
A Non-interleaving Timed Process Algebra and a Process Logic
for Verifying Composition of Agents

Yoshinao ISOBE and Kazuhito OHMAKI

Information Technology Research Institute
National Institute of Advanced Industrial Science and Technology (AIST)
Tsukuba Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki, 305-8568 Japan

{ y-isobe | k.ohmaki }@aist.go.jp

ABSTRACT

We present formal frameworks tCCA, tLCA, and tICCA
for verifying composition of agents. Behaviors of com-
posite agents are described in tCCA and specifications
for them are described in tLCA. Since consistency be-
tween specifications in tLCA is undecidable as proven in
this paper, we propose to use intermediate specifications
described in tICCA instead of checking the consistency,
and then give useful propositions for verifying composi-
tion of agents in tICCA.

Keywords: process algebra, process logic, time, sat-
isfiability, non-interleaving

1 INTRODUCTION

We are members of a project called ESP (Evolutionary
System Project)1. The purpose of ESP is to develop an
agent-system where agents can evolve by spontaneously
moving over networks, combining with other agents, and
communicating with them. In such systems, unexpect-
ed behavior may be caused by composition of agents.
To avoid unexpected behavior, the members of ESP are
discussing an agent-system where each agent has specifi-
cations, and if specifications between two agents are not
consistent, then they cannot combine. These agents are
modeled as shown in Figure 1. In ESP, we are study-
ing how to formally verify consistency between specifi-
cations. This paper defines a process algebra tCCA, a
process logic tLCA, and a process algebra tICCA.

tCCA (a timed Calculus of Composite Agents) de-
fined in Section 2 is a non-interleaving timed process
algebra. Many non-interleaving process algebras have
been proposed (e.g. [1, 3, 5]) and timed process alge-
bras have been proposed (e.g. [4, 9, 13]). The features
of tCCA are summarized as follows: (1) it is possible
to observe which agents have performed actions and (2)
the passage of time is needed for executing any action.
By the feature (1), concurrent behavior is explicitly dis-
tinguished from interleaving behavior. The feature (2)

1The project ESP has been done with the support of JSP-
S(Japan Society for the Promotion of Science) Grants-in-Aid for
Scientific Research

im-spec S1

spec s1

behavior P1

agent ag1

communication

consistency
verification

tCCA

tICCA

tLCA

im-spec S2

spec s2

behavior P2

agent ag2

Figure 1: The image of agents with specifications

removes unnatural situations such that actions can in-
finitely be performed in a finite time. Note that each
feature is not new. For example, (1) is expressed in Dis-
tributed CCS[5] and (2) is discussed in [2]. The purpose
of this paper is not to propose a new process algebra,
but to show relations between a process algebra and a
process logic with considering both of (1) and (2).

tLCA (a timed Logic for Composite Agents) defined
in Section 3 is a process logic for describing specifica-
tions of agent-behaviors described in tCCA. As shown
in Figure 1, if each agent agi has a specification si (i.e.
each behavior Pi satisfies si), then it is important to
verify the consistency between s1 and s2 before com-
position of ag1 and ag2. However, we prove that the
consistency is undecidable in Section 3.

tICCA (a timed Intermediate CCA) defined in Sec-
tion 4 is a basic process algebra. Since the consistency in
tLCA is undecidable, we use intermediate specifications
(also called im-specifications) between behaviors (tCCA)
and specifications (tLCA). Im-specifications express ab-
stract behaviors of agents by hiding uninteresting action-
s because verification often considers some actions (not
all). Therefore, the number of states in im-specifications
decreases. In Section 4, we show how to verify compo-
sition of agents in tICCA instead of in tCCA.

2 PROCESS ALGEBRA tCCA

In this section, tCCA is defined for describing behaviors
of composite agents. At first, it is assumed that a set
Nac, ranged over by a, b, · · ·, of action-names are given.
Then, the set Act, ranged over by α, β, · · ·, of actions is
defined as: Act = Nac ∪ {1}, where the time action ‘1’
represents the passage of one time-unit, where a time-
unit is an abstract unit of time, and it may be a second,

215

a minute, or a clock of CPU. Also, it is assumed that
a set Nag , ranged over by ψ, ϕ, · · ·, of agent-names are
given. Then, the set ActS of single-actions is defined
as: ActS = {a@ψ : a ∈ Nac, ψ ∈ Nag}, and subset-
s of ActS are represented by µ, ν, · · ·. Then, the set
ActM of multi-actions is defined as: ActM = {µ : µ ⊆
ActS ,∀a@ψ ∈ µ. ∀b@ϕ ∈ µ − {a@ψ}. ψ �= ϕ}. A multi-
action {ai@ψi : i ∈ I} ∈ ActM represents that agents-ψi
(i ∈ I) simultaneously perform actions-ai, respectively.
Thus, the number of actions which an agent can simul-
taneously perform is one at most. Subsets of the set
ActM of multi-actions are represented by M,N, · · ·.

