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Least Fixpoint and Greatest Fixpoint in a Process Algebra
with Conjunction and Disjunction
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SUMMARY We have already proposed a process algebra
µLOTOS as a mathematical framework to synthesize a process
from a number of (incomplete) specifications, in which require-
ments for the process do not have to be completely determined.
It is guaranteed that the synthesized process satisfies all the giv-
en specifications, if they are consistent. For example, µLOTOS
is useful for incremental design. The advantage of µLOTOS is
that liveness properties can be expressed by least fixpoints and
disjunctions ∨. In this paper, we present µLOTOSR, which is
a refined µLOTOS. The improvement is that µLOTOSR has a
conjunction operator ∧. Therefore, the consistency between a
number of specifications S1, · · · , S2 can be checked by the satisfi-
ability of the conjunction specification S1 ∧ · · · ∧ S2. µLOTOSR

does not need the complex consistency check used in µLOTOS.
key words: process algebra, process logic, process synthesis, least
fixpoint, greatest fixpoint, disjunction, conjunction

1. Introduction

The design of concurrent processes is known to be a
complex task. In order to support the design, formal de-
scription techniques (FDTs) are used for verifying that
a realized process conforms to its specification. Process
algebras such as CCS[12], CSP[4], and LOTOS[18] are
examples of FDTs to describe concurrent processes.

In practice, a number of (incomplete) specifications
are often given to a process instead of its complete spec-
ification in the first design step, because requirements
for the process have not been always completely de-
termined yet. Such specifications which contain incom-
plete requirements can be formally described by process
logics such as PL[12] and µ-calculus[16]. In a process
logic, incomplete requirements can be expressed by a
possibility operator or a disjunction operator. The sat-
isfaction of process algebraic expressions (i.e. process-
es) for process logical expressions (i.e. specifications)
is formally defined, and if a process and a specification
are given, then the satisfaction can be verified[1], [16].

However it is still a complex task to design a pro-
cess, if many incomplete specifications are given. Then,
methods to synthesize a process from specifications are
necessary. For the synthesis, it is useful to describe
processes and specifications in the same language. But
incomplete requirements can not be expressed by or-

Manuscript received June 28, 1999.
Manuscript revised September 30, 1999.

†The authors are with Computer Science Division, Elec-
trotechnical Laboratory, 1-1-4, Umezono, Tsukuba, Ibaraki
305-8568, Japan

dinary process algebras whose semantics is given by a
labelled transition system (LTS).

Therefore extended process algebras with process
logical properties have been proposed. For example,
Larsen proposed an extended LTS[9] which has a re-
quired transition −→✷ and an allowed transition −→�
to express loose specifications, and presented a process
algebra called modal CCS[10] based on the extended
LTS. In modal CCS, possibility and necessity of actions
can be expressed, and a conjunction operator ∧ is de-
fined in modal CCS. As the other examples, Steen et al.
proposed an extended LTS[14] which has a disjunctive
transition �→ to express a disjunction operator ∨, and
we proposed to use a special action[5] for the same pur-
pose, in the same time. And thereafter, Steen proposed
a LOTOS-like language PSL[15] based on an extended
LTS which has �→ and Larsen’s −→✷ and −→�. On
the other hand, we proposed a language µLOTOS[6]
to express least fixpoints and greatest fixpoints. Least
fixpoints are necessary for describing eventuality of ac-
tions, namely liveness properties.

In [6], we presented a method to transform each
specification to a standard formed specification, a
method to check the consistency of standard formed
specifications, and a method to synthesize a conjunc-
tion specification from them. In this paper, we present
µLOTOSR, which is a refined µLOTOS. The improve-
ment is that µLOTOSR has a conjunction operator to
express the conjunction specification. µLOTOSR does
not need the complex transformation, the consistency
check, and the synthesis used in µLOTOS.

The outline of this paper is as follows. In Section 2,
the syntax and the semantics of µLOTOSR are defined.
In Section 3, the satisfaction of a process for a specifica-
tion is defined. In Section 4, we explain how to express
greatest fixpoints and least fixpoints in µLOTOSR. In
Section 5, we present an inductive characterization of
the satisfiability and a method to synthesize a process
from a specification. In Section 6, we state related
works, and in Section 7, we conclude this paper. In
Appendix, a lemma is given.

