approach.

Automatic generation of im-specifications:

Designers of agents need not give im-specifications

because im-specifications (in tICCA) can be auto-

matically generated from concurrent behaviors (in
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tCCA). For each concurrent behavior C ∈ CBh, a
full im-specification imsp(C) of C with respect to

ActS (i.e. C ! imsp(C)) is easily given as follows:

imsp(C)
def
=

⊕{µ;imsp(C′) : C
µ−→ C′}.

Then, for each available set ν ⊆ ActS, imsp(C)/ν is
an im-specification of C with respect to ν by Propo-

sition 5.3. Furthermore, the reduced normal form

imspν(C) of imsp(C)/ν can be obtained by the al-

gorithms in [7], where the reduced normal form is

defined as follows: an im-specification Smin is the

reduced normal form of S if the following condi-

tion is satisfied: for every S′ such that S′ ∼ S,

‖Smin‖ ≤ ‖S′‖, where ‖S‖ is the number of reach-
able states from S.

For example, when a behavior P of agent-ag is

given, im-specifications of agent-ag with respect to

several available sets νi (i ∈ I) are generated from

P@ag (i.e. imspνi
(P@ag)) and are saved in agent-

ag. If agent-ag combines with the other agent

under some restrictions, then an im-specification

which satisfies the condition res in Proposition 5.2

is selected and used for verification.

Non-interleaving: We have introduced non-

interleaving for expressing concurrency because

there is not always a concurrent system to satisfy a

given specification even if there is a sequential sys-

tem to satisfy it. For example, if non-interleaving is

not considered, then a specification s ≡ 〈a〉〈b〉tt ∧
[∅][b]ff is satisfiable (e.g. a.b.I |= s). However, if it
is required that a and b are performed by different

agents like s′ ≡ 〈a@ψ〉〈b@ϕ〉tt ∧ [∅][b@ϕ]ff, then
s′ is not satisfiable. Non-interleaving is necessary

for correctly checking whether there is a concurrent

system to satisfy a given specification, or not.

Durational actions: We have assumed that the

passage of one time-unit is always needed for exe-

cuting any action. If this assumption is removed,

notions of non-interleaving and time can be sepa-

rately discussed, and undecidability is proven more

easily than one in tLCA. However, there are two

reasons why we assume it. One is to remove un-

natural situations such that actions can infinitely

be performed in a finite time. Another is to clar-

ify decidability under the assumption because we

prospected that tLCA might be decidable by the as-

sumption (i.e. the restriction) because the commu-

tativity of concurrent requirements as mentioned

in Section 6 does not hold. It is a future work to

define a decidable and useful subclass of tLCA.

Expressive power of tLCA and tICCA: As

shown in the following proposition, specifications

in Sp can not distinguish between two concurrent

behaviors in CBh if and only if im-specifications in

ISp can not distinguish between them.

Proposition 7.1Let ν ⊆ ActS, C,D ∈ CBh. Then

Spν(C) = Spν(D) ⇐⇒ ISpν(C) = ISpν(D)

where Spν(C) = {s ∈ Sp : C |=ν s} and ISpν(C) =

{S ∈ ISp : C !ν S}.
Errors of clocks: Although tCCA assumes that

each agent has an exact local clock, errors of local

clocks can be simulated by nondeterminism as fol-

lows: a(n±1).P ≡ a(n−1).P+a(n).P+a(n+1).P .

By verifying agents in such situation with errors,

more robust agent systems can be constructed.

A tool: We are now implementing a prototype

of verification tool for tCCA, tLCA, and tICCA in

Java. We have already implemented parts of ana-

lyzing syntax and inferring transitions. Fig.7 shows

a screen shot of the prototype, where the number

of reachable states and the transitions of S′
r (in

Section 5) and RP (in Section 2) are computed, al-

though symbols in the tool is slightly different from

ones of tCCA and tICCA. We plan to implement

functions for verifying satisfaction relations C |=ν s

and C !ν S, and for generating im-specifications

from concurrent behaviors.

8 Conclusion

We have defined tCCA for describing concurrent

behaviors of composite agents. tLCA has also been
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Fig.7 A screen shot of the prototype

defined for describing specifications and it has been

proven that satisfiability in tLCA is undecidable.

Then we have proposed to use intermediate spec-

ifications described in tICCA instead of directly

checking consistency between specifications, and

then have shown useful propositions for verifying

composition of agents.

tCCA cannot express mobility such as π-calculus

[13] or mobile ambient [2]. An extension of tCCA

with such mobility is a future work.
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A Appendix

Omitted proofs of lemmas and propositions in

this paper are given.

Proof of Proposition 3.1

(1) Since DC(〈µ〉s) = {{〈µ〉s}}, C |=ν 〈µ〉s if

and only if for some C′ and µ′, C
µ′
−→ C′,

µ
.
=ν µ

′, and C′ |=ν s by (i) in Definition 3.1.

(2) Since DC([µ]s) = {{[µ]s}}, C |=ν [µ]s if and

only if for any C′ and µ′ such that C
µ′
−→ C′

and µ
.
=ν µ

′, C′ |=ν s by (ii) in Definition 3.1.

(3) (⇒) Assume that C |=ν

∧
i∈I si. Thus, for

some σ ∈ DC(∧
i∈I si), the pair (C,σ) satisfies

the conditions (i) and (ii) in Definition 3.1.

Here, for each i ∈ I , for some σi ∈ DC(si),
σ =

⋃
i∈I σi by the definition of DC(

∧
i∈I si).

For every i ∈ I , since the pair (C,σi) satisfies
(i) and (ii), we have C |=ν si.

(⇐) We can reverse the proof of (⇒).

(4) (⇒) Assume that C |=ν

∨
i∈I si. Thus, for

some σ ∈ DC(∨
i∈I si), the pair (C,σ) satisfies

the conditions (i) and (ii) in Definition 3.1.

Here, for some i ∈ I , σ ∈ DC(si) because

DC(
∨

i∈I si) =
⋃

i∈I DC(si). Hence, for some

i ∈ I , C |=ν si.

(⇐) We can reverse the proof of (⇒).

(5) This is trivial because DC(K) = DC(s) if

K
def
= s.

Proof of Lemma 4.1

Let G = 〈A, a0, λ〉 be an action-sequence gram-

mar. If C |= GR(G), then it can be assumed that

C has the form P@p|Q@q without losing gener-

ality because GR(G) contains only requirements of

the form 〈a@p〉s, [a@p]s, or [∅]s, for two agents-

p and q. For proving Lemma 4.1, we prove that if

P@p|Q@q |= GR(G), then the following sub-lemmas

hold.