It is also assumed that a set Kbh, ranged over by
K, · · ·, of behavior-constants is given. Then, the set Bh,
ranged over by P,Q, · · ·, of behaviors is the smallest set
which contains the following expressions:

K : Recursion (K ∈ Kbh), I : Idling,
a.P : Prefix (a ∈ Nac), P � Q : Timeout,∑

i∈I Pi : Summation,

where P, Pi, Q are already in Bh. Also, the set CBh,
ranged over by C,D, · · ·, of concurrent behaviors is the
smallest set which contains the following expressions:

P@ψ : Naming (P ∈ Bh, ψ ∈ Nag),
C|D : Composition (Agn(C) ∩Agn(D) = ∅),
C\M : Restriction (M ⊆ ActM),

where C,D are already in CBh. The function Agn :
CBh → 2Nag is defined as follows: Agn(P@ψ) = {ψ},
Agn(C|D) = Agn(C) ∪ Agn(D), and Agn(C \M) =
Agn(C). These operators have the binding power such
that: Prefix > Timeout > Summation > Naming >
Restriction > Composition. Notation C ≡ D represents
that C and D are syntactically identical.

Each operator is briefly explained as follows. The be-
havior a.P represents that an agent can perform action-
a and thereafter behaves like P . Here, it is important
that the passage of one time-unit is always needed for
executing any action. An action a(n) which needs n
time-units (n ≥ 1) for its execution is inductively de-
fined as: a(1).P ≡ a.P and a(n+ 1).P ≡ a.a(n).P ,

∑
i∈I Pi behaves like Pj for some j ∈ I, and the

choice is made by the first action of Pj except for the
time action 1. The passage of time must be made by
all behaviors Pi (i ∈ I). This operator corresponds to
‘strong choice’ in TCCS[9]. We also use a short notation
for binary choice as follows: P1 + P2 ≡

∑
i∈{1,2} Pi.

Meaning of each behavior-constant is given by a
defining equation. It is assumed that for every behavior-
constant K ∈ Kbh, there is a defining equation K def= P .

P � Q now behaves like P and behaves like Q after
one time-unit. Thus, P �(n) Q which behaves like P
until n time-units pass and behaves like Q after that is
defined as: P �(0)Q ≡ Q and P �(n+1)Q ≡ P �(P �(n)Q).

Name Hypothesis ⇒ Conclusion

Id ⇒ I 1−→ I
Act1 ⇒ a.P

a−→ P

Act2 ⇒ a.P
1−→ a.P

Sum1 ∃i ∈ I. Pi
a−→ P ′ ⇒

∑
i∈I Pi

a−→ P ′

Sum2 ∀i ∈ I. Pi
1−→ P ′

i ⇒
∑
i∈I Pi

1−→
∑
i∈I P

′
i

TO1 P
a−→ P ′ ⇒ P � Q

a−→ P ′

TO2 ⇒ P � Q
1−→ Q

Rec K
def= P, P

α−→ P ′ ⇒ K
α−→ P ′

Name1 P
a−→ P ′ ⇒ P@ψ

{a@ψ}−→ P ′@ψ

Name2 P
1−→ P ′ ⇒ P@ψ ∅−→ P ′@ψ

Com C
µ−→ C ′, D

ν−→D′ ⇒ C|D µ∪ν−→ C ′|D′

Res C
µ−→ C′, µ ∈M ∪ {∅} ⇒ C\M µ−→ C ′\M

Figure 2: Inference rules for α−→ and µ−→

Furthermore, (n).P which behaves like P after n time-
units are defined as: (n).P ≡ I �(n) P .

The Naming operator @ defines that an agent named
ψ behaves like P by P@ψ. The function Agn is used
for uniquely assigning an agent-name. The concurrent
behavior (C|D) concurrently executes C and D. C\M
can execute only multi-actions contained in M ∪ {∅}.

Semantics of behaviors and concurrent behaviors is
given by the labelled transition systems 〈Bh,Act, { α−→:
α ∈ Act}〉 and 〈CBh,ActM , {

µ−→: µ ∈ ActM}〉, respec-
tively, where the sets α−→ and

µ−→ are the smallest re-
lations satisfying the inference rules in Figure 2.