2. Definition of specifications

In order to describe specifications which contains in-
complete requirements, Steen et al.[14] proposed to ex-
tend LOTOS with a disjunction operator ∨. This op-
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erator is similar to a disjunction operator in (process)
logic, and if P1 is a process which satisfies a specifica-
tion S1 and P2 is a process which satisfies a specification
S2, then the specification S1 ∨ S2 can be implemented
by either P1 or P2, where each process is formally an
ordinary LOTOS-expression.

In addition to the disjunction operator, for the pur-
pose to express least fixpoints and greatest fixpoints, we
proposed to use two kinds of states[6] : stable states and
unstable states, and to impose a condition that every s-
tate must reach either a stable state or a stop state. The
stable states and unstable states are described by two
state operators {◦, �}, where ◦ and � are called Stabiliz-
er and Instabilizer. µLOTOS extends Steen’s LOTOS
with the state operators.

For example, the following specification AB is sat-
isfied by processes which iteratively perform the action
a or stop after the action b.

AB := ◦a;AB ∨ ◦b; stop

where ; is a prefix operator, thus ◦a;AB requires pro-
cesses that they can perform a and thereafter conform
to the specification AB. The symbol := is used for
defining the left Constant AB as the right specification,
thus it is a recursive definition, because the right spec-
ification can contain the Constant. In this case, the
disjunction ∨ is recursively resolved. For example, all
the following processes satisfy the specification AB.

A∞ := a;A∞, ABn := a; · · · ; a︸ ︷︷ ︸
n times

; b; stop

In this case, the action b can not be always performed
in processes satisfying AB, because A∞ satisfies AB.

On the other hand, the following specification AB′

is satisfied by processes which can perform a zero or
more times and must eventually stop after b, because
the state (�a;AB′) is unstable.

AB′ := �a;AB′ ∨ ◦b; stop

For example, the process ABn satisfies AB′, but A∞
does not satisfy AB′.

In addition, µLOTOSR has a conjunction opera-
tor ∧. Intuitively, if P is a process which satisfies both
specifications S1 and S2, then the specification S1 ∧ S2
can be implemented by P . In Subsection 2.1 and Sub-
section 2.2, the syntax and the semantics of µLOTOSR

are defined, respectively.

2.1 Syntax

We assume that a finite set of names N is given. The
set of actions Act is defined as Act = N ∪ {i} and
α, β, · · · are used to range over Act, where i is the in-
ternal action (i |∈ N ). We give a set of state operators
Stt = {◦, �}, where ◦ is called Stabilizer and � is called
Instabilizer. The set Stt is ranged over by ψ, ϕ, · · ·.

We also assume that a set of specification constants
K (also called Constants), a set of stable specification
variables X◦ (also called Stable Variables), and a set of
unstable specification variables X� (also called Unsta-
ble Variables), are given. The set K is ranged over by
A,B, · · ·, and the set X◦∪X� is ranged over byX,Y, · · ·.

Then, the syntax of µLOTOSR is defined.
Definition 2.1: The set Spx of specification expres-
sions is the smallest set which includes K ∪ X◦ ∪ X� ∪
{stop}, and contains the following expressions, where
M,Mi is already in Spx.

ψα;M : Prefix (ψ ∈ Stt, α ∈ Act)
M1 []M2 : Choice

M1 |[G]|M2 : Parallel composition (G⊂=N )
M1 ∧M2 : Conjunction∨

i∈IMi : Disjunction (I an indexing set)

The set Spx is ranged over by M,N, · · ·.
The special specification expression stop is satis-

fied by processes which have no action. The Disjunction∨
i∈IMi is also written

∨
{M : C(M)}, where C is a

condition such that the set of specification expressions
which satisfy C is {Mi : i ∈ I}. And, a binary ex-
pressionM1 ∨M2 is also used for

∨
i∈{1,2}Mi. Another

special case is I = ∅, and
∨
i∈∅Mi is denoted byFwhich

is a specification satisfied by no process as explained in
Section 3.

In order to avoid too many parentheses, opera-
tors have binding power such that: Prefix>Parallel
composition>Choice >Conjunction >Disjunction.

The difference between the Disjunction ∨ and the
Choice [] is intuitively explained as follows: designer-
s statically decide whether M ∨ N is implemented by
either M or N in specification phase, while users dy-
namically decide whether M []N behaves like either M
or N at run time. Thus, Disjunctions are used only in
specifications, and they do not remain in implemented
processes.