(4.1.1) P@p|Q@q |= 〈〈a0 end〉〉∗(p,q),

(4.1.2) If P@p|Q@q |= 〈〈ã1ãã2 end〉〉∗(p,q) and
(ã, b̃) ∈ λ, then P@p|Q@q |= 〈〈ã1b̃ã2 end〉〉∗(q,p),

(4.1.3) If P@p|Q@q |= 〈〈ã end〉〉∗(q,p),
then P@p|Q@q |= 〈〈ã end〉〉∗(p,q).

where a, ai ∈ A and 〈〈ã〉〉∗(ψ,ϕ) is a Constant defined

as follows:
〈〈aã′〉〉∗(ψ,ϕ)

def
= (

∨
n≥0

[∅]n〈a@ψ〉〈〈ã′〉〉∗(ψ,ϕ))

∧∧{[b@ϕ]〈〈aã′〉〉∗(ψ,ϕ) : b ∈ Nac}
∧[∅]〈〈aã′〉〉∗(ψ,ϕ)

〈〈ε〉〉∗(ψ,ϕ) ≡ tt

By these sub-lemmas, it is easily shown by in-

duction that if P@p|Q@q |= GR(G) and ã ∈ L(G)
then P@p|Q@q |= 〈〈ã end〉〉∗(p,q). Furthermore, by

the definition of 〈〈ã end〉〉∗(p,q), we can easily obtain

that for some P ′, P
ã end
=⇒ P ′. This infers that for

some Q′, P@p|Q@q
{ã end@p}
=⇒ P ′@p|Q′@q.

The base case (4.1.1) is easier than the other

cases. And a proof of (4.1.3) is a part of a proof of

the case (4.1.2). We show only a proof of (4.1.2).

Proof of (4.1.2) We show that the set R given in

Fig.8 is a satisfaction subset, where we assume that

every action name in Fig.8 is contained in Aend.

The set R is divided into 13 subsets R1, · · ·R13

with respect to ã1ãã2 in 〈〈ã1ãã2 end〉〉∗(p,q) and

(ã, b̃) ∈ λ as follows:

• To copy ã1 from p to q: R1,R2,R3.

– To read a′1 from p where ã1 = a
′
1ã

′′
1 : R1.

– To wait: R2.

– To require a′1 to q: R3.

• To copy ã from p to q, rewriting according to

(ã, b̃) ∈ λ, where b̃ 
= ε: R4, · · · ,R7.

– To repeatedly read ã from p: R4.

– To wait: R5.

– To require b̃ to q: R6,R7.

• To copy ã from p to q, rewriting according to

(ã, ε) ∈ λ: R8,R9.

– To repeatedly read ã from p: R8.
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R =
⋃

1≤i≤13
Ri

R1 = {(P@p|Q@q, 〈〈aã1b̃2ã3〉〉∗(q,p)) : ∃ã2. (ã2, b̃2) ∈ λ,
∃P0. P0@p|Q@q |= 〈〈aã1ã2ã3〉〉∗(p,q) ∧ ∂[a@p]∂〈a@q〉RW(G)}

R2 = {(P@p|Q@q, [∅]n+1〈a@q〉〈〈ã1b̃2ã3〉〉∗(q,p)) : n ≥ 0,∃ã2. (ã2, b̃2) ∈ λ,
∃P0. P0@p|Q@q |= [∅]n〈a@p〉〈〈ã1ã2ã3〉〉∗(p,q) ∧ ∂[a@p]∂〈a@q〉RW(G)}

R3 = {(P@p|Q@q, 〈a@q〉〈〈ã1b̃2ã3〉〉∗(q,p)) : ∃ã2. (ã2, b̃2) ∈ λ,
∃P0. P0@p|Q@q |= 〈〈ã1ã2ã3〉〉∗(p,q) ∧ ∂〈a@q〉RW(G)}

R4 = {(P@p|Q@q, 〈〈bb̃′ã′〉〉∗(q,p)) : ∃ã. (ã, bb̃′) ∈ λ,
∃P0. P0@p|Q@q |= 〈〈ãã′〉〉∗(p,q) ∧ [ã@p]∗〈bb̃′@q〉∗EQ(p,q)

(G)
}

R5 = {(P@p|Q@q, [∅]n〈b@q〉〈〈b̃′ã′〉〉∗(q,p)) : ∃ã = a1 · · · am. m ≥ 1, ∃ni (i≤m). n =
∑

i≤m
(ni + 1),

∃P0. P0@p|Q@q |= [∅]n1〈a1@p〉 · · · [∅]nm 〈am@p〉〈〈ã′〉〉∗(p,q) ∧ [ã@p]∗〈bb̃′@q〉∗EQ(p,q)

(G)
}

R6 = {(P@p|Q@q, 〈〈bb̃′ã′〉〉∗(q,p)) : ∃P0. P0@p|Q@q |= 〈〈ã′〉〉∗(p,q) ∧ 〈bb̃′@q〉∗EQ(p,q)

(G)
}

R7 = {(P@p|Q@q, 〈b@q〉〈〈b̃′ã′〉〉∗(q,p)) : ∃P0. P0@p|Q@q |= 〈〈ã′〉〉∗(p,q) ∧ 〈bb̃′@q〉∗EQ(p,q)

(G)
}

R8 = {(P@p|Q@q, 〈〈a′ã′′〉〉∗(q,p)) : ∃ã. (ã, ε) ∈ λ,∃P0. P0@p|Q@q |= 〈〈ãa′ã′′〉〉∗(p,q) ∧ [ã@p]∗EQ(p,q)

(G)
}

R9 = {(P@p|Q@q, [∅]n〈a′@q〉〈〈ã′′〉〉∗(q,p)) :
∃ã = a1 · · · am. m ≥ 1, ∃n′. ∃ni (i≤m). n =

∑
i≤m

(ni + 1) + n′ + 1,

∃P0. P0@p|Q@q |= [∅]n1〈a1@p〉 · · · [∅]nm 〈am@p〉[∅]n′ 〈a′@p〉〈〈ã′′〉〉∗(p,q) ∧ [ã@p]∗EQ(p,q)

(G) }

R10 = {(P@p|Q@q, 〈〈aã′〉〉∗(q,p)) : ∃P0. P0@p|Q@q |= 〈〈aã′〉〉∗(p,q) ∧ ∂[a@p]∂〈a@q〉EQ(p,q)

(G)
}

R11 = {(P@p|Q@q, [∅]n+1〈a@q〉〈〈ã′〉〉∗(q,p)) : n ≥ 0,

∃P0. P0@p|Q@q |= [∅]n〈a@p〉〈〈ã′〉〉∗(p,q) ∧ ∂[a@p]∂〈a@q〉EQ(p,q)

(G)
}

R12 = {(P@p|Q@q, 〈a@q〉〈〈ã′〉〉∗(q,p)) : ∃P0. P0@p|Q@q |= 〈〈ã′〉〉∗(p,q) ∧ ∂〈a@q〉EQ(p,q)

(G)
}

R13 = {(P@p|Q@q, 〈〈ε〉〉∗(q,p)) : P,Q ∈ Bh}
Fig.8 A satisfaction subset used for proving Sub-lemma (4.1.2)

– To wait: R9.

• To copy ã2 from p to q: R10,R11,R12.

– To read a′2 from p where ã2 = a
′
2ã

′′
2 : R10.

– To wait: R11.

– To require a′2 to q: R12.

• To terminate: R13.