Id, Act2, Sum2, and Rec show that behavior does
not alter by the passage of time without the Timeout �.
TO1,2 show that the timeout process of P is ignored in
P � Q, and the timeout process of P � Q is Q. Name2

shows that the passage of time is hidden. Thus, the

passage of one time-unit for behaviors is 1−→, while one
for concurrent behaviors is ∅−→.

We often use a behavior-constant P 〉Q defined as:

P 〉Qdef=
∑
{a. P ′〉Q′: P a−→P ′, Q

1−→Q′}∪{a.Q′: Q a−→Q′}
�

∑
{P ′ 〉Q′ : P 1−→P ′, Q

1−→Q′}

for each P,Q ∈ Bh. Thus, P 〉Q usually behaves like P
but it may be interrupted by an action (not 1) of Q.

In the rest of this section, we give an example in
tCCA. It is interaction between a researcher and a pizza-
worker. In this case, a time-unit is a minute. At first,
the behavior RES of the researcher is defined as follows:

RES
def= order.(study(30).I

〉 (receive.eat(20).I �(60) cancel.angry(10).I))

216

bob
john

order

accept
bake 15

study 20
drive 10

receive

deliver

eat 20
time

10
5

Figure 3: An example of transition-sequences in RP

The researcher orders a pizza, then studies for 30 min-
utes, but if he receives the pizza, then he stops study-
ing and eats it for 20 minutes. However, if 60 min-
utes have passed, he cancels the order and is angry for
10 minutes. For example, the following transition is
possible: RES order−→ (

study−→)15 receive−→ (eat−→)20 I, where
(α−→)n represents α−→ · · · α−→with n occurrences of α−→.
And, since the researcher can rest during study, he may
cancel the order before finishing the study as follows:

RES
order−→ (

study−→)10 (1−→)45 (
study−→)5 cancel−→ (

angry−→)10 I,

where (1−→)45 means that he is idling for 45 minutes.

This idle time (study(20).I 1−→ study(20).I) is inferred
by Act2. Note n of �(n) decreases even while idling.

Next, the behaviorPIZ of the pizza-worker is defined:

PIZ
def= accept.(bake(15).drive(10).deliver.I 〉 canceled.I)

If the pizza-worker accepts an order, then he bakes a piz-
za for 15 minutes, then drives for 10 minutes, and finally
delivers the pizza. However, the order may always be
canceled. In the fastest case, the pizza-worker can deliv-
er the pizza after 25 minutes (bake(15) and drive(10)),
but the order may be canceled if he is idle as follows:

PIZ
accept−→ (1−→)10 (bake−→)15 (1−→)30 (drive−→)5 canceled−→ I.

Finally, RES and PIZ are concurrently combined.

RP ≡ (RES@bob|PIZ@john)\Mrp
where bob and john are names of the researcher and
the pizza-worker, respectively. And Mrp is the set of
feasible multi-actions in RP and is given as follows:
Mrp =Ms ∪Mr ∪Mp ∪{µ∪ν : µ ∈Mr, ν ∈Mp}, Ms =
{{order, accept}, {receive, deliver}, {cancel, canceled}},
Mr={{study}, {eat}, {angry}}, Mp={{bake}, {drive}},
where agent-names @bob and @john appended to each
action are omitted (e.g. {study} is the abbreviation of
{study@bob}). Ms is the set of multi-actions which
must synchronize between the researcher and the pizza-
worker. Mr and Mp are the sets of multi-actions which
can independently or simultaneously be performed by
the researcher and the pizza-worker, respectively. For
example, an order must synchronize with an acceptance,
and the pizza-worker can bake independently. For exam-

ple, RP
{order,accept}−→ (

{bake}−→)10 (
{study,bake}−→)5 (

{study}−→)5

(
{study,drive}−→)10

{receive,deliver}−→ (
{eat}−→)20Done can be

inferred, where Done ≡ (I@bob|I@john)\Mrp. It means
that the researcher rests for 10 minutes after the order,
and then studies for 20 minutes, then receives the pizza,
then eats it, as shown in Figure 3.

3 A PROCESS LOGIC tLCA

In this section, a process logic tLCA is defined to de-
scribe specifications for behaviors in tCCA.