The Parallel composition |[G]| with a subset G of
N synchronizes actions contained by G and indepen-
dently performs the other actions. This can synchronize
three or more actions.

The notation Var(M ) represents the set of Vari-
ables occurring in the specification expression M , and
it is inductively defined as follows :

Var(A) = ∅,
Var(X) = {X},

Var(stop) = ∅,
Var(ψα;M) = Var(M),
Var(M op N ) = Var(M ) ∪ Var(N ),
Var(

∨
i∈IMi) =

⋃
i∈I Var(Mi)

where op is [] or |[G]| or ∧. Then, a specification ex-
pression M is a specification, if it contains no Variable
(Var(M ) = ∅). The set of specifications is denoted by
Sp, and it is ranged over by S, T, · · ·. A Constant is a



ISOBE et al: FIXPOINTS IN A PROCESS ALGEBRA WITH CONJUNCTION AND DISJUNCTION
403

TR1

a

b

c
d

a

b
h

g

f

e

g

f

e

TR2

Fig. 1 Transition systems with disjunctive transitions �→

specification whose meaning is given by a defining equa-
tion. We assume that for every Constant A ∈ K, there
is a defining equation of the form A := S, where S is a
specification which can contain Constants again. Thus,
it is a recursive definition. We assume that every recur-
sion must be guarded by Prefixes, such as A := ◦a;A.
For example, we do not consider A := A []◦a; stop.

Processes are also described in µLOTOSR. They
are µLOTOSR-expressions which neither contain Dis-
junctions nor Instabilizers nor Variables, and they cor-
respond to ordinary (basic) LOTOS-expressions. Thus,
the set of processes Pr is a subset of Sp, and the syntax
is defined in terms of the following BNF expression:

P ::= A stop ◦α;P P []P P |[G]|P

where A ∈ KP ⊂=K, α ∈ Act, and G⊂=N . The set Pr
is ranged over by P,Q, · · ·. We assume that for every
A ∈ KP , there is a defining equation A := P (P ∈ Pr).
Note that Stabilizers ◦ are often omitted. For example,
◦α;P is written as α;P .

2.2 Semantics

We proposed an extended labelled transition system
µLTS [6] which distinguishes between stable states and
unstable states, to give the semantics of µLOTOS.
The semantics of µLOTOSR is defined by the follow-
ing µLTSR which is a refined µLTS.
Definition 2.2: A µLTSR is a structure

〈St1, St2, St3, Lb, �→,→〉,

where St1 is a set of states, St2 is a set of intermediate
states (St1∩St2 = ∅), St3 is a set of stable intermediate
states (St3⊂=St2), Lb is a set of labels, �→ ⊂=St1 × St2
is a set of disjunctive transitions, → ⊂=St2 × Lb × St1
is a set of labelled transitions. We often write s1 �→ s2
for (s1, s2) ∈�→ and s2

α−→ s1 for (s2, α, s1) ∈→.
The difference between µLTSR and µLTS is that

µLTSR separates intermediate states St2 from states
St1. By the separation, disjunctive transitions and la-
belled transitions are always alternately performed, and
the semantics can be more explicitly defined. For ex-
ample, the transition system TR1 in Fig.1 is equated to
TR2 by µLTS ( and also by the other LTSs with dis-
junctive transitions such as ALTS[14] and DMLTS[15]).
This example shows that disjunctive transitions and la-
belled transitions should not arise from the same state.

Name Hypothesis � Conclusion
VarS X ∈ X◦ � X ∈ Stb
ActS � ◦α;M ∈ Stb
StopS � stop ∈ Stb
ChS M ∈ Stb, N ∈ Stb � M []N ∈ Stb
ParS1 M ∈ Stb � M |[G]|N ∈ Stb
ParS2 N ∈ Stb � M |[G]|N ∈ Stb
ConS M ∈ Stb � M ∧N ∈ Stb

Fig. 2 The inference rules for the set Stb

This is the reason why µLTSR distinguishes between
intermediate states for labelled transitions and states
for disjunctive transitions.

The meaning of disjunctive transitions and labelled
transitions is intuitively explained as follows: one of dis-
junctive transitions for each state must be performed,
and all of labelled transitions for each intermediate s-
tate must be performed. The stability is checked in
intermediate states (St3⊂=St2).