Then, for each (C, s) ∈ R, we show that (C, s) satis-

fies the conditions (i) and (ii) in Definition 3.1 for

some σ ∈ DC(s). Here, we show only the cases

(C, s) ∈ R4, · · · ,R7 because the other cases are

similar to and easier than these cases.

The case of (C, s) ∈ R4: Thus C ≡ P@p|Q@q,

s ≡ 〈〈bb̃′ã′〉〉∗(q,p), (ã, bb̃′) ∈ λ, and P0@p|Q@q |=
〈〈ãã′〉〉∗(p,q) ∧ [ã@p]∗〈bb̃′@q〉∗EQ(p,q)

(G)
. Let ã =

a1 · · · am. Since (ã, bb̃′) ∈ λ, ã = a1 · · · am 
= ε.

Thus m ≥ 1. By the definition of 〈〈ãã′〉〉∗(p,q),
for some ni (i≤m), P0@p|Q@q |= [∅]n1 〈a1@p〉 · · ·
[∅]nm 〈am@p〉〈〈ã′〉〉∗(p,q). Now we set σ as follows:

σ = {[∅]n〈b@q〉〈〈b̃′ã′〉〉∗(q,p), [∅]〈〈bb̃′ã′〉〉∗(q,p)}
∪{[b′′@p]〈〈bb̃′ã′〉〉∗(q,p) : b′′ ∈ Nac}

where n =
∑

i≤m
(ni + 1) ≥ 1. Then, we can show

that σ ∈ DC(〈〈bb̃′ã′〉〉∗(q,p)).
Next, the conditions (i) and (ii) are considered.
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(i) For any µ and s′, 〈µ〉s′ /∈ σ.
(ii) Let [µ]s′ ∈ σ and P@p|Q@q

µ−→ C′ ≡
P ′@p|Q′@q. There are 5 possible cases.

1. The case; µ = ∅, s′ ≡ 〈b@q〉〈〈b̃′ã′〉〉∗(q,p),
n1 = 0, and m = 1 (i.e. n = 1): By the rules

Name and Com, Q
1−→ Q′ is implied from

P@p|Q@q
∅−→ P ′@p|Q′@q. By the assump-

tion (P0@p|Q@q |= 〈a1@p〉〈〈ã′〉〉∗(p,q)), for some
P ′

0 and Q′′, P0@p|Q@q
{a1@p}−→ P ′

0@p|Q′′@q |=
〈〈ã′〉〉∗(p,q). This transition implies that Q

1−→
Q′′. Thus, Q′ ≡ Q′′ because the passage of

time is determinate. By the other assumption

(P0@p|Q@q |= [a1@p]∗〈bb̃′@q〉∗EQ(p,q)

(G)
), we

have that P ′
0@p|Q′@q |= 〈bb̃′@q〉∗EQ(p,q)

(G)
be-

cause P0@p|Q@q
{a1@p}−→ P ′

0@p|Q′′@q. Hence,

(C′, s′) ≡ (P ′@p|Q′@q, 〈b@q〉〈〈b̃′ã′〉〉∗(q,p)) ∈
R7 because P ′

0@p|Q′@q |= 〈〈ã′〉〉∗(p,q) ∧
〈bb̃′@q〉∗EQ(p,q)

(G)
.

2. The case; µ = ∅, s′ ≡ [∅]n−1〈b@q〉〈〈b̃′ã′〉〉∗(q,p),
n1 = 0, and m ≥ 2 (i.e. n ≥ 2): In the

same way as the previous case 1, we have

that Q
1−→ Q′ again. Since P0@p|Q@q |=

〈a1@p〉[∅]n2 〈a2@p〉 · · · [∅]nm 〈am@p〉〈〈ã′〉〉∗(p,q) ,

for some P ′
0, P0@p|Q@q

{a1@p}−→ P ′
0@p|Q′@q |=

[∅]n2 〈a2@p〉 · · · [∅]nm 〈am@p〉〈〈ã′〉〉∗(p,q) because

the passage of time (Q
1−→ Q′) is deter-

minate. Furthermore, since P0@p|Q@q |=
∂[a1@p][a2 · · · am@p]∗〈bb̃′@q〉∗EQ(p,q)

(G)
, we have

P ′
0@p|Q′@q |= [a2 · · · am@p]∗〈bb̃′@q〉∗EQ(p,q)

(G)
.

Here, note that n − 1 =
∑

2≤i≤m
(ni + 1) be-

cause m ≥ 2 and n1 = 0. Hence, we obtain

(C′, s′) ≡ (P ′@p|Q′@q, [∅]n−1〈b@q〉〈〈b̃′ã′〉〉∗(q,p))
∈ R5 because m ≥ 2, n − 1 =

∑
2≤i≤m

(ni +

1), P ′
0@p|Q′@q |= [∅]n2 〈a2@p〉 · · · [∅]nm 〈am@p〉

〈〈ã′〉〉∗(p,q) ∧ [a2 · · · am@p]∗〈bb̃′@q〉∗EQ(p,q)

(G)
.

3. The case; µ = ∅, s′ ≡ [∅]n−1〈b@q〉〈〈b̃′ã′〉〉∗(q,p),
n1 ≥ 1, and m ≥ 1, (i.e. n ≥ 2): At first, we

have that Q
1−→ Q′ again. Since the passage of

time is possible, for some P ′
0, P0

1−→ P ′
0. These

transitions infer P0@p|Q@q
∅−→ P ′

0@p|Q′@q.

Thus, by the assumption (P0@p|Q@q |=
[∅][∅]n1−1〈a1@p〉 · · · [∅]nm 〈am@p〉〈〈ã′〉〉∗(p,q)), we
have P ′

0@p|Q′@q |= [∅]n1−1〈a1@p〉 · · · [∅]nm

〈am@p〉〈〈ã′〉〉∗(p,q) because P0@p|Q@q
∅−→

P ′
0@p|Q′@q. In addition, by the other assump-

tion (P0@p|Q@q |= [ã@p]∗〈bb̃′@q〉∗EQ(p,q)

(G) )

and the definition of [ã@p]∗, we have that

P0@p|Q@q |= [∅][ã@p]∗〈bb̃′@q〉∗EQ(p,q)

(G) . Thus,

P ′
0@p|Q′@q |= [ã@p]∗〈bb̃′@q〉∗EQ(p,q)

(G)
because

P0@p|Q@q
∅−→ P ′

0@p|Q′@q. Here, set n′
i(i≤m)

as follows: n′
1 = n1 − 1 and n′

i = ni (i≥2),

thus n − 1 =
∑

i≤m
(n′

i + 1). Hence,

(C′, s′) ≡ (P ′@p|Q′@q, [∅]n−1〈b@q〉〈〈b̃′ã′〉〉∗(q,p))
∈ R5 because n − 1 =

∑
i≤m

(n′
i + 1),

P ′
0@p|Q′@q |= [∅]n′

1 〈a1@p〉 · · · [∅]n′
m 〈am@p〉

〈〈ã′〉〉∗(p,q) ∧ [ã@p]∗〈bb̃′@q〉∗EQ(p,q)

(G)
.