It is assumed that a set Ksp, ranged over by K, · · ·,
of Constants is given. Then, the set Sp, ranged over by
s, t, · · ·, of specifications is the smallest set which con-
tains the following expressions:

〈µ〉s : Possibility (µ ∈ ActM),
∧
i∈I si : Conjunction,

[µ]s : Necessity (µ ∈ ActM),
∨
i∈I si : Disjunction,

K : Recursion (K ∈ Ksp),

where s, si are already in Sp. And subsets of Sp are
represented by σ, ρ, · · ·. These operators have the bind-
ing power such that: {Possibility, Necessity} > Con-
junction > Disjunction. The following short notation-
s are also used for the true tt, the false ff, and so
on: tt ≡

∧
i∈∅ si, ff ≡

∨
i∈∅ si, s1 ∧ s2 ≡

∧
i∈{1,2} si,

s1 ∨ s2 ≡
∨
i∈{1,2} si, 〈µ〉1s ≡ 〈µ〉s, 〈µ〉n+1s ≡ 〈µ〉〈µ〉ns,

[µ]1s ≡ [µ]s, [µ]n+1s ≡ [µ][µ]ns, 〈ai@ψi : i ∈ I〉s ≡
〈{ai@ψi : i ∈ I}〉s, [ai@ψi : i ∈ I]s ≡ [{ai@ψi : i ∈ I}]s.

The Possibility 〈ai@ψi : i ∈ I〉s requires that all
agents-ψi (i ∈ I) can simultaneously perform ai respec-
tively, and s can be satisfied after that. The Necessity
[ai@ψi : i ∈ I]s requires that if all agents-ψi simulta-
neously perform ai respectively, then s is always satis-
fied after that. It is assumed that for every K ∈ Ksp,
there is a defining equation K def= s, and each Constant
is guarded by Possibilities or Necessities. For example,
K

def= 〈µ〉K is guarded and K def= K∧〈µ〉K is not guard-
ed. This recursion corresponds to maximum fixpoint.

Next, satisfaction relation of a concurrent behavior
(in tCCA) for a specification (in tLCA) is defined by the
function DC : Sp → 22Sp

as: DC(〈µ〉s) = {{〈µ〉s}},
DC([µ]s) = {{[µ]s}}, DC(

∧
i∈I si) = {

⋃
i∈I σi : ∀i ∈

I. σi ∈ DC(si)}, DC(
∨
i∈I si) =

⋃
i∈I DC(si), and

DC(K) = DC(s), if K def= s. This function is used for
translating any specification s into a disjunctive normal
form (

∨
{
∧
{s′ : s′ ∈ σ} : σ ∈ DC(s)}).

Definition 3.1 Let ν ⊆ ActS. A set R ⊆ CBh× Sp is
a (ν)-satisfaction-subset, if (C, s) ∈ R implies that for
some σ ∈ DC(s), the following conditions hold for every
µ, µ′′ ∈ ActM , s′ ∈ Sp, and C′′ ∈ CBh,

(i) 〈µ〉s′∈σ ⇒ ∃(C ′, µ′). C
µ′

−→C ′, µ
.=ν µ′, (C′, s′)∈R,

(ii) [µ]s′ ∈ σ,C µ′′−→ C′′, µ
.=ν µ′′ ⇒ (C′′, s′) ∈ R,

where the (ν)-restricted equivalence relation .=ν over
multi-actions is defined as follows: µ1

.=ν µ2 if and only
if µ1 ∩ ν = µ2 ∩ ν. Then, if (C, s) ∈ R for some (ν)-
satisfaction-subset R, then C satisfies s with respect to
ν, written C |=ν s. For the special case ν = ActS,
C |=ActS s is abbreviated to C |= s.

217

The parameter ν in |=ν is used for partial verifica-
tion and the set ν of single-actions are called an avail-
able set. The satisfaction relation |=ν is the largest (ν)-
satisfaction-subset and such definition style is similar to
one of bisimilarity[8]. This satisfaction relation can be
verified by algorithms similar to one for bisimilarity.

The following properties can be easily proven.

Proposition 3.1 Let ν ⊆ ActS, µ ∈ ActM , C ∈ CBh,
s, si ∈ Sp. Then, (1) C |=ν 〈µ〉s iff ∃(µ′, C′). (C µ′−→
C ′, µ .=ν µ′, C ′ |=ν s), (2) C |=ν [µ]s iff ∀(µ′, C′).

((C µ′−→ C′, µ .=ν µ′)⇒ C′ |=ν s), (3) C |=ν
∧
i∈I si iff

∀i ∈ I. C |=ν si, (4) C |=ν
∨
i∈I si iff ∃i ∈ I. C |=ν si,

(5) C |=ν K iff ∃s. (C |=ν s, K
def= s).