The semantics of µLOTOSR is given by the µLTSR

〈Spx, �Spx�, �Stb�, Act, �→,→〉, where the function �·� :
(set→ set) is defined for any set Set as

�Set� = {�e� : e ∈ Set},

Stb is defined in Definition 2.3, �→ is defined in Def-
inition 2.4, and → is defined in Definition 2.5. The
function �·� is used to separate intermediate states from
states. In this paper, we consider only specification ex-
pressions with finite states. For example, A := ◦a;A
has finite states, but Ai := ◦a;Ai+1 has infinite states.
Definition 2.3: The set of stable specification ex-
pressions Stb⊂=Spx is the smallest set satisfying the
inference rules in Fig.2.
Definition 2.4: The disjunctive transition relation
�→ ⊂=Spx×�Spx� is the smallest relation satisfying the
inference rules in Fig.3.
Definition 2.5: The labelled transition relation →
⊂= �Spx� × Act × Spx is the smallest relation satisfy-
ing the inference rules in Fig.4, where the relation ≡
represents syntactic identity.

Fig.2 shows that unstable states are described by
using Instabilizers, because �α;M |∈ Stb. For exam-
ple, �a; stop []◦b; stop is unstable. It is important to
note that the stability ofM ∧N depends only onM by
ConS . This asymmetry is the key idea of µLOTOSR.
The stability ofN is considered afterM reaches a stable
state, as shown in the rules Con1,2 in Fig.4. The rules
show that if M is stable then the order of M ′ and N ′

is exchanged after a labelled transition. Therefore, the
stability ofM andN inM∧N is alternately considered.

The Disjunction
∨
{N ′′ : �N� α−→ N ′′} of Con1 is

also important. The rule Con1 intuitively requires that
if �M� α−→M ′, then for someN ′ such that �N� α−→ N ′,
N ′ ∧M ′ is satisfied after the action α. It is helpful to
compare Con1 with the following simple rule Con′

1:
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Name Hypothesis � Conclusion
Var∨ � X �→ �X�
Stop∨ � stop �→ �stop�
Act∨ � ψα;M �→ �ψα;M�
Rec∨ S �→ �S′�, A := S � A �→ �S′�
Ch∨ M �→ �M ′�, N �→ �N ′� � M []N �→ �M ′ []N ′�
Par∨ M �→ �M ′�, N �→ �N ′� � M |[G]|N �→ �M ′ |[G]|N ′�
Con∨ M �→ �M ′�, N �→ �N ′� � M ∧N �→ �M ′ ∧N ′�
Dis∨ Mi �→ �M ′�, i ∈ I �

∨
i∈I

Mi �→ �M ′�

Fig. 3 The inference rules for the disjunctive transition relation �→

Name Hypothesis � Conclusion

Act � �ψα;M� α−→M

Ch1 �M� α−→M ′ � �M []N� α−→M ′

Ch2 �N� α−→ N ′ � �M []N� α−→ N ′

Par1 �M� α−→M ′, α |∈ G � �M |[G]|N� α−→M ′ |[G]|N
Par2 �N� α−→ N ′, α |∈ G � �M |[G]|N� α−→M |[G]|N ′

Par3 �M� α−→M ′, �N� α−→ N ′, α ∈ G � �M |[G]|N� α−→M ′ |[G]|N ′

Con1 �M� α−→M ′, N ′ ≡
∨

{N ′′ : �N� α−→N ′′}, M ∈ Stb � �M ∧N� α−→ N ′ ∧M ′

Con2 �N� α−→ N ′, M ′ ≡
∨

{M ′′ : �M� α−→M ′′}, M ∈ Stb � �M ∧N� α−→ N ′ ∧M ′

Con3 �M� α−→M ′, N ′ ≡
∨

{N ′′ : �N� α−→N ′′}, M |∈ Stb � �M ∧N� α−→M ′ ∧N ′

Con4 �N� α−→ N ′, M ′ ≡
∨

{M ′′ : �M� α−→M ′′}, M |∈ Stb � �M ∧N� α−→M ′ ∧N ′

Fig. 4 The inference rules for the labelled transition relation →

Con′
1 �M�

α−→M ′, �N� α−→ N ′, M ∈ Stb
� �M ∧N� α−→N ′ ∧M ′

This rule Con′
1 intuitively requires that if �M�

α−→M ′,
then for every N ′ such that �N� α−→ N ′, N ′∧M ′ is sat-
isfied after the action α. This requirement fails to define
conjunction, when eitherN ′ such that �N� α−→ N ′ does
not exist or such N ′ is not uniquely determined.

