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SUMMARY
The purpose of this research is to analyze production rules

with coupling modes in active databases and to exploit an as-
sistant system for rule programming. Each production rule is a
specification including an event, a condition, and an action. The
action is automatically executed whenever the event occurs and
the condition is satisfied. Coupling modes are useful to control
execution order of transactions. For example, a transaction for
consistency check should be executed after transactions for up-
date.

An active database, which is a database with production
rules, can spontaneously update database states and check their
consistency. Production rules provide a powerful mechanism for
knowledge-bases. However it is very difficult in general to predict
how a set of production rules will behave because of cascading
rule triggers, concurrency, and so on.

We are attempting to adopt a process algebra as a basic
tool to analyze production rules. In order to describe and an-
alyze concurrent and communicating systems, process algebras
such as CCS, CSP, ACP, and π-calculus, are well known. How-
ever there are some difficulties to apply existing process algebras
to analysis of production rules in growing process trees by process
creation.

In this paper we propose a process algebra named CCSPR
(a Calculus of Communicating Systems with Production Rules),
which is an extension of CCS. An advantage of CCSPR is to syn-
tactically describe growing process trees. Therefore, production
rules can be appropriately analyzed in CCSPR. After giving defi-
nitions and properties of CCSPR, we show an example of analysis
of production rules in CCSPR.
key words: active database, production rule, process algebra,
process creation, process tree, multi-way communication.

1. Introduction

Active databases[2][5] can spontaneously react to spe-
cific situations, by means of production rules. Pro-
duction rules specify relations between situations and
(re)actions. Each rule is a specification including an
event, a condition, and an action. When an event oc-
curs, all rules including the event are triggered simul-
taneously, and they can be transacted concurrently. In
each transaction, the action in the triggered rule is ex-
ecuted if the condition in the rule is satisfied. Further-
more the action execution can trigger other rules which
are transacted as child-transactions (also called nested
transactions)[2]. Thus, cascading rule triggers produce
a transaction tree.
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An example of a system with four production rules
is shown in Fig.1. In this example, when a variable x is
updated, an event updatex occurs. An event updatey
is similar to the case of updatex. Assume that the vari-
able x is updated. It causes the event updatex, then
Rule1 and Rule2 are triggered. If the variable x is less
than 100, then the action in Rule1 decreases a vari-
able y. Thereafter, the update of y triggers Rule3 and
Rule4, and a transaction tree is produced as shown
in Fig.1. Furthermore Rule3 may trigger Rule1 and
Rule2.

We sometimes require transactions in a transaction
tree to be executed in some order. For example, trans-
actions for consistency check should be executed just
prior to all transactions committing. In order to con-
trol their execution, coupling modes are very useful as
introduced in a survey[1] of active databases. HiPAC[2]

and SAMOS[5] are well known as active databases with
coupling modes.

Coupling modes do not only specify relations be-
tween a parent-transaction and a child-transaction, but
often express relations between a transaction and all the
other transactions in its transaction tree (such as a cou-
pling mode deferred). Coupling modes are simple but
are powerful notions to control execution order. There
are three possible coupling modes[2][5]:

1. immediate : A child-transaction is immediately
executed after triggered, and its parent-transaction
has to wait to commit until the child-transaction
committing.

2. separate : A child-transaction is immediately ex-
ecuted after triggered, but its parent-transaction
has not to wait to commit until the child-
transaction committing.

3. deferred : A child-transaction execution is de-
layed just prior to the top-level-transaction com-
mitting of the transaction tree including the child-
transaction.

In most cases, the first coupling mode immediate may
be used. In some cases, such as display of messages
without respect to commits of parent-transactions, the
second coupling mode separate may be used. In other
cases, such as consistency constraints, the third cou-
pling mode deferred may be used.
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Fig. 1 An example of production rules

In above example, Rule1 and Rule3 may have an
immediate, Rule2 may have a separate, and Rule4
may have a deferred, as a coupling mode.

Users of an active database system want to freely
design production rules, so that the system automat-
ically react to specific situations. However it is very
difficult in general to design rules, because of cascad-
ing rule triggers, coupling modes, and so on. Hence,
it is important to statically analyze behaviors of rules
before they are executed and to aid rule programming.

Static analysis methods of active databases have
already been proposed. For example, directed trigger-
ing graphs[3][4] are used for providing information about
properties of rule behavior. On the other hand, Petri
nets[6] are used for detecting composite events. How-
ever, existing static analysis does not consider coupling
modes. We want to statically check execution order of
production rules with coupling modes.

We are attempting to adopt a process algebra as
a basic tool to analyze production rules with cou-
pling modes. Process algebras such as CCS[7], CSP[8],
ACP[9], and π-calculus[10], are well known as mathe-
matical tools to describe and analyze concurrent and
communicating systems. Process algebras have advan-
tages as follows:

• A process algebra can be one kind of programming
languages, and seems useful as base of an active
database language with static analysis ability, like
a parallel programming language M[7] on CCS.

• We can use various equivalence relations, for ex-
ample, trace equivalence, failures equivalence, and
observation equivalence, which have different levels
of equality.