The following short notations are useful for express-
ing requirements for the passage of time:

s∨〈0〉 t≡ t, s ∨〈n+1〉 t≡ s ∨
∨
{〈µ〉(s ∨〈n〉 t) : µ ∈ ActM},

s∧[0] t≡ t, s ∧[n+1] t≡ s ∧
∧
{[µ](s ∧[n] t) : µ ∈ ActM}.

s ∨〈n〉 t requires that s can be satisfied by n time-units
pass or t can be satisfied after n time-units, for some
execution path. On the other hand, s ∧[n] t requires
that s is always satisfied until n time-units pass and t is
satisfied after n time-units, for any execution path.

The example of the researcher ‘bob’ and the pizza-
worker ‘john’ is used again. Since john can bake a
pizza for 15 minutes and can drive and deliver for 10+1
minutes, bob can begin to eat in 26 minutes as follows:

RP |= 〈order@bob, accept@john〉(〈eat@bob〉tt∨〈27〉 ff),

where (〈eat@bob〉tt∨〈27〉 ff) requires that bob can eat in
26 minutes because ff cannot be satisfied. Furthermore,
bob never eats until 26 minutes pass as follows:

RP |= 〈order@bob, accept@john〉([eat@bob]ff∧[26] tt).

Local specifications for the researcher bob can be eas-
ily verified by |=νb , where νb = {a@bob : a ∈ Nac}. For
example, it can be verified that the researcher can re-
ceive a pizza just after study for 30 minutes as follows:

RP |=νb
sb ≡ 〈order@bob〉〈study@bob〉30〈receive@bob〉tt.

In the rest of this section, we consider satisfiability.
Before two agents combine, it is useful for avoiding un-
expected behavior to verify consistency between their
specifications. In tLCA, the consistency between s and
t is replaced to satisfiability of s ∧ t defined as follows.

Definition 3.2 Let s ∈ Sp. s is satisfiable if and only
if for some C ∈ CBh, C |= s.

We show that satisfiability in tLCA is undecidable
by translating the membership problem in unrestricted
grammars [6] into the satisfiability problem in tLCA. At
first, action-sequence grammars G are defined.

Definition 3.3 A tuple G = 〈A, a0, λ〉 is an action-
sequence grammar, where A ⊆ Nac is a finite set of
action-names, a0 ∈ Nac is the initial action-name, and
λ is a finite set of rewriting rules such that : λ ⊆ (A∗ −
{ε}) ×A∗, where A∗, ranged over by ã, b̃, · · ·, is the set
of finite action-sequences obtained by concatenating zero
or more action-names in A. The symbol ε is the empty
action-sequence, thus ãε = εã = ã.

Definition 3.4 Let G=〈A, a0, λ〉 be an action-sequence
grammar. The G-language L(G) is defined as follows :
L(G) =

⋃
n≥0 L(n)(G), L(0)(G) = {a0}, and L(n+1)(G)

= {ã1b̃ã2 : ∃ã. ã1ãã2 ∈ L(n)(G), (ã, b̃) ∈ λ}.

By Definition 3.3, action-sequence grammars are un-
restricted grammars because there is no restriction on
rewriting rules. It is known that the membership prob-
lem (ã ∈ L(G) ?) in such grammars is undecidable.

Then, the following result is obtained.

Theorem 3.2 Satisfiability in tLCA is undecidable.

Proof Let G = 〈A, a0, λ〉 be an action-sequence gram-
mar. Then, we can show that the following relation (∗)
holds. It implies that the satisfiability is undecidable be-
cause ã /∈ L(G) is undecidable. The details are omitted
because of lack of space.

(GR(G)∧[ãend@p]∗ff) is satisfiable ⇐⇒ ã /∈L(G) (∗)

where the specification GR(G) is defined from G as:

GR(G)
def= RW(G) ∧EQ

(q,p)

(G)
∧ ∂〈a0@p〉∂〈end@p〉tt

RW(G)
def=

∧
{[ã@p]∗〈b̃@q〉∗EQ(p,q)

(G) : (ã, b̃) ∈ λ}
∪{∂[a@p]∂〈a@q〉RW(G) : a ∈ A ∪ {end}}

EQ
(ψ,ϕ)
(G)

def=
∧
{∂[a@ψ]∂〈a@ϕ〉EQ(ψ,ϕ)

(G) : a ∈ A ∪ {end}}

where end ∈ Nac, end /∈ A, and specifications 〈ã@ψ〉∗s
and [ã@ψ]∗s are short notations defined as follows:
〈ε@ψ〉∗s ≡ s, 〈aã′@ψ〉∗s ≡ ∂〈a@ψ〉〈ã′@ψ〉∗s, [ε@ψ]∗s ≡
s, [aã′@ψ]∗s ≡ ∂[a@ψ][ã′@ψ]∗s. Furthermore, for any
s ∈ Sp, a Constant ∂s is defined as: ∂s def= s ∧ [∅]∂s.