Fig.3 shows that Disjunctions are resolved by
Dis∨, and Constants are unwound by Rec∨. The other
operators are preserved by disjunctive transitions. For
example, the rules Act∨, Con∨, Dis∨, and Rec∨ in-
fer the disjunctive transition A �→ �◦a;A ∧ �b; stop�,
where A := (◦a;A ∧ �b; stop) ∨ ◦c;A ∨ �d; stop. Since
processes Pr have no Disjunction and no Conjunction,
every process has only one disjunctive transition.

3. Satisfaction

In this section, we define a satisfaction P |= S of a
process P for a specification S as an extension of the
satisfaction P |=[14] S in [14]. The satisfaction |=[14]
has been defined as follows†: the satisfaction |=[14] is
the largest relation such that, P |=[14] S implies that
for some S′, S �→ �S′� and for every α ∈ Act,

(i.[14]) if P �→ α−→ P ′ then, for some S′′,
�S′� α−→ S′′ and P ′ |=[14] S′′,

(ii.[14]) if �S′� α−→ S′′ then, for some P ′,
P �→ α−→ P ′ and P ′ |=[14] S′′.

†This is slightly changed from [14], because our defini-
tion of �→ is different from [14]. But the essence remains.

This requires that there exists an S′ such that
S �→ �S′� and the pair (P, S′) satisfies (i.[14]) and
(ii.[14]). This makes it possible that a specification
can be satisfied by two or more processes which may be
different from each other.

In the definition of |=[14], the specification S′ can
be freely selected from {S′ : S �→ �S′�}. On the other
hand, we can control the selection by state operators ◦
and �. The key point is that S must eventually reach
either a stable state or a stop state. Then, our satisfac-
tion is defined as follows.
Definition 3.1: A relation R⊂=Pr× Sp is a satisfac-
tion relation, if R⊂= θ(R), where θ(R)⊂=Pr × Sp is in-
ductively defined for any relation R, as follows:

1. (P, S) ∈ θ(0)(R) iff for some S′,
S �→ �S′� ∈ �Stb� and for every α ∈ Act,

(i0) if P �→ α−→ P ′ then, for some S′′,
�S′� α−→ S′′ and (P ′, S ′′) ∈ R,

(ii0) if �S′� α−→ S′′ then, for some P ′,
P �→ α−→ P ′ and (P ′, S′′) ∈ R,

2. (P, S) ∈ θ(n+1)(R) iff for some S′,
S �→ �S′� |∈ �Stb� and for every α ∈ Act,

(in+1) if P �→ α−→ P ′ then, for some (m,S′′),
�S ′� α−→ S′′, (P ′, S ′′) ∈ θ(m)(R), m <= n,

(iin+1) if �S′� α−→ S′′ then, for some (m,P ′),
P �→ α−→ P ′, (P ′, S′′) ∈ θ(m)(R), m <= n,
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3. (P,S) ∈ θ(R) iff (P,S) ∈ θ(n)(R), for some n.

Definition 3.2: P satisfies S, written P |= S, if
(P, S) ∈ R, for some satisfaction relation R. (i.e. |= =⋃
{R : R is a satisfaction relation}). We use the nota-

tion Proc(S) for the set of all the processes which sat-
isfy the specification S (i.e. Proc(S) = {P : P |= S}).

This satisfaction is expected to be automatically
checked by a similar algorithm to one for bisimilarity
[7]. Furthermore, it is useful to use efficient verifica-
tion techniques such as compositional verification [17],
ρ-bisimulation [1], and so on.

By Definition 3.1, if a specification S has no dis-
junctive transition �→, then S is satisfied by no process.
It is important to note that F ≡

∨
i∈∅Mi has no dis-

junctive transition by the inference rule Dis∨ in Fig.3.
This implies that S []F and S ∧ F have no disjunctive
transition. On the other hand, a Constant T which is
satisfied by all the processes is defined as follows.

T :=
∨
{
∑
{◦α;T : α ∈ A} : A⊂=Act}

where if n >= 1, then
∑
{M1, · · · ,Mn} ≡M1 [] · · · []Mn,

otherwise
∑
{ } ≡ stop.