We have three requirements at least in order to analyze
production rules as follows:

1. A process can call out processes as its child-

processes from a resource which holds the process-
es.

2. Relations between parents-processes and child-
processes must be uniquely determined, for pro-
ducing a process tree.

3. Multi-way local communications between a parent-
process and child-processes are needed for imple-
menting coupling modes.

We can point out some difficulties of existing process
algebras for analyzing the above properties. For exam-
ple, it is difficult to describe and analyze processes in
growing process trees.

In this paper we propose a process algebra named
CCSPR (a Calculus of Communicating Systems with
Production Rules). The above three requirements are
appropriately described and analyzed in CCSPR. For
example, growing process trees can be syntactically de-
scribed.

In Section 2 we introduce process algebras and
point out some difficulties of existing process algebras
for analyzing production rules. In Section 3 it is infor-
mally explained how to create child-processes in CC-
SPR. In Section 4 definitions of CCSPR are given. In
Section 5 we show several properties for strong equiv-
alence in CCSPR. In Section 6 an example of analysis
of production rules in CCSPR is given.

2. Process algebra

Process algebras are well known as mathematical tools
to describe and analyze concurrent and communicating
systems. Behavior of processes is described as (pro-
cess) expressions in a process algebra, then equality of
behavior of two processes is proven by rewriting their
expressions according to algebraic (rewriting) laws in
the process algebra.
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Fig. 2 An example of processes

At first we introduce process algebra by using an
example. Next we show how to describe production
rules in existing process algebras, and point out diffi-
culties of the description.

2.1 Introduction of process algebras

We explain how to describe and analyze concurrent sys-
tems in CCS by using a simple example of two processes
P1 and P2 in Fig.2. CCS is a fundamental process al-
gebra proposed by R.Milner[7].

P1 consists of two concurrent processes Q1 and Q2,
and P2 consists of one process. When Q1 receives an
event in, Q1 sends an event c and becomes an inaction
process 0. We can describe the behavior of Q1 in CCS
as follows:

Q1
def= in.c.0

where ‘.’ is a sequential composition of events and an
overline of c means sending. In general a transition by
an event a is denoted by a−→. In this case, (in.c.0)
becomes (c.0) by receiving the envet in and (c.0) be-
comes 0 by sending the envet c. Hence the transitions
are written as follows:

in.c.0 in−→ c.0 c−→ 0

As similar to Q1, Q2 is described as follows:

Q2
def= c.out.0

It means that Q2 receives the event c and thereafter
sends an event out. P1 is a composite process of the
two processes Q1 and Q2 and is described as follows:

P1
def= (Q1|Q2)\{c}

where ‘|’ and ‘\’ are a concurrent composition combina-
tor and a restriction combinator, respectively. There-
fore the event c is not observed from the outside of P1.
On the other hand, P2 is simply describe as follows:

P2
def= in.out.0

The two processes are observationally equal because dif-
ference between behaviors of P1 and P2 is not observed.
This equality is proven by rewriting the expression of
P1 into the expression of P2 according to algebraic laws
in CCS as follows:

P1 = (Q1|Q2)\{c} Definition
= in.(c.0|Q2)\{c} Expansion law
= in.τ.(0|out.0)\{c} Expansion law
= in.τ.out.(0|0)\{c} Expansion law
= in.out.(0|0)\{c} τ law
= in.out.0 Static laws
= P2 Definition

We may also consider that P1 is a concurrent implemen-
tation for a specification P2. The specification show a
explicit behavior of the implementation. As shown in
this example we can analyze concurrent systems.

2.2 Problems of existing process algebras

An important problem of existing process algebras for
analyzing production rules is to describe a growing pro-
cess tree. A subordinate composition to relate parent-
processes and child-processes in a fixed process tress is
easily defined in existing process algebras. In fact it is
defined in CSP[8] as follows:

Q//P

where Q is a subordinate process of P . This description
syntactically shows the relation between processes. But
it is not available for a growing process tree. The other
way to relate parent-processes and child-processes is to
use links such as process-id’s or private links, as shown
in practical implementations.

For example, a growing process tree is described
by using process-id’s in CCS as follows:

(R | PR1 | PR2 | ID(I)) τ−→ τ−→
(R | NEWPR(I) | PR1′(I) | PR2 | ID(I + 1))

where each component is defined as follows:

R
def= a(i).(R | NEWPR(i))

PR1 def= getid(i).a(i).PR1′(i)
PR2 def= getid(i).a(i).PR2′(i)
ID(i) def= getid(i).ID(i+ 1)

A process PR1 gets its own process-id from a pro-
cess ID which gives a process-id through an event getid,
and PR1 calls out a process NEWPR from a process R
through an event a. A process PR2 is similar to PR1.
The first communication denoted by τ−→ is caused by
getid between PR1 and ID, and the second communi-
cation denoted by τ−→ is caused by a between PR1 and
R. A postfix (i) of an event is a message passed by the
event. The process-id I determinate that NEWPR is a
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Fig. 3 An example of process creation

child-process of PR1, but not of PR2. Fig.3 shows the
above transitions by process creation of NEWPR.