4 A PROCESS ALGEBRA tICCA

In this paper, our purpose is to show how to avoid un-
expected behavior caused by composition of agents. For
example, suppose that agent-ψ and agent-ϕ behave like
P and Q (in tCCA), and must satisfy s and t (in tLCA),
respectively. Then, it is a useful method for avoiding
unexpected behavior to verify the consistency between
s and t before agents-ψ and ϕ combine. However, there
is no algorithm for verifying the consistency as shown in
Section 3. To solve this problem, although it is expected
to use a decidable and useful subclass of tLCA, we have
not been able to define such subclass yet.

218

Alternate method is to verify whether P@ψ|Q@ϕ
satisfies s ∧ t, or not. There are algorithms for veri-
fying the satisfaction relation |=. However, the num-
ber of reachable states of concurrent behavior explo-
sively increases with concurrency level. To decrease
the number of states, it is useful to hide useless ac-
tions because verification often considers only some ac-
tions (not all). Therefore we define a process algebra
tICCA for expressing intermediate specifications (also
called im-specifications) between concurrent behaviors
(tCCA) and specifications (tLCA). In tICCA, states of
behavior can decreases by hiding uninteresting actions.
In this section, we show which actions can be hidden
and how to verify composition of agents in tICCA.

It is assumed that a set Kim, ranged over by K, · · ·,
of im-Constants is given. Then, the set ISp, ranged over
by S, T, · · ·, of im-specifications is the smallest set which
contains the following expressions:

0 : Stop, µ;S : (Insistent) Prefix,
K : Recursion,

⊕
i∈I Si : (Weak) Summation,

where µ∈ActM , K∈Kim, and S, Si are already in ISp.

It is important that the multi-action µ is directly
prefixed to S, and the execution of µ is not delayed (i.e.

µ;S �∅�−→ µ;S). For
⊕
i∈I Si, the choice is made even by

a time passage. This operator is similar to ‘weak choice’
in TCCS[9]. We use a short notation for binary selection
as follows: S1⊕S2 ≡

⊕
i∈{1,2} Si. It is assumed that for

every im-ConstantK ∈ Kim, there is a defining equation
K

def= S, and also that an idling im-Constant for each S
is defined as follows: ∂S def= S ⊕ ∅;∂S.

Semantics of im-specifications is given by the LTS
〈ISp,ActM , {

µ�−→: µ ∈ ActM}〉, where the set µ�−→ is the
smallest relation satisfying the rules in Figure 4.

Then, we define im-Constants S|T , S\M , and S/ν,
for each S, T ∈ ISp,M ⊆ ActM , and ν ⊆ ActS as:

S|T def=
⊕
{(µ ∪ ν);(S′|T ′) : S

µ�−→ S′, T
ν�−→ T ′}

S\M def=
⊕
{µ;(S′\M) : S

µ�−→ S′, µ ∈M ∪ {∅}}
S/ν

def=
⊕
{(µ ∩ ν);(S′/ν) : S µ�−→ S′}

The satisfaction relation between a concurrent be-
havior and an im-specification is defined.

Definition 4.1 Let ν ⊆ ActS. A set R ⊆ CBh × ISp
is a (ν)-im-satisfaction-subset, if (C,S) ∈ R implies the
following conditions hold for every µ ∈ ActM ,

(i) C µ−→ C′ ⇒ ∃S′. S
µ∩ν�−→ S′, (C′, S′) ∈ R,

(ii) S
µ�−→S′ ⇒ ∃(µ′, S′). µ=µ′ ∩ ν, C µ′−→C ′, (C′, S′)∈R.

Then, if (C, S) ∈ R for some (ν)-im-satisfaction-subset
R, then C satisfies S with respect to ν, written C !ν S.
Especially, C !ActS S is written C ! S. The bisimilarity
S ∼ T is defined in the same way as C ! S.