Example 3.1: Consider the following process PR and
the specification SAB.

PR := a; a; b;PR , SAB := �a;SAB ∨ ◦b;SAB

In the specification SAB, only (◦b;SAB) is stable. Thus,
SAB requires that the action b must be always eventual-
ly performed, although the action a may be performed
zero or more times before b. In this case, we can show
that PR |= SAB, because the set

R = {(PR,SAB), (a; b;PR,SAB), (b;PR,SAB)}

is a satisfaction relation, because

(PR,SAB) ∈ θ(2)(R),
(a; b;PR,SAB) ∈ θ(1)(R), and
(b;PR,SAB) ∈ θ(0)(R).

The satisfaction |= is preserved by process opera-
tors: Prefix, Choice, Parallel composition, as shown in
the following proposition.
Proposition 3.1: Let ψ ∈ Stt, α ∈ Act, G⊂=N , and
for each i ∈ {1,2}, Pi ∈ Pr, Si ∈ Sp, Pi |= Si. Then,

1. α;P1 |= ψα;S1 ,

2. P1 []P2 |= S1 []S2 ,

3. P1 |[G]|P2 |= S1 |[G]|S2 .

Proof The proofs for 1 and 2 are omitted, because they
are easier than the proof for 3. We show that the fol-
lowing R is a satisfaction relation for 3.

R = {(P1 |[G]|P2, S1 |[G]|S2) : P1 |= S1, P2 |= S2}
Let (P1 |[G]|P2, S1 |[G]|S2) ∈ R, thus P1 |= S1 and
P2 |= S2. For each i ∈ {1, 2}, since Pi |= Si, for
some ni, (Pi, Si) ∈ θ(ni)(|=). Then, we can derive
(P1 |[G]|P2, S1 |[G]|S2) ∈ θ(R) by induction on n1+n2.
This proof is easier than Lemma Appendix A.1, and the
proof technique of the lemma is also useful here.

The next proposition shows that logical operators
have expected properties. Here, it is important that the
property of the Conjunction is symmetric, although the
definition ( ConS,1,2,3,4) is asymmetric.
Proposition 3.2: Let P ∈ Pr, Si ∈ Sp. Then,
1. P |= T and P �|= F

2. P |= S1 ∧ S2 ⇐⇒ P |= S1 and P |= S2
3. P |= S1 ∨ S2 ⇐⇒ P |= S1 or P |= S2

Proof The proofs for 1 and 3 are omitted, because they
are easier than the proof for 2. The case (⇒) for 2 :
We show that the following R is a satisfaction relation:

R = {(P, S1) : ∃S2, P |= S1 ∧ S2}∪
{(P, S1) : ∃S2, P |= S2 ∧ S1}

Let (P, S1) ∈ R, thus for some S2, P |= T , where either
T ≡ S1 ∧ S2 or T ≡ S2 ∧ S1. By the definition of |=,
for some n, (P, T ) ∈ θ(n)(|=). If T ≡ S1 ∧ S2, then we
have that (P, S1) ∈ θ(R) by Lemma Appendix A.1.

Let T ≡ S2∧S1. In this case, T eventually reaches
T ′ ≡ S′

2 ∧ S′
1 which is a stable state or a stop state,

because T is satisfiable. If T ′ is a stable state, then the
order of S′

2 and S′
1 is exchanged by Con1,2, then Lem-

ma Appendix A.1 is also useful for this case. Otherwise
(i.e. T ′ is a stop state) S′

1 must be also a stop state.
Consequently, we can obtain that (P, S1) ∈ θ(R).

The case (⇐) for 2 : We show that the following
R is a satisfaction relation:

R = {(P, S1 ∧ S2) : P |= S1, P |= S2}
This proof is similar to the case (⇒) above.

Proposition 3.2 is applied to the following example.
Example 3.2: Consider the following two symmetri-
cal specifications SAB and SBA.

SAB := �a;SAB ∨ ◦b;SAB,
SBA := ◦a;SBA∨ �b;SBA

The specification SAB have been used in Example 3.1,
and SBA requires that the action amust be always even-
tually performed, although the action b may be per-
formed zero or more times before a. Then, the process
PR of Example 3.1 also satisfies SBA. Thus, by Propo-
sition 3.2, PR satisfies SAB ∧ SBA.