4. The case; µ = ∅ and s′ ≡ 〈〈bb̃′ã′〉〉∗(q,p):
In the same way as the previous case 3, for

some P ′
0, we can show that P0@p|Q@q

∅−→
P ′

0@p|Q′@q |= [ã@p]∗〈bb̃′@q〉∗EQ(p,q)

(G)
. Then,

since P0@p|Q@q |= 〈〈ãã′〉〉∗(p,q), we have that

P ′
0@p|Q′@q |= 〈〈ãã′〉〉∗(p,q) because 〈〈ãã′〉〉∗(p,q) re-

quires [∅]〈〈ãã′〉〉∗(p,q). Hence, we obtain that

(C′, s′) ≡ (P ′@p|Q′@q, 〈〈bb̃′ã′〉〉∗(q,p)) ∈ R4

because (ã, bb̃′) ∈ λ and P ′
0@p|Q′@q |=

〈〈ãã′〉〉∗(p,q) ∧ [ã@p]∗〈bb̃′@q〉∗EQ(p,q)

(G)
.

5. The case; µ = {b′′@p} and s′ ≡ 〈〈bb̃′ã′〉〉∗(q,p):
By Name and Com, Q

1−→ Q′ is implied

from P@p|Q@q
{b′′@p}−→ P ′@p|Q′@q. In the

same way as the previous case 4, we have

P0@p|Q@q
∅−→ P ′

0@p|Q′@q |= 〈〈ãã′〉〉∗(p,q) ∧
[ã@p]∗〈bb̃′@q〉∗EQ(p,q)

(G)
. Hence, (C′, s′) ∈ R4.

The case of (C, s) ∈ R5: Thus, C ≡ P@p|Q@q,

s ≡ [∅]n〈b@q〉〈〈b̃′ã′〉〉∗(q,p), ã = a1 · · · am, m ≥ 1,

P0@p|Q@q |= [∅]n1 〈a1@p〉· · ·[∅]nm 〈am@p〉〈〈ã′〉〉∗(p,q)
∧[ã@p]∗〈bb̃′@q〉∗EQ(p,q)

(G)
, and n =

∑
i≤m

(ni + 1).
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Since n ≥ 1, we set σ = {[∅]n〈b@q〉〈〈b̃′ã′〉〉∗(q,p)},
then σ ∈ DC([∅]n〈b@q〉〈〈b̃′ã′〉〉∗(q,p)).
Next, the conditions (i) and (ii) are considered.

(i) For any µ and s′, 〈µ〉s′ /∈ σ.
(ii) Let [µ]s′ ∈ σ and P@p|Q@q

µ−→ C′ ≡
P ′@p|Q′@q. Thus, s′ ≡ [∅]n−1〈b@q〉〈〈b̃′ã′〉〉∗(q,p) and
µ = ∅. There are 3 possible cases, but these are the
same as the above cases 1, 2, and 3 for (C, s) ∈ R4.

Hence, we can obtain that (C′, s′) ∈ R5 ∪R7.

The case of (C, s) ∈ R6: Thus, C ≡ P@p|Q@q,

s ≡ 〈〈bb̃′ã′〉〉∗(q,p), P0@p|Q@q |= 〈〈ã′〉〉∗(p,q) ∧
〈bb̃′@q〉∗EQ(p,q)

(G)
. Now we set σ as follows:

σ = {〈b@q〉〈〈b̃′ã′〉〉∗(q,p), [∅]〈〈bb̃′ã′〉〉∗(q,p)}
∪{[b′′@p]〈〈bb̃′ã′〉〉∗(q,p) : b′′ ∈ Nac}

In this case, σ ∈ DC(〈〈bb̃′ã′〉〉∗(q,p)).
Next, the conditions (i) and (ii) are considered.

(i) Let 〈µ〉s′ ∈ σ. Thus, µ = {b@q} and s′ ≡
〈〈b̃′ã′〉〉∗(q,p). Since P0@p|Q@q |= 〈bb̃′@q〉∗EQ(p,q)

(G)
,

for some (P ′
0, Q

′), P0@p|Q@q
{b@q}−→ P ′

0@p|Q′@q |=
〈b̃′@q〉∗EQ(p,q)

(G)
. Furthermore, since P0@p|Q@q |=

〈〈ã′〉〉∗(p,q), we have P ′
0@p|Q′@q |= 〈〈ã′〉〉∗(p,q) because

〈〈ã′〉〉∗(p,q) requires that [b@q]〈〈ã′〉〉∗(p,q). Here, by

Name and Com, for some P ′, P@p|Q@q
{b@q}−→

P ′@p|Q′@q because Q
b−→ Q′ and the passage of

time (P
1−→ P ′) is always possible. Then, the fol-

lowing three cases are considered.

1. The case; b̃′ 
= ε: (P ′@p|Q′@q, 〈〈b̃′ã′〉〉∗(q,p)) ∈
R6 because P ′

0@p|Q′@q |= 〈〈ã′〉〉∗(p,q) ∧
〈b̃′@q〉∗EQ(p,q)

(G) .

2. The case; b̃′ = ε and for some a1ã2 =

ã′: Since P ′
0@p|Q′@q |= EQ

(p,q)

(G)
, we have

P ′
0@p|Q′@q |= ∂[a1@p]∂〈a1@q〉EQ(p,q)

(G)
because

a1 ∈ Aend. Hence, (P
′@p|Q′@q, 〈〈a1ã2〉〉∗(q,p)) ∈

R10 because P ′
0@p|Q′@q |= 〈〈a1ã2〉〉∗(p,q) ∧

∂[a1@p] ∂〈a1@q〉EQ(p,q)

(G)
.

3. The case; b̃′ = ã′ = ε: (P ′@p|Q′@q, 〈〈ε〉〉∗(q,p))
∈ R13.

(ii) Let [µ]s′ ∈ σ and P@p|Q@q
µ−→ C′ ≡

P ′@p|Q′@q. There are two possible cases.

1. The case; µ = ∅ and s′ ≡ 〈〈bb̃′ã′〉〉∗(q,p):
By Name and Com, Q

1−→ Q′ is implied

from P@p|Q@q
∅−→ P ′@p|Q′@q. This infers

P0@p|Q@q
∅−→ P ′

0@p|Q′@q for some P ′
0 be-

cause the passage of time is always possible.

Thus, since P0@p|Q@q |= 〈〈ã′〉〉∗(p,q), we have

P ′
0@p|Q′@q |= 〈〈ã′〉〉∗(p,q) because 〈〈ã′〉〉∗(p,q) re-

quires [∅]〈〈ã′〉〉∗(p,q). Also, since P0@p|Q@q |=
〈bb̃′@q〉∗EQ(p,q)

(G)
, we have that P ′

0@p|Q′@q |=
〈bb̃′@q〉∗EQ(p,q)

(G)
because 〈bb̃′@q〉∗EQ(p,q)

(G)
re-

quires [∅]〈bb̃′@q〉∗EQ(p,q)

(G)
. Hence, (C′, s′) ≡

(P ′@p|Q′@q, 〈〈bb̃′ã′〉〉∗(q,p)) ∈ R6 because

P ′
0@p|Q′@q |= 〈〈ã′〉〉∗(p,q) ∧ 〈bb̃′@q〉∗EQ(p,q)

(G)
.