On the other hand, the above example can be also
described by private links in π-calculus as follows:

(R | PR1 | PR2) τ−→
((pr)((R | NEWPR){pr/x} | PR1′) | PR2)

where each component is defined as follows:

R
def= a(x).(R | NEWPR)

PR1 def= a(pr).PR1′

PR2 def= a(pr).PR2′

By passing a name pr from PR1 to NEWPR, a private
link is made between them. They can locally commu-
nicate each other through pr.

As shown in the above example, we can describe
growing process trees in existing process algebras. But
such descriptions may be too cumbersome to analyze
in general large systems.

3. Introduction of CCSPR

We propose a process algebra named CCSPR (a Calcu-
lus of Communicating Systems with Production Rules).
An important property of CCSPR is to syntactically
describe relations between processes in growing process
tress by Subordinate compositions 〉. The example used
in Section 2 can be described in CCSPR as follows:

R>(PR1 | PR2) τ−→ R>((PR1′〉NEWPR) | PR2)

where each component is defined as follows†:

R ≡ {{a.NEWPR}}
PR1 def= a.PR1′

PR2 def= a.PR2′

†≡ means syntactic identity

where R is a resource which holds a process NEWPR
and can supply the process through an event a. {{ }} is a
resource combinator. A process P in {{P}} is called out
through initial events which P can perform. > is a com-
binator which supplies child-processes from resources.
Notice the location of the created process NEWPR. >
supplys NEWPR just under PR1 from R, penetrating
|. The penetration is the most important property in
CCSPR. On the other hand, the following transition is
also possible:

R>(PR1 | PR2) τ−→
R>((PR1′ | PR2)〉NEWPR)

In this case, both PR1 and PR2 are parent-processes of
NEWPR.

We can use Restrictions\and Packings [[ ]] in order
to prevent the nondeterminism of parents, thus con-
struct an unique process tree. For example:

{{a.Q1}}>([[a.P1|P2]]\a|P3) τ−→
{{a.Q1}}>(([[P1|P2]]〉Q1)\a|P3)

where parent-processes of Q1 are always both P1 and
P2. A Supplier > can penetrate | and \, and it can
supply child-processes from resources. A Packing [[ ]] is
used for forbidding the penetration. If the Restriction
\a is removed, the following transition is also possible:

{{a.Q1}}>([[a.P1|P2]]|P3) τ−→
{{a.Q1}}>(([[P1|P2]]|P3)〉Q1)

In this case, all P1, P2, and P3 are parents of Q1. On
the other hand, if the Packing [[ ]] is removed, the fol-
lowing transition is also possible:

{{a.Q1}}>((a.P1|P2)\a|P3) τ−→
{{a.Q1}}>(((P1〉Q1)|P2)\a|P3)

In this case, only P1 is a parent of Q1. It is important
to notice that new child-processes are created inside of
Restrictions and outside of Packings.

Next we show example of cascading creation. Thus
a child-process can call out the other process as its
child-process from a resource as follows:

({{a.(b.Q1)\b}}::{{b.Q2}})>(a.P1)\a τ−→
({{a.(b.Q1)\b}}::{{b.Q2}})>(P1〉(b.Q1)\b)\a τ−→
({{a.(b.Q1)\b}}::{{b.Q2}})>(P1〉(Q1〉Q2)\b)\a (∗)

where a combinator :: is used for uniting two resources
into one resource. In this case, Q1 is a child-process
of P1, and Q2 is a child-process of Q1. Thus Q2 is a
grandchild-process of P1.

Sequential creation is also possible. Thus one pro-
cess can sequentially call out processes as its child-
processes from a resource as shown in the following ex-
ample:

({{a.Q1}} ::{{b.Q2}})>(a.b.P1)\{a, b} τ−→
({{a.Q1}} ::{{b.Q2}})>(b.P1〉Q1)\{a, b} τ−→
({{a.Q1}} ::{{b.Q2}})>((P1〉Q1)〉Q2)\{a, b} (∗∗)
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In this case, both Q1 and Q2 are child-processes of P1.
Compare the locations of parentheses in (∗) with (∗∗).

4. The definition of CCSPR

In this section, we formally define events, syntax, and
semantics of CCSPR.

4.1 Events

We first assume that an infinite set N = {a, b, c, · · ·} of
names is given. It is ranged over by a. Then, we define
sets of events, where τ |∈ N and τ is a special event
called an internal event.
Definition 4.1: We define the following five sets of
events:
• EG = {a, a : a ∈ N} is a set of global-events.
• ELU = {�a� : a ∈ N} is a set of local-up-events.
• ELD = {�a� : a ∈ N} is a set of local-down-events.
• EL = ELU ∪ELD is a set of local-events.
• Event = EG ∪EL ∪ {τ} is a set of events.

where a = a.
Local-up-events �a� and local-down-events �a� are added
for local communications between a parent-process and
child-processes. If a local-down-event �a� of a parent-
process has the same event name a as local-up-events
�a� of child-processes, then they can communicate
though �a� and �a�. In this paper, the sets EG and
Event are ranged over by ρ and ω, respectively.