Name Hypothesis ⇒ Conclusion
I.Act ⇒ µ;S

µ�−→ S

W.Sum ∃i ∈ I. Si
µ�−→ S′ ⇒

⊕
i∈I Si

µ�−→ S′

Rec K
def= S, S

µ�−→ S′ ⇒ K
µ�−→ S′

Figure 4: Inference rules for µ�−→ ⊆ ISp× ISp

By hiding uninteresting single-actions a@ψ /∈ ν, the
number of states of im-specifications may decrease. The
set ν in !ν is also called an available set.

The following Propositions 4.1 and 4.2 show how !ν
is preserved by the operators | and\of tCCA. Intuitive-
ly, the condition (res) in Proposition 4.2 requires that
restricted single-actions must be included in ν.

Proposition 4.1 If Agn(C1) ∩ Agn(C2) = ∅ and
C1 !ν1 S1 and C2 !ν2 S2, then C1|C2 !ν S1|S2, where
ν = (ν1↓Agn(C1))∪ (ν2↓Agn(C2)), and ν↓Ψ is a subset
of ν defined as follows: ν↓Ψ = {a@ψ ∈ ν : ψ ∈ Ψ}.

Proposition 4.2 If res(act(C),M, ν)⊆M and C!νS,
then C\M !ν S\M ′, where M ′ = {µ ∩ ν : µ ∈M} and
res : 2ActM × 2ActM × 2ActS → 2ActM is defined as:

res(M0,M, ν) = {µ0∈M0 : ∃µ∈M ∪ {∅}. ∅ �= µ0
.=ν µ},

and act(C) is the set of feasible multi-actions in C at
most, and is defined as: act(P@ψ) = {{a@ψ} : a ∈
acn(P)}∪{∅}, act(C1|C2) = {µ1∪µ2 : µ1∈act(C1), µ2∈
act(C2)}, act(C\M) = (act(C)∩M)∪{∅}, where acn(P)
is the set of action-names occurring in P .

The following Proposition 4.3 is used for hiding un-
interesting actions. Furthermore, Proposition 4.4 shows
that C |=ν s can be verified by S |=ν s if C !ν S, where
S |=ν s is defined in the same way as C |=ν s.

Proposition 4.3 If C !ν S, then for any µ ⊆ ActS,
C !ν∩µ S/µ.

Proposition 4.4 Assume that C !ν S. Then, C |=ν s
if and only if S |=ν s.

The example of the researcher and the pizza-worker
is used again. Now, assume that the available sets are
given as: νr = {order@bob, receive@bob, cancel@bob}
and νp = {accept@john, deliver@john, canceled@john}.
Then, im-specifications Sr and Sp such thatRES@bob !νr
Sr and PIZ@john !νp Sp are given as follows:

Sr ≡ ∂{order@bob};S(60)
wait,

S
(n+1)
wait ≡ ∅;S

(n)
wait ⊕ {receive@bob};∂0,

S
(0)
wait ≡ ∂{cancel@bob};∂0,
Sp ≡ ∂{accept@john};S(25)

work,

S
(n+1)
work ≡ ∂(∅;S

(n)
work ⊕ Sc),

S
(0)
work ≡ ∂({deliver@john};∂Sc ⊕ Sc),
Sc ≡ {canceled@john};∂0.

219

Then, by Proposition 4.1, we obtain that RP ≡
(RES@bob|PIZ@john)\Mrp !νr∪νp

(Sr |Sp)\M′
rp because

res(act(RES@bob|PIZ@john),Mrp, νr ∪ νp) ⊆ Mrp,
where M ′

rp = Ms ∪ {∅}. Furthermore, by Proposi-
tion 4.3, RP !νr S

′
r, where S′

r ≡ (Sr |Sp)\M ′
rp/νr .

Now, let sr ≡ 〈order@bob〉(〈receive@bob〉tt∨〈26〉 ff),
then we can prove that S′

r |=νr sr according to Defini-
tion 3.1. Hence, by Proposition 4.4, RP |=νr sr because
RP !νr S′

r. The verification-cost of S′
r |=νr sr is lower

than one of RP |=νr
sr because the numbers of states of

S′
r and RP are 2, 491 and 34, 991, respectively.

5 RELATED WORK

Many process algebras which have non-interleaving se-
mantics have been proposed (e.g. in [1, 3, 5]) by consid-
ering locality or causality between actions, and a pro-
cess logic with locality has also been given in [1]. Also,
many timed process algebras have been discussed (e.g.
in [9, 4, 13]). Furthermore, a timed process algebra with
durational actions has been proposed and a process log-
ic for it has been presented[2]. However, satisfiability in
such process logics has not been discussed.