2. The case; µ = {b′′@p} and s′ ≡ 〈〈bb̃′ã′〉〉∗(q,p):
By Name and Com, Q

1−→ Q′ is implied

from P@p|Q@q
{b′′@p}−→ P ′@p|Q′@q. In the

same way as the previous case 1, we have

P0@p|Q@q
∅−→ P ′

0@p|Q′@q |= 〈〈ã′〉〉∗(p,q) ∧
〈bb̃′@q〉∗EQ(p,q)

(G)
. Hence, (C′, s′) ∈ R6

The case of (C, s) ∈ R7: C ≡ P@p|Q@q,

s ≡ 〈b@q〉〈〈b̃′ã′〉〉∗(q,p), P0@p|Q@q |= 〈〈ã′〉〉∗(p,q) ∧
〈bb̃′@q〉∗EQ(p,q)

(G)
. Now set σ = {〈b@q〉〈〈b̃′ã′〉〉∗(q,p)},

then σ ∈ DC(〈b@q〉〈〈b̃′ã′〉〉∗(q,p)). Hence, this case is
the same as the case (i) for (C, s) ∈ R6.

Proof of Lemma 4.2

Since CB(G) has no Timeout operator, the tran-

sition CB(G)
{ã end@p}
=⇒ implies that CB(G)

{ã end@p}−→ .

Thus, Bh(G)
ã−→ end−→. We prove that, for any n ≥ 0,

if Bh(G,n)
ã−→ end−→, then ã ∈ ⋃

i≤n
L(i)(G), by in-

duction over n.

• The base case (n = 0): If Bh(G,0)
ã−→ end−→ P ′,

then ã = a0 ∈ L(0)(G).

• The induction case (n + 1 ≥ 1): Let

Bh(G,n+1)
ã−→ end−→ P ′. By the definition of

Bh(G,n+1) ≡ Rw(G)(Bh(G,n)), there are two

possible cases as follows:

– For some P ′′, Bh(G,n)
ã−→ end−→ P ′′ and
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P ′ ≡ Rw(G)(P
′′). Hence, by induction,

ã ∈ ⋃
i≤n

L(i)(G) ⊆ ⋃
i≤n+1

L(i)(G).

– For some ã1ã2ã3 and b̃2, ã = ã1b̃2ã3,

Bh(G,n)
ã1−→ ã2−→ ã3−→ end−→ P ′, and (ã2, b̃2) ∈

λ. Hence, by induction, ã1ã2ã3 ∈
⋃

i≤n
L(i)(G). Finally, ã = ã1b̃2ã3 ∈

⋃
i≤n+1

L(i)(G), because (ã2, b̃2) ∈ λ.

Proof of Lemma 4.3

We show that the set R given in Fig.9 is a

satisfaction subset, where Aend = A ∪ {end} and

P ⊆+ Q means that P is a summand of Q, thus

Q ≡ · · · + P + · · ·. Furthermore, Bh∂ is the set of

behaviors which have neither Timeouts nor Con-

stants. Thus, if P ∈ Bh∂ and P
1−→ P ′, then

P ≡ P ′ ∈ Bh∂ . For example, Bh(G) ∈ Bh∂ . Ev-

ery behavior P, P ′, Q,Q′, · · ·, used in this proof is

tactically assumed to be contained in Bh∂ .

The set R is divided into 18 subsets R1, · · · R18

as follows:

• To collect all the action-sequence: R1.

• To idle: R1,···,5.

• To require the initial action: R6,7.

• To copy (p→ q) with rewriting: R8,9.

• To copy (p→ q) before rewriting: R10,···,12.

• To copy (p→ q) after rewriting: R13,···,15.

• To copy (q→ p): R16,···,18.

Then, for each (C, s) ∈ R, we show that (C, s) sat-

isfies the conditions (i) and (ii) in Definition 3.1 for

some σ ∈ DC(s).

The case of (C, s) ∈ R1: Thus, C ≡ CB(G) and

s ≡ GR(G). Since GR(G) has no Disjunction, there

is an unique σ such that σ ∈ DC(GR(G)).

(i) Let 〈µ〉s′ ∈ σ. By the definition of GR(G), µ =

{a0@p} and s′ ≡ ∂〈end@p〉tt. Here, Bh(G,0)
a0−→

end.I. Thus, CB(G)
{a0@p}−→ end.I@p|Bh(G)@q.

Hence, (end.I@p|Bh(G)@q, s′) ∈ R6.

(ii) Let [µ]S′ ∈ σ and CB(G)
µ−→ C′. By the

definition of GR(G), there are four possible cases as

follows:

1. The case; µ = {a@p}, s′ ≡ [ã′@p]∗〈b̃@q〉∗
EQ

(p,q)

(G)
, and (aã′, b̃) ∈ λ: Thus, for some P ′,

Bh(G)
a−→ P ′ and C′ ≡ P ′@p|Bh(G)@q be-

cause CB(G)
{a@p}−→ C′. Furthermore, by the

definition of Bh(G), for some n, Bh(G,n)
a−→

P ′ and Rw(G)(Bh(G,n)) ≡ Bh(G,n+1) ⊆+

Bh(G). Hence, (C
′, s′) ∈ R8.

2. The case; µ = {a@p}, s′ ≡ ∂〈a@q〉RW(G),

and a ∈ Aend: For some P
′, Bh(G)

a−→ P ′ and

C′ ≡ P ′@p|Bh(G)@q because CB(G)
{a@p}−→ C′.

Hence, (C′, s′) ∈ R11.

3. The case; µ = {a@q}, s′ ≡ ∂〈a@p〉EQ(q,p)

(G)
,

and a ∈ Aend: For some P
′, Bh(G)

a−→ P ′ and

C′ ≡ Bh(G)@p|P ′@q, because CB(G)
{a@q}−→ C′.

Hence, (C′, s′) ∈ R17.

4. The case; µ = ∅ and s′≡ ∂〈a0@p〉∂〈end@p〉tt
or s′ ≡ [ã@p]∗〈b̃@q〉∗EQ(p,q)

(G)
((ã, b̃) ∈ λ) or

∂[a@p]∂〈a@q〉RW(G) or ∂[a@q]∂〈a@p〉EQ(q,p)

(G)
:

Since CB(G) has no timeout, we can infer that

CB(G)
∅−→ C′ ≡ CB(G). Hence, (C′, s′) ∈

⋃
2≤i≤5

Ri.

The case of (C, s) ∈ R2∪R3∪R4∪R5: The proof

of this case is completely included in the above case

(C, s) ∈ R1.

The case of (C, s) ∈ R6: This case is similar to

the case (i) in the above case (C, s) ∈ R1.

The case of (C, s) ∈ R7: Trivial.