4.2 Syntax

We define the set E of CCSPR expressions.
Definition 4.2: The set of process expressions, E
ranged over by E,F, · · ·, is the smallest set including
the following expressions:

X : a Variable (X ∈ X )
A : a Constant (A ∈ K)
R : a Resource (R ∈ R)
I : a Synchronous identity

ω.E : a Prefix (ω ∈ Event)
Σi∈IEi : a Summation (I is an indexing set)
E1||E2 : a Synchronous composition
E1|E2 : an Asynchronous composition
E1〉E2 : a Subordinate composition
E[f ] : a Relabelling (f ∈ F)
E\L : a Restriction (L⊂=EG ∪EL)
E/L : a Hiding (L⊂=EG ∪EL)
[[E]] : a Packing

R>E : a Supplier (R ∈ R)

where E,Ei are already in E . X and K are sets of pro-
cess variables and process constants, respectively. F is
a set of relabelling functions. The set of Resources, R
ranged over by R,R′,Ri, · · ·, is the smallest set includ-
ing the following expressions:

{{P}} : a Resource (P ∈ P)
R1 ::R2 : an Union

where R1, R2 are already in R. The set of process, P
ranged over by P,Q, · · ·, is the smallest set including
the following expressions:

A (∈ K), R (∈ R), I, ω.P, Σi∈IPi,
P1||P2, P1|P2, P1〉P2, P [f ], P \L,
P/L, [[P ]], R>P

where P,Pi are already in P.
Synchronous composition || is similar to a Composition
| in CCS except for synchronization of only local-up-
events �a� (see sync4 of Semantics). Hiding / is exactly
the same to a Hiding / in CSP, thus it changes an event
into an internal event.

A relabelling function f : Event → Event must
satisfy the following conditions:

•f(ω) ∈ EG iff ω ∈ EG •f(ω) ∈ EL iff ω ∈ EL

•f(ρ) = f (ρ) •�f(a)� = f (�a�)
•�f(a)� = f (�a�) •f(τ ) = τ

A Constant is an process whose meaning is given by
defining equation. In fact, we assume that for every
Constant A there is a defining equation of the follow-
ing form:

A
def= P (P ∈ P)

where each occurrence of A in P is within some subex-
pression ω.P ′. In other words, A is weakly guarded[7]
in P . Constants which are not weakly guarded make
a calculus be more complex, and the behavior is
indefinite[12]. Practically, we are interested in only
weakly guarded Constants.

A special process inaction 0 is defined by using
Summation as follows:

0 def= Σi∈∅Ei

Another special process Synchronous identity I is a
process which can always perform arbitrary local-up-
events. Although it can be defined by an infinite Sum-
mation, it is given as a basic process because we often
treat only finite Summations.

4.3 Semantics

The semantics of CCSPR is defined by the following
labelled transition system like one of CCS:

(E , Event, { ω−→: ω ∈ Event})

For example, E
ω−→ E′ (E, E′ ∈ E) indicates that the

process expression E may perform the event ω and
thereafter become the process expression E′. The se-
mantics of process expressions consists of a definition
of the transition relations ω−→ over E .

Before defining the semantics, we define a set of
syntactic initial global-events for each process P .
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Definition 4.3: We define a set ev(P ) of syntactic
initial global-events of a process P as follows:

ev(ω.P ) =
{

{ω} (ω ∈ EG)
∅ (ω |∈ EG)

ev(Σi∈IPi) =
⋃

i∈I ev(Pi)
ev(P ||Q) = ev(P ) ∪ ev(Q)
ev(P |Q) = ev(P ) ∪ ev(Q)
ev(P 〉Q) = ev(P ) ∪ ev(Q)
ev(P [f ]) = {f (ρ) : ρ ∈ ev(P )}
ev(P \L) = ev(P )− L
ev(P/L) = ev(P )− L
ev([[P ]]) = ev(P )
ev({{P}}) = ev(P )

ev(R1 ::R2) = ev(R1) ∪ ev(R2)
ev(R>P ) = ev(P )

ev(I) = ∅
ev(A) = ev(P ) (A def= P )

Since a ConstantAmust be weakly guarded, ev(P )
can be effectively evaluated. Then, the semantics of
CCSPR is defined.
Definition 4.4: The transition relation ω−→ over pro-
cess expressions is the smallest relation satisfying the
inference rules in Table 1. Each rule means that if
transition relations above a line exist and side condi-
tions are satisfied, then a transition relation below the
line also exists.

Penetration of a Supplier is implemented by mean-
s of S.Sumj, S.Sync1,2, S.Com1,2, S.Subo1,2,
S.Rel, S.Res, S.Hide, and S.Con. It may seem that
the inference rule Pack is useless, but notice that there
is not an inference rule such as S.Pack. Thus, a Pack-
ing can forbid the penetration.

As shown in Subo4, the result of communication
though local-events is a local-down-event instead of an
internal event. It makes multi-way communications be
possible, and we should use a Hiding / instead of a Re-
striction\ in order to prevent interaction of local events.

Under the semantics, a set ev(P ) of syntactic ini-
tial global-events of a process P is actually equivalent
to a set of global-events which P can initially perform.

5. Equivalence relations in CCSPR

We define equivalence relations in CCSPR like in CC-
S, for example, strong equivalence and observation e-
quivalence. In this section, we show some properties of
CCSPR for strong equivalence.