Many temporal logics which consider non-interleaving
traces have been proposed (e.g. in [7, 12]), and satisfi-
ability has been studied. However they have not con-
sidered the passage of time. For example, two speci-
fications 〈a@ψ〉〈b@ϕ〉tt and 〈b@ϕ〉〈a@ψ〉tt are equal2

in these temporal logics, but are not equal in tLCA be-
cause agent-ψ consumes one time-unit for performing
the action-a and agent-ϕ can alter its own state in the
passage of time. Hence, although it is proven that sat-
isfiability in several non-interleaving temporal logics is
undecidable in [7, 10], undecidability in tLCA cannot be
directly proven from the results in [7, 10].

6 CONCLUSION

We have defined tCCA for describing concurrent behav-
iors of composite agents. tLCA has also been defined
for describing specifications and it has been proven that
satisfiability in tLCA is undecidable. Then we have pro-
posed to use im-specifications described in tICCA in-
stead of using a concurrent behavior, and have shown
useful propositions for verifying composition of agents.
An im-specification of a concurrent behavior C can be
automatically generated from C by Proposition 4.3.

We have introduced non-interleaving for expressing
concurrency in specifications because there is not always
a concurrent system to satisfy a given specification even
if there is a sequential system to satisfy it. For example,
if non-interleaving is not considered, then a specifica-
tion s ≡ 〈a〉〈b〉tt∧ [∅][b]ff is satisfiable (e.g. a.b.I |= s).

2This equality is the key for proving undecidability in [7, 10].

However, if it is required that a and b are performed
by different agents like s′ ≡ 〈a@ψ〉〈b@ϕ〉tt∧ [∅][b@ϕ]ff,
then s′ is not satisfiable. Non-interleaving is necessary
for correctly checking whether there is a concurrent sys-
tem to satisfy a given specification, or not.

There are two reasons why we assume that the pas-
sage of one time-unit is always needed for executing any
action. One is to remove unnatural situations such that
actions can infinitely be performed in a finite time. An-
other is that we have expected that tLCA may be decid-
able by the assumption (i.e. the restriction), although
we now know that tLCA is undecidable. It is a future
work to define a decidable and useful subclass of tLCA.

ACKNOWLEDGMENTS

The authors wish to express our gratitude to Professor
Shinichi Honiden of National Institute of Informatics,
and to express our gratitude to Instructor Tadashi Iijima
of Keio University. They are also members of ESP.

REFERENCES

[1] G.Boudol, I.Castellani, M. Hennessy, and A.Kiehn:
Observing localities, Theoretical Computer Science,
Vol.114, pp.31-61, 1993.

[2] X.J.Chen, F.Corradini: On the Specification and
Verification of Performance Properties for a Timed
Process Algebra, LNCS 1349, pp.123-137, 1997.

[3] P.Degano and C.Priami: Non-interleaving seman-
tics for mobile processes, Theoretical Computer Sci-
ence, Vol.216, pp.237-270, 1999.

[4] M.Hennessy, T.Regan: A process algebra for timed
systems, Info. and comp., Vol.117,pp.221-239,1995.

[5] P.Krishnan: Distributed CCS, CONCUR’91, LNC-
S 527, pp.393-407, 1991.

[6] P.Linz: An Introduction to Formal Languages and
Automata, Jones and Bartlett Publishers, 1990.

[7] K.Lodaya, R.Parikh, R.Ramanujam, P.S. Thiaga-
rahan: A Logical Study of Distributed Transition
Systems, Info. and comp., Vol.119, pp.91-118, 1995.

[8] R.Milner: Communication and Concurrency,
Prentice-Hall, 1989.

[9] F.Moller and C.Tofts: A Temporal Calculus of
Communicating Systems, CONCUR’90, LNCS 458,
Springer-Verlag, pp.401-415, 1990.

[10] W.Penczek: Undecidability of Propositional Tem-
poral Logics on Trace Systems, Information Pro-
cessing Letters 43, pp.147-153, 1992.

[11] C.Stirling: An Introduction to Modal and Tempo-
ral Logics for CCS, LNCS 491, pp.2-20, 1989.

[12] P.S.Thiagarahan: A Trace Based Extension of Lin-
ear Time Temporal Logic, LICS, pp.438-447, 1994.

[13] I.Ulidowski and S.Yuen: Extending Process Lan-
guages with Time, LNCS 1349 pp.525-538, 1997.

220