The case of (C, s) ∈ R8: C ≡ P ′@p|Q@q, s ≡
[ã′@p]∗〈b̃@q〉∗EQ(p,q)

(G) , P
ã−→ P ′,Rw(G)(P ) ⊆+ Q

and (ãã′, b̃) ∈ λ. This case is divided into three

sub-cases with respect to the lengths of ã′ and b̃ as

follows:

1. The case; ã′ = ε and b̃ = ε: In this

case, by the definition of Rw(G)(P ), P
′ ⊆+
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R =
⋃

i≤18
Ri

R1 = {(CB(G), GR(G))}
R2 = {(CB(G), ∂〈a0@p〉∂〈end@p〉tt)}
R3 = {(CB(G), [ã@p]∗〈b̃@q〉∗EQ(p,q)

(G)
) : (ã, b̃) ∈ λ}

R4 = {(CB(G), ∂[a@p]∂〈a@q〉RW(G)) : a ∈ Aend}
R5 = {(CB(G), ∂[a@q]∂〈a@p〉EQ(q,p)

(G)
) : a ∈ Aend}

R6 = {(end.I@p|Q@q, ∂〈end@p〉tt) : Q ∈ Bh∂}
R7 = {(P@p|Q@q, tt) : P,Q ∈ Bh∂}

R8 = {(P ′@p|Q@q, [ã′@p]∗〈b̃@q〉∗EQ(p,q)

(G)
) : Q ∈ Bh∂ ,

∃P ∈ Bh∂ . Rw(G)(P ) ⊆+ Q,P
ã−→ P ′, (ãã′, b̃) ∈ λ}

R9 = {(P ′@p|Q@q, 〈b̃@q〉∗EQ(p,q)

(G)
) : Q ∈ Bh∂ ,∃P ∈ Bh∂ . P ⊆+ Q,P

b̃−→ P ′}

R10 = {(P@p|Q@q, RW(G)) : P,Q ∈ Bh∂ ,Rw(G)(P ) ⊆+ Q}
R11 = {(P ′@p|Q@q, ∂〈a@q〉RW(G)) : Q ∈ Bh∂ , ∃P ∈ Bh∂ . Rw(G)(P ) ⊆+ Q,P

a−→ P ′}
R12 = {(P@p|Q@q, ∂[a@p]∂〈a@q〉RW(G)) : P,Q ∈ Bh∂ ,Rw(G)(P ) ⊆+ Q}

R13 = {(P@p|Q@q, EQ
(p,q)

(G)
) : P,Q ∈ Bh∂ , P ⊆+ Q}

R14 = {(P ′@p|Q@q, ∂〈a@q〉EQ(p,q)

(G)
) : Q ∈ Bh∂ ,∃P ∈ Bh∂ . P ⊆+ Q,P

a−→ P ′}
R15 = {(P@p|Q@q, ∂[a@p]∂〈a@q〉EQ(p,q)

(G)
) : P,Q ∈ Bh∂ , P ⊆+ Q}

R16 = {(P@p|P@q, EQ
(q,p)

(G)
) : P ∈ Bh∂}

R17 = {(P@p|P ′@q, ∂〈a@p〉EQ(q,p)

(G)
) : P ∈ Bh∂ , P a−→ P ′}

R18 = {(P@p|P@q, ∂[a@q]∂〈a@p〉EQ(q,p)

(G)
) : P ∈ Bh∂}

Fig.9 A satisfaction subset used for proving Lemma 4.3

Rw(G)(P ) ⊆+ Q because P
ã−→ P ′ and

(ãã′, b̃) = (ã, ε) ∈ λ. And there is an unique σ

such that σ ∈ DC(s) = DC(EQ(p,q)

(G)
).

(i) σ has no requirement of the form 〈µ〉s′.
(ii) Let [µ]s′ ∈ σ and C

µ−→ C′. By the def-

inition of EQ
(p,q)

(G)
, the following two cases are

possible.

(a) The case; s′ ≡ ∂〈a′′@q〉EQ(p,q)

(G)
and

µ = {a′′@p}: Thus, for some P ′′, P ′ a′′
−→

P ′′ and C′ ≡ P ′′@p|Q@q because C ≡
P ′@p|Q@q

{a′′@p}−→ C′ and Q ∈ Bh∂ (i.e. if

Q
1−→ Q′ then Q ≡ Q′). Hence, we obtain

(C′, s′) ∈ R14 because C′ ≡ P ′′@p|Q@q,

s′ ≡ ∂〈a′′@q〉EQ(p,q)

(G)
, P ′ a′′

−→ P ′′, and

P ′ ⊆+ Q.

(b) The case; s′ ≡ ∂[a′′@p]∂〈a′′@q〉EQ(p,q)

(G)

and µ = ∅ (idling): Thus, C ≡ C′ be-

cause C ≡ P ′@p|Q@q
∅−→ C′ and P ′, Q ∈

Bh∂ . Hence, (C′, s′) ∈ R15 because C′ ≡
P ′@p|Q@q, s′ ≡ ∂[a′′@p]∂〈a′′@q〉EQ(p,q)

(G)

and P ′ ⊆+ Q.

2. The case; ã′ = ε and for some b1b̃
′ = b̃: In

this case, Rw(G)(P )
b1−→ b̃′.P ′ b̃′−→ P ′ because

P
ã−→ P ′ and (ãã′, b̃) = (ã, b1b̃

′) ∈ λ. Now, we
set σ as follows:

σ = {〈b1@q〉〈b̃′@q〉∗EQ(p,q)

(G)
,

[∅]〈b1b̃′@q〉∗EQ(p,q)

(G)
},
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then σ ∈ DC(〈b1b̃′@q〉∗EQ(p,q)

(G)
) = DC(s).

(i) Let 〈µ〉s′ ∈ σ. Thus s′ ≡ 〈b̃′@q〉∗EQ(p,q)

(G)

and µ = {b1@q}. We can infer C
{b1@q}−→ C′ ≡

P ′@p|̃b′.P ′@q from Rw(G)(P )
b1−→ b̃′.P ′ be-

cause Rw(G)(P ) ⊆+ Q and C ≡ P ′@p|Q@q.

Hence, we obtain (C′, s′) ∈ R9 because

C′ ≡ P ′@p|̃b′.P ′@q, s′ ≡ 〈b̃′@q〉∗EQ(p,q)

(G) , and

b̃′.P ′ b̃′−→ P ′.

(ii) Let [µ]s′ ∈ σ and C
µ−→ C′. Thus, s′ ≡

〈b1b̃′@q〉∗EQ(p,q)

(G)
and µ = ∅. Since C

∅−→ C′,

we have C′ ≡ C ≡ P ′@p|Q@q. Hence, we ob-

tain (C′, s′) ∈ R9, because C
′ ≡ P ′@p|Q@q,

s′ ≡ 〈b̃@q〉∗EQ(p,q)

(G)
, Rw(G)(P ) ⊆+ Q, and

Rw(G)(P )
b−→ P ′.

3. The case; ã′ = a1ã
′′ for some a1ã

′′: Now, we

set σ as follows:
σ = {[a1@p][ã′′@p]∗〈b̃@q〉∗EQ(p,q)

(G)
,

[∅][ã′@p]∗〈b̃@q〉∗EQ(p,q)

(G)
},

then σ ∈ DC([a1ã
′′@p]∗〈b̃@q〉∗EQ(p,q)

(G)
).