Strong equivalence is defined by strong bisimula-
tions as follows[7].
Definition 5.1: Strong bisimulations

A binary relation S ⊂=P × P over processes is a
strong bisimulation if (P,Q) ∈ S implies, for all ω ∈
Event, that

(i) whenever P ω−→ P ′ then, for some Q′,

Q
ω−→ Q′ and (P ′, Q′) ∈ S ,

(ii) whenever Q ω−→ Q′ then, for some P ′,

P
ω−→ P ′ and (P ′, Q′) ∈ S.

Definition 5.2: Strong equivalence
P and Q are strongly equivalent, written P ∼ Q,

if (P,Q) ∈ S for some strong bisimulation S.
In CCSPR, the most used expression has a form

R>P . First, we show expansion laws which expand an
expression such as R>P into an expression with Prefixes
and Summations. The expansion laws are inductively
given for outmost structure of P . We show a part of all
the laws by lack of spaces.
Proposition 5.1: The expansion laws (part)

• Prefix with Resource

If (R ∼
∑

(i) ρi.(R>Qi)), then

R>(ω.P ) ∼
ω.(R>P ) +

∑
(i){τ.(R>(P 〉Qj)) : ω = ρj}

• Summation with Resource

R>(
∑

(i∈I) Pi) ∼
∑

(i∈I)(R>Pi)

• Synchronous composition with Resource

If (R ∼
∑

(i) ρi.(R>Qi)),
(R>Pi ∼

∑
(j) ωij .(R>Pij)), for i ∈ {1, 2}), then

R>(P1||P2) ∼∑
(i){ω1i.(R>(P1i||P2)) : ω1i |∈ ELU}

+
∑

(i){ω2i.(R>(P1||P2i)) : ω2i |∈ ELU}
+

∑
(i)

∑
(j){τ.(R>((P1i||P2)〉Qj)) : ω1i = ρj}

+
∑

(i)

∑
(j){τ.(R>((P1||P2i)〉Qj)) : ω2i = ρj}

+
∑

(i)

∑
(j){τ.(R>(P1i||P2j)) : ω1i = ρ, ω2j = ρ}

+
∑

(i)

∑
(j){�a�.(R>(P1i||P2j)) : ω1i = ω2j = �a�}

• Relabelling with Resource

If (R ∼
∑

(i) ρi.(R>Qi)), (R>P ∼
∑

(i) ωi.(R>Pi)),
then

R>(P [f ]) ∼∑
(i) f(ωi).(R>(Pi[f ]))

+
∑

(i)

∑
(j){τ.(R>((Pi[f ])〉Qj)) : f (ωi) = ρj}

• Packing with Resource

If (R ∼
∑

(i) ρi.(R>Qi)), (P ∼
∑

(i) ωi.Pi), then

R>[[P ]] ∼∑
(i) ωi.(R>[[Pi]])

+
∑

(i)

∑
(j){τ.(R>([[Pi]]〉Qj)) : ωi = ρj}
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Table 1 The inference rules of CCSPR

Event
ω.E

ω−→ E

Sumj
Ej

ω−→ E′
j

Σi∈IEi
ω−→ E′

j

(j ∈ I)

Sync1
E

ω−→ E′

E||F ω−→ E′||F
(ω |∈ ELU )

Sync2
F

ω−→ F ′

E||F ω−→ E||F ′ (ω |∈ ELU )

Sync3
E

ρ−→ E′ F
ρ−→ F ′

E||F τ−→ E′||F ′

Sync4
E

�a�−→ E′ F
�a�−→ F ′

E||F �a�−→ E′||F ′

Com1
E

ω−→ E′

E|F ω−→ E′|F

Com2
F

ω−→ F ′

E|F ω−→ E|F ′

Com3
E

ρ−→ E′ F
ρ−→ F ′

E|F τ−→ E′|F ′

Subo1
E

ω−→ E′

E〉F ω−→ E′〉F
(ω |∈ ELD)

Subo2
F

ω−→ F ′

E〉F ω−→ E〉F ′ (ω |∈ ELU )

Subo3
E

ρ−→ E′ F
ρ−→ F ′

E〉F τ−→ E′〉F ′

Subo4
E

�a�−→ E′ F
�a�−→ F ′

E〉F �a�−→ E′〉F ′

Rel E
ω−→ E′

E[f ]
f(ω)−→ E′[f ]

Res E
ω−→ E′

E\L
ω−→ E′\L

(ω |∈ L)

Hide1
E

ω−→ E′

E/L
τ−→ E′/L

(ω ∈ L)

Hide2
E

ω−→ E′

E/L
ω−→ E′/L

(ω |∈ L)

Pack E
ω−→ E′

[[E]]
ω−→ [[E′]]

Id
I

�a�−→ I

ConP
ω−→ P ′

A
ω−→ P ′ (A

def
= P )

Reso P
ρ−→ P ′

{{P}} ρ−→ {{P}}>P ′

Uni1
R1

ρ−→ R1 >P

(R1 ::R2)
ρ−→ (R1 ::R2)>P

(ρ |∈ ev(R2))

Uni2
R2

ρ−→ R2 >P

(R1 ::R2)
ρ−→ (R1 ::R2)>P

(ρ |∈ ev(R1))

Uni3
R1

ρ−→ R1 >P R2
ρ−→ R2 >Q

(R1 ::R2)
ρ−→ (R1 ::R2)>(P ||Q)

SuppR
ρ−→ R>P E

ρ−→ E′

R>E
τ−→ R>(E′〉P )

Nosupp E
ω−→ E′

R>E
ω−→ R>E′

S.Sumj
R>Ej

τ−→ R>E′
j

R>(Σi∈IEi)
τ−→ R>E′

j

(j ∈ I)

S.Sync1
R>E

τ−→ R>E′

R>(E||F )
τ−→ R>(E′||F)

S.Sync2
R>F

τ−→ R>F ′

R>(E||F )
τ−→ R>(E||F ′)

S.Com1
R>E

τ−→ R>E ′

R>(E|F )
τ−→ R>(E′|F )

S.Com2
R>F

τ−→ R>F ′

R>(E|F )
τ−→ R>(E|F ′)

S.Subo1
R>E

τ−→ R>E ′

R>(E〉F )
τ−→ R>(E ′〉F )

S.Subo2
R>F

τ−→ R>F ′

R>(E〉F )
τ−→ R>(E〉F ′)

S.Rel R>E
τ−→ R>E′

R>(E[f ])
τ−→ R>(E′[f ])

S.Res R>E
τ−→ R>E′

R>(E\L)
τ−→ R>(E′\L)

S.Hide R>E
τ−→ R>E′

R>(E/L)
τ−→ R>(E′/L)

S.ConR>P
τ−→ R>P ′

R>A
τ−→ R>P ′ (A

def
= P )

Proof Use strong bisimulations and Proposi-
tion 5.3.

Second, we give substitution laws for R>P . For

strong equivalence, the part R of R>P is substitutive
as shown in the following proposition.

Proposition 5.2: The substitution law of Re-
sources
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For any R1, R2 ∈ R, P ∈ P,
If R1 ∼ R2, then R1>P ∼ R2>P .

Proof The proof is accomplished by showing that S
defined below is a strong bisimulation, using induction
over n and structures of processes.

S(1) = { (R1>P,R2>P ), (R1>Q1, R2>Q2)
: (P,Q1, Q2 ∈ P), (R1,R2 ∈ R),
R1 ∼ R2,R1>Q1 ∼ R2>Q2 }

(n >= 2)

S(n) = { (R1>(P1〉Q1), R2>(P2〉Q2)),
(R1>(P1||Q1), R2>(P2||Q2)),
(R1>(P1|Q1), R2>(P2|Q2)),
(R1>(P1[f ]), R2>(P2[f ])),
(R1>(P1\L), R2>(P2\L)),
(R1>(P1/L), R2>(P2/L))

: (R1>P1, R2>P2) ∈ S(n−1),
(R1>Q1, R2>Q2) ∈ S(n−1),
f ∈ F , L⊂=EG ∪EL }

S =
⋃
i

S(i)

Unfortunately, the part P of R>P is not substitu-
tive even for the strong equivalence. For example,

(a.0)\a ∼ 0
{{a.0}}>(a.0)\a �∼ {{a.0}}>0

since {{a.0}}>(a.0)\a has a τ-derivation. Thus, ∼ is not
a congruence relation in CCSPR.

In order to make up for the above defect, we give
construction laws which are used for constructing larger
expressions from smaller expressions, preserving strong
equivalence. The construction laws are given for every
structure of P in R>P , however the part are shown by
lack of spaces in this paper.
Proposition 5.3: The construction laws (part)

• If R>P ∼ R>Q, then R>(ω.P ) ∼ R>(ω.Q) for
any ω ∈ Event.

• If R>Pi ∼ R>Qi (i ∈ I), then R> (Σi∈IPi) ∼
R>(Σi∈IQi).

• If R>Pi ∼ R>Qi (i ∈ {1, 2}), then R>(P1||P2) ∼
R>(Q1||Q2).

• If R>P ∼ R>Q, then R>(P [f ]) ∼ R>(Q[f ]) for
any f ∈ F .

• If P ∼ Q, then R>[[P ]] ∼ R>[[Q]].

We can prove an equivalence relation R>(P 〉I) ∼ R>P ,
for any P ∈ P and R ∈ R, using a strong bisim-
ulation. Then, we can prove an equivalence relation
R>((P 〉I)||Q) ∼ R>(P ||Q), using the above construc-
tion laws.

6. An analysis of production rules in CCSPR

At first we explain how to describe production rules in
CCSPR. Next we show a scheduler as an example of
production rules and analyze the scheduler using CC-
SPR.

6.1 Process creation in CCSPR

In this subsection we give key technique to use CCSPR.
It is summarized as follows:

1. Resource: A resource which holds a process P
called out through an event a is described as
{{a.P}}. It is a typical form of a resource. Events
for call out must be global events.

If P is called through either an event a or b, then
we can describe as {{a.P + b.P}}.
Two resources is united into one resource by a U-
niting. For example, an united resource of {{a.P}}
and {{b.Q}} is described as {{a.P}} :: {{b.Q}}. If re-
sources hold processes with same events for call
out, then such processes are simultaneously called
out.