(i) σ has no requirement of the form 〈µ〉s′.
(ii) Let [µ]s′ ∈ σ and C

µ−→ C′. There are two

possible cases as follows:

(a) The case; s′ ≡ [ã′′@p]∗〈b̃@q〉∗EQ(p,q)

(G)

and µ = {a1@p}: Thus, for some P ′′,

P ′ a1−→ P ′′ and C′ ≡ P ′′@p|Q@q be-

cause C ≡ P ′@p|Q@q
{a1@p}−→ C′. Hence,

(C′, s′) ∈ R8 because C′ ≡ P ′′@p|Q@q

s′ ≡ [ã′′@p]∗〈b̃@q〉∗EQ(p,q)

(G)
, P

ãa1−→ P ′′,

Rw(G)(P ) ⊆+ Q, and (ãa1ã
′′, b̃′) ∈ λ.

(b) The case; s′ ≡ [ã′@p]∗〈b̃@q〉∗EQ(p,q)

(G)

and µ = ∅: Since C
∅−→ C′, C′ ≡ C.

Hence, (C′, s′) ∈ R8, because C
′ ≡ C and

s′ ≡ s.

The case of (C, s) ∈ R9: C ≡ P ′@p|Q@q, s ≡
〈b̃@q〉∗EQ(p,q)

(G)
, P ⊆+ Q, and P

b̃−→ P ′. This case

is divided into two sub-cases with respect to the

length of b̃ as follows:

1. The case; b̃ = ε: In this case, P ≡ P ′ because

P
ε−→ P ′. This case is exactly the same as the

sub-case 1 in the previous case of (C, s) ∈ R8

because P ′ ⊆+ Q.

2. The case; b̃ = b1b̃
′: In this case, for some P1,

P
b1−→ P1

b̃′−→ P ′ because P
b̃−→ P ′. Hence,

this case is exactly the same as the sub-case

2 in the previous case of (C, s) ∈ R8 because

P
b1−→ P1

b̃′−→ P ′ and P ⊆+ Q.

The cases of (C, s) ∈ R10,···,18: These cases are

similar to and easier than the cases R8,9.

Proof of Proposition 5.1

Let ν1, ν2 ⊆ ActS, Ψ1,Ψ2 ⊆ Nag, and Ψ1 ∩Ψ2 =

∅. We show that the following R is a (ν12)-im-

satisfaction-subset, where ν12 = (ν1↓Ψ1)∪(ν2↓Ψ2).

R = {(C1|C2, S1|S2) : ∀i ∈ {1, 2}.
Agn(Ci) = Ψi, Ci !νi Si}

Let (C1|C2, S1|S2) ∈ R.
(i) Let C1|C2

µ−→ C′. By Com, it implies that

for some (µ1, µ2, C1, C2), C1
µ1−→ C′

1, C2
µ2−→ C′

2,

µ = µ1 ∪ µ2, and C
′ = C′

1|C′
2. For each i ∈ {1, 2},

since Ci !νi Si, for some S′
i, Si

µi∩νi�−→ S′
i and

C′
i !νi S

′
i. Furthermore, µ ∩ ν12 = µ ∩ ((ν1↓Ψ1) ∪

(ν2↓Ψ2)) = (µ ∩ (ν1↓Ψ1)) ∪ (µ ∩ (ν2↓Ψ2)) = (µ1 ∩
(ν1↓Ψ1)) ∪ (µ2 ∩ (ν2↓Ψ2)) = (µ1 ∩ ν1) ∪ (µ2 ∩ ν2)
because agn(µi) ⊆ Agn(Ci) = Ψi and Ψ1∩Ψ2 = ∅.
Finally, by the definition of the im-Constant S1|S2,

S1|S2
µ∩ν12�−→ S′

1|S′
2 because S1

µ1∩ν1�−→ S′
1 and S2

µ2∩ν2�−→
S′

2. Furthermore, we have that (C′
1|C′

2, S
′
1|S′

2) ∈ R
because for each i ∈ {1, 2}, agn(C′

i) = agn(Ci) =

Ψi and C
′
i !νi S

′
i.

(ii) By a symmetric argument with (i).

Proof of Proposition 5.2

Let ν ⊆ ActS. We show that the following R is

a (ν)-im-satisfaction-subset.

R = {(C\M,S\M ′) : res(act(C),M, ν) ⊆M,
C !ν S, M ′ = {µ ∩ ν : µ ∈M}}

Let (C\M,S\M ′) ∈ R.
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(i) Let C\M µ−→ D′. By Res, it implies that for

some C′, C
µ−→ C′, µ ∈M ∪ {∅}, and D′ = C′\M .

Since C !ν S, for some S′, S
µ∩ν�−→ S′ and C′ !ν S′.

Here, µ ∩ ν ∈ {µ′ ∩ ν : µ′ ∈ M ∪ {∅}} = M ′ ∪ {∅}
because µ ∈ M ∪ {∅}. Hence, by the definition of

the im-Constant S\M ′, S\M ′ µ∩ν�−→ S′\M ′ because

S
µ∩ν�−→ S′ and µ ∩ ν ∈ M ′ ∪ {∅}. Furthermore, we

have that (C′ \M,S′ \M ′) ∈ R because C′ !ν S′

and act(C′) ⊆ act(C) (i.e. res(act(C′),M, ν) ⊆
res(act(C),M, ν) ⊆M).

(ii) Let S \M ′ µ′
�−→ T ′. By the definition of

the im-Constant S \M ′, for some S′, S
µ′
�−→ S′,

µ′ ∈ M ′ ∪ {∅}, and T ′ ≡ S′ \M ′. Since C !ν S,
for some µ0 and C′, µ′ = µ0 ∩ ν, C µ0−→ C′ and

C′ !ν S′. By the definition of act(C), we have

µ0 ∈ act(C) because C µ0−→ C′.

• The case; µ′ 
= ∅ and µ0 
= ∅: Thus µ′ ∈
M ′ = {µ ∩ ν : µ ∈M} because µ′ ∈ M ′ ∪ {∅}.
This means that for some µ ∈ M , µ′ = µ ∩ ν.
Then, µ0

.
=ν µ because µ0 ∩ ν = µ′ = µ ∩ ν.

Therefore, µ0 ∈ res(act(C),M, ν) ⊆ M be-

cause µ0 ∈ act(C), µ ∈M , and ∅ 
= µ0
.
=ν µ.

• The case; µ′ = ∅ and µ0 
= ∅: Thus, µ0
.
=ν ∅

because µ0 ∩ ν = µ′ = ∅. Therefore, µ0 ∈
res(act(C),M, ν) ⊆ M because µ0 ∈ act(C),
∅ ∈M ∪ {∅}, and ∅ 
= µ0

.
=ν ∅.

• The other case; thus µ0 = ∅ ∈M ∪ {∅}.
Consequently, always µ0 ∈ M ∪ {∅}. Hence, by

Res, C \M µ0−→ C′ \M is inferred from C
µ0−→ C′

and µ0 ∈ M ∪ {∅}. Furthermore, we have that

(C′\M,S′\M ′) ∈ R because C′ !ν S′ and act(C′) ⊆
act(C).