2. Supplier: Processes in a resource are supplied by
a Supplier>. A running process calls out a process
in a resource through a complementary event as
follows:

{{a.P}}>(a.Q) τ−→ {{a.P}}>(Q〉P )

If several processes concurrently run, then Restric-
tions \ and Packings [[ ]] should be used in order
to avoid nondeterminism of parents as shown in
Section 3.

In general, local-down-events of processes called
out should be hidden in order to prevent communi-
cation with child-processes of the other processes.
It does not implies that the processes do not com-
municate their child-processes, because their child-
processes can intrude inside Hidings / by penetra-
tion. Rule(X,Y ) defined in Subsection 6.3 is such
a typical example.

3. Local communication: In CCSPR local-up-
events of child-processes and local-down-events of
its parent-processes are automatically connected
when the child-processes are called out. The fol-
lowing transition is shown as a simple example of
automatic connections:

{{a.�b�.P0}}>((a.�b�.P1)\a | �b�.P2) τ−→
{{a.�b�.P0}}>((�b�.P1 〉 �b�.P0)\a | �b�.P2)

After a process (a.�b�.P1) calls out a process
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Table 2 The specification of each production rule

Name Event Action Coupling Mode

Rule 1 e1 a1; e3 immediate
Rule 2 e1 a2; e4 immediate
Rule 3 e3 a3; e6 deferred
Rule 4 e4 a4; e7 separate
Rule 5 e4 a5 immediate
Rule 6 e6 a6 immediate
Rule 7 e7 a7 deferred

(�b�.P0) as its child-process from a resource
{{a.�b�.P0}}, a local-down-event �b� in (�b�.P1) is
automatically connected to a local-up-event �b� in
(�b�.P0). Hence, (�b�.P1) can locally communicate
with (�b�.P0) through �b� and �b�, but can not com-
municate with (�b�.P2).
The automatic connections of local-events are used
instead of connections by links such as process-id’s.
Links make analysis to be more complex. There-
fore we wanted to remove such links.

6.2 An example of production rules

In this Subsection, an example of a scheduler with sev-
en production rules is given. For simplicity, we assume
that a condition in each rule is always true and can be
omitted. Therefore, each rule includes an event, an ac-
tion, and a coupling mode. The action consists of sched-
uled events a1, · · · , a7 and triggering events e1, · · · , e7.
Assume that triggering events are hidden from its en-
vironment. In other words, rules can be triggered only
by a rule managers or actions in rules. The production
rules are specified in Table 2.

For simplicity, the rule manager M can perform
only the event e1 when an event ev1 is signaled from
its environment, and it becomes an inaction process
after committed. When the event e1 occurs, Rule 1
and Rule 2 are triggered. And cascading rule trig-
gers produce a process tree as shown in Fig.4. Circles
in the figure mean concurrent processes, and lines be-
tween circles mean relations of a parent-process and
child-processes. The order of scheduled events is ex-
pected as shown in Fig.5, by means of coupling modes.
For example, the action in Rule 3 is delayed just prior
to M committing. The commitment of M is delayed
until Rule 2 committing. The commitment of Rule 2
is delayed until only Rule 5 committing, because Rule
4 has a coupling mode separate. Therefore, the action
inRule 3 is executed after the actions in Rule 1, Rule
2, and Rule 5. On the other hand, the action in Rule
7 waits for only Rule 4, because Rule 4 and Rule 7
are separated from other rules.

6.3 An application of CCSPR

It is important to check whether the scheduler with the
seven production rules behave as shown in Fig.5, or

R7

DF

R3

DF

R4 R5

SP IM

M

R1 R2

IM IM

R6

IM

Fig. 4 The process concurrent tree of the example

ev1

a1

a2 a5

a4

a3 a6 commit

a7

Fig. 5 The expected order of scheduled events

not. We apply CCSPR to this checking. We explain
how to describe and analyze the scheduler in CCSPR.
Each rule is described as follows:

Rule(X,Y ) def= ([[s.X[d/done]|Y ]]\L)/H
L = {s, d, e1, e2, e3, e4, e5, e6, e7}

∪{s, d, e1, e2, e3, e4, e5, e6, e7}
H = {�c�, �sd�, �cd�}

R1 def= e1.Rule(A1, IM),
R2 def= e1.Rule(A2, IM),
R3 def= e3.Rule(A3, DF ),
R4 def= e4.Rule(A4, SP )

R5 def= e4.Rule(A5, IM),
R6 def= e6.Rule(A6, IM),
R7 def= e7.Rule(A7, DF ),

Rule(X,Y ) is a process expression with two process
variablesX and Y . A process substituted intoX is con-
trolled by a process substituted into Y through events s
and d. An event donemeans a termination of a process.
In this case, a process for executing an action is substi-
tuted into X , and a process for a coupling mode is sub-
stituted into Y . X and Y are packed because both of
them must be parent-processes of child-processes called
byX. A1-A7 are processes for actions, and they are de-
fined as follows:

A1 def= a1.e3.done.0,
A2 def= a2.e4.done.0,
A3 def= a3.e6.done.0,
A4 def= a4.e7.done.0,

A5 def= a5.done.0,
A6 def= a6.done.0,
A7 def= a7.done.0

IM , SP , andDF are processes for coupling modes, im-
mediate, separate, and deferred, respectively. Lo-
cal communication between parent-processes and child-
porcesses is important for coupling modes. Information
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of all processes in a process tree is gathered to a top-
level-process and is distributed to them again, for ex-
ample, in order to decide a staring point of an action
with a deferred mode. IM , SP , and DF are defined
as follows:

IM
def= s.d.�c�.�c�.�sd�.�sd�.�cd�.�cd�.I

SP
def= ((s.d.�c�.�sd�.�cd�.0)|I)

DF
def= �c�.�sd�.s.d.�c�.�sd�.�cd�.�cd�.I

s and d are events to control a start point and an end
point of an action execution. �c� and �c� are local-events
to transmit to a parent-process that its child-process
with an immediate mode is committed. �sd� and �sd�
are used to start processes for actions with a deferred
mode. �cd� and �cd� transmit to a parent-process that
its child-process with a deferred mode is committed.

It is important to notice that IM , SP , and DF
can be used for every rules without respect to the num-
ber of their child-processes. For example, if rules have
no child-processes, then local-down-events of IM , SP ,
and DF are changed into internal events by Hidings. It
is very difficult for existing process algebras to describe
such independent coupling modes from the number.

Finally the system SY S of the scheduler is built
as follows:

SY S
def= R>((M \L)/H)

R ≡ {{R1}} ::{{R2}}::{{R3}}::{{R4}}
::{{R5}} ::{{R6}} ::{{R7}}

M
def= ev1.e1.�c�.�sd�.�cd�.com.done.0

M is a process for the rule manager.
Next, we describe expected oreder ORDER in

shown Fig.5. It is described in CCSPR (possibly in
CCS) as follows:

X ;Y def= (X [d/done]|d.Y )\d
X[]Y def= (X [d1/done]|Y [d2/done]|d1.d2.done)\d1, d2
〈〈X〉〉 def= (X [d/done]|d.0|done.0)\d

EA1 def= a1.done.0,
EA2 def= a2.done.0,
EA3 def= a3.done.0,
EA4 def= a4.done.0,

EA5 def= a5.done.0,
EA6 def= a6.done.0,
EA7 def= a7.done.0,
COM

def= com.done.0

ORDER
def= ev1.(EA1[](EA2; (EA5[]〈〈EA4;EA7〉〉))

;EA3;EA6;COM )

where, ; and [] are a Sequential composition and a Par-
allel composition, respectively. 〈〈P 〉〉 means separation
of the process P . EA1, · · · , EA7 contain only scheduled
events unlike A1, · · · , A7, because triggering events can
not be observed.

We can check whether the scheduling system SY S
behave as the expected oreder ORDER shown in Fig.5
or not, using CCSPR. We proved SY S = ORDER†,
using CWB[13] (Concurrency workbench) after we had
expanded SY S into an expression including only Pre-
fixes and Summations.

7. Related work

In the field of active databases, database production
rules are analyzed in a directed triggering graph[3][4] and
petri nets[6]. However these approaches do not consider
coupling modes. We are interested in nested transac-
tions with coupling modes, then we adopt a process
algebra as an analysis tool. Since a process algebra can
be one kind of programming languages, it seems use-
ful as base of an active database language with static
analysis ability.

In the field of process algebras, we have never met
other research with the same purpose which is to ex-
ploit a specific process algebra for database production
rules. Fixed process trees can be syntactically described
in existing process algebras, but it may be impossible
to syntactically describe growing process trees. We can
describe growing process trees by using links such as
process-id’s or private links as shown in Section 2, but
such links makes analysis to be hard.

8. Conclusion

We have stated difficulties of design of database produc-
tion rules, and therefore necessity of an assistant system
of rule programmers. We adopted a process algebra as
a basic tool to analyze production rules, and have pro-
posed a specific process algebra CCSPR for production
rules.

In CCSPR, processes can be held in resources,
and be created as child-processes when called out by a
running process. For supplying child-processes, a new
combinator> called a Supplier has been introduced in
this paper. It is the most important property of CC-
SPR that a Supplier can supply child-processes from
resources to running processes, penetrating other com-
binators. This penetration makes syntactic expression
of growing process trees be possible. Though the def-
inition of the penetration is complex, users of CCSPR
need not know the complex definition of the penetra-
tion in detail, and they should analyze growing pro-
cess trees only by properties of the penetration, such as
Proposition 5.1, 5.2, and 5.3. Consequently, CCSPR is
appropriate to analysis of concurrent systems with the
following features:

• Processes can call out new processes from re-
sources,

†= is observation congruence in CCS[7].
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• Process trees can grow by process creation, and

• Multi-way local communications between a parent-
process and child-processes are possible.

Active database systems with nested transactions have
the above features.

Some propositions for proving strong equivalence
have been given in Section 5, and have been used for
an example in Section 6. There are still remaining the
researches for equivalence relations. We hope to have
more powerful algebraic laws enough to prove equiva-
lence relations between processes.
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