Proof of Proposition 5.3

Let µ, ν ⊆ ActS. We show that the following R
is a (ν ∩ µ)-im-satisfaction-subset.

R = {(C,S/µ) : C !ν S}
Let (C,S/µ) ∈ R, thus C !ν S.
(i) Let C

µ1−→ C′. Since C !ν S, for some S′,

S
µ1∩ν�−→ S′ and C′ !ν S′. By the definition of the

im-Constant S/µ, it infers that S/µ
µ1∩(ν∩µ)�−→ S′/µ.

Here, (C′, S′/µ) ∈ R.
(ii) By a symmetric argument with (i).

Proof of Proposition 5.4

Only if part (⇒): Let ν ⊆ ActS. We show that

the following R is a (ν)-satisfaction-subset.

R = {(S, s) : C !ν S,C |=ν s}
Let (S, s) ∈ R, thus C !ν S and C |=ν s. Since

C |=ν s, for some σ ∈ DC(s), C |=ν

∧
σ.

(i) Let 〈µ〉s′ ∈ σ. Since C |=ν

∧
σ, for some C′

and µ′, C
µ′
−→ C′, µ

.
=ν µ

′, and C′ |=ν s
′. Also,

since C !ν S, for some S′, S
µ′∩ν�−→ S′ and C′ !ν S′.

Hence, (S′, s′) ∈ R because C′ !ν S′ and C′ |=ν s
′.

Here, µ
.
=ν µ

′ ∩ ν because µ
.
=ν µ

′ means that

µ ∩ ν = µ′ ∩ ν = (µ′ ∩ ν) ∩ ν.
(ii) Let [µ]s′ ∈ σ, S

µ′
�−→ S′, and µ

.
=ν µ′.

Since C !ν S, for some C′ and µ′′, µ′ = µ′′ ∩ ν,
C

µ′′
−→ C′, and C′ !ν S′. Here, µ

.
=ν µ

′′ because

µ∩ ν = µ′ ∩ ν = (µ′′ ∩ ν)∩ ν = µ′′ ∩ ν. Thus, since
C |=ν

∧
σ, we have C′ |=ν s

′ because [µ]s′ ∈ σ,
C

µ′′
−→ C′, and µ

.
=ν µ

′′. Hence, (S′, s′) ∈ R.

If part (⇐): Let ν ⊆ ActS. We can prove

that the following R is a (ν)-satisfaction-subset by

a symmetric argument with the “only if part”.

R = {(C, s) : C !ν S, S |=ν s}

Proof of Proposition 7.1

Only if part (⇒): In this proof, we use a set

Sp0ν(C) defined as follows:

Sp0ν(C) = {s ∈ Sp0 : C |=ν S}
where Sp0 is defined by removing Constants (re-

cursion) from Sp. In this case, for any s ∈ Sp0, a
negative specification ¬s (i.e. C |= ¬s iff C 
|= s)

is inductively defined by a well-known way as fol-
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lows: ¬〈µ〉s ≡ [µ]¬s, ¬[µ]s ≡ 〈µ〉¬s, ¬∧
i∈I si ≡∨

i∈I ¬si, and ¬
∨

i∈I si ≡
∧

i∈I ¬si.
We show that the following R is a (ν)-im-

satisfaction-subset because Spν(C) = Spν(D) im-

plies Sp0ν(C) = Sp
0
ν(D).

R = {(C,S) : ∃D. Sp0ν(C) = Sp0ν(D),D !ν S}
We use a contradiction, thus assume that for

some (C,S) ∈ R, either
(¬i) for some µ and C′, C

µ−→ C′, for every S′

such that S
µ∩ν�−→ S′, (C′, S′) /∈ R, or

(¬ii) for some µ and S′, S
µ�−→ S′, for every C′

and µ′ such that C
µ′
−→ C′ and µ = µ′ ∩ ν,

(C′, S′) /∈ R.
Since (C,S) ∈ R, for some D, Sp0ν(C) = Sp0ν(D)

and D !ν S. First, assume (¬i), thus for some µ

and C′, C
µ−→ C′. And set µi and Di (i ∈ I) as

follows:

{(µi,Di) : i ∈ I} = {(µ′,D′) : D
µ′
−→ D′, µ

.
=ν µ

′}
Then, for each i ∈ I , for some si, C

′ |= si and

Di 
|= si as follows:

SinceD !ν S, for some Si, S µi∩ν�−→ Si andDi !ν
Si because D

µi−→ Di. Here, µi ∩ ν = µ ∩ ν
because µ

.
=ν µi. Thus, by (¬i), (C′, Si) /∈ R.

Furthermore, by the definition of R, Sp0ν(C′) 
=
Sp0ν(Di) because Di !ν Si. Hence, for some

si ∈ Sp0, C′ |= si and Di 
|= si.

Now set s ≡ 〈µ〉(∧
i∈I si) ∈ Sp0. Then, C |= s be-

cause C
µ−→ C′ and for every i ∈ I , C′ |= si. On

the other hand, D 
|= s because for any transition

such that D
µ′
−→ D′ and µ

.
=ν µ

′, for some i ∈ I ,
D′ ≡ Di 
|= si. But, they (C |= s and D 
|= s) con-
tradict the assumption Sp0ν(C) = Sp0ν(D). Hence

(¬i) is impossible.
The second assumption (¬ii) is also impossible

by a symmetric argument with the case of (¬i).
Consequently R is a (ν)-im-satisfaction-subset.

If part (⇐): Assume that ISpν(C) = ISpν(D).

Here, ISpν(C) 
= ∅ because C !ν imspν(C), where

imspν(C) is defined in Section 7. Thus, for some

S, C !ν S and D !ν S.
We show that the following set R is a (ν)-

satisfaction-subset.

R = {(C, s) : ∃S. C !ν S,D !ν S,D |=ν s}
Let (C, s) ∈ R, thus for some S, C !ν S, D !ν S,
and D |=ν s. Since D |=ν s, for some σ ∈ DC(s),
D |=ν

∧
σ.

(i) Let 〈µ〉s′ ∈ σ. Since D |=ν

∧
σ, for some

D′ and µ′, D
µ′
�−→ D′, µ

.
=ν µ

′, and D′ |=ν s
′.

Also, since D !ν S, for some S′, S
µ′∩ν−→ S′ and

D′ !ν S′. Furthermore, since C !ν S, for some C′

and µ′′, µ′ ∩ ν = µ′′ ∩ ν, C µ′′
−→ C′, and C′ !ν S′.

Hence, (C′, s′) ∈ R because C′ !ν S′, D′ !ν S′,

and D′ |=ν s
′. And, µ

.
=ν µ

′ .=ν µ
′′.

(ii) Let [µ]s′ ∈ σ, C µ′
−→ C′, and µ

.
=ν µ

′. Then,

we can show that (C′, s′) ∈ R by a symmetric ar-

gument with the case of (i).