The transition graph of SAB ∧ SBA is shown in
Fig.5. In this graph, the transitions which go out from
the dotted box can be ignored, because F can not be
satisfied. In Fig.5, each circled state represents a stable
state. This graph shows that the eventuality of a and
b is alternately considered.
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a b

SAB SAB

F SABSBA FF SBASAB F
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SBA SAB

a

a

b

b

b a ab

Fig. 5 The transition graph of SAB∧SBA (© : a stable state)

Next, a partial order " and an equivalence rela-
tion ∼= over specifications are defined. The order S " T
means that if a process satisfies S, then it satisfies T ,
thus S is a refined specification from T .
Definition 3.3: Let S,T ∈ Sp.

1. S " T ⇐⇒ Proc(S)⊂=Proc(T ).

2. S ∼= T ⇐⇒ Proc(S) = Proc(T ).

The following proposition shows that " is pre-
served by sequential operators : Prefix, Choice, Con-
junction, and Disjunction. This implies that ∼= is also
preserved by the sequential operators, because S ∼= T
if and only if S " T and T " S.
Proposition 3.3: Let S1 " T1 and S2 " T2. Then,

1. ψα;S1 " ψα;T1
2. S1 []S2 " T1 []T2
3. F " S1 " T

4. S1 ∧ S2 " T1 ∧ T2
5. S1 ∨ S2 " T1 ∨ T2

Proof The proof of 1 is easy. For 2, we show that
if P |= S1 []S2, then P |= T1 []T2, by using Proposi-
tion 3.1. At first, P is divided into P1 and P2 such that
P and P1 []P2 are strongly bisimilar[12], P1 |= S1, and
P2 |= S2. The process Pi is defined as follows:

Pi ≡
∑
{α;P ′ : ∃S ′′, �S′

i�
α−→S′′, P �→ α−→P ′, P ′ |=S′′}

where S′
i is a specification such that S1 []S2 �→ �S′

1 []S′
2�

and P |= S′
1 []S

′
2. The details are omitted.

The cases 3, 4, and 5, are easily shown by Propo-
sition 3.2. For example, the proof of 3 is as follows:

Proc(S1 ∧ S2) = Proc(S1) ∩ Proc(S2)
⊂=Proc(T1) ∩ Proc(T2) = Proc(T1 ∧ T2).

4. Fixpoint

In this section, we give important properties for fix-
points. The greatest fixpoint is the maximum solution
of X ∼=M , and the least fixpoint is the minimum solu-
tion of X ∼=M . They are defined as follows, where the
notation M{N/X} indicates the substitution of N for
every occurrence of the Variable X in M .
Definition 4.1: Let Var(M)⊂= {X}.

1. T is the greatest fixpoint of M with respect to X,
⇐⇒ for every S such that S ∼=M{S/X}, S " T

and T ∼=M{T/X}.

2. T is the least fixpoint of M with respect to X,
⇐⇒ for every S such that S ∼=M{S/X}, T " S

and T ∼=M{T/X}.

At first, we define a set Pathψ(M)⊂=X◦ ∪ X�. In-
tuitively, if X ∈ Path◦(M ) (or X ∈ Path�(M )), then
all the states on the paths from M to X is stable (or
unstable). For example, if X ∈ X◦ and Y ∈ X�, then

X ∈ Path◦(◦a; ◦b;X []◦c; �d; stop),
Y ∈ Path�(�a; �b;Y []◦c; ◦d; stop).

Definition 4.2: Let M ∈ Spx.

1. X ∈ Path◦(M ) ⇐⇒ for every M ′,

if M ❀ �M ′� and X ∈ Var(M ′), then M ′ ∈ Stb.

2. X ∈ Path�(M ) ⇐⇒ for every M ′,

if M ❀ �M ′� and X ∈ Var(M ′), then M ′ |∈ Stb.

where ❀ is the smallest relation satisfying the following
inference rules, thus it gives all the reachable interme-
diate states.

Hypothesis � Conclusion
M �→ �M ′� � M ❀ �M ′�
M ❀ �M ′� α−→M ′′ �→ �M ′′′� � M ❀ �M ′′′�

Secondly, the definitions of sequential expressions
and guarded expressions of CCS[12] are extended for
µLOTOSR.
Definition 4.3: Let X ∈ X◦ ∪ X� and M ∈ Spx.

1. X is sequential in M ⇐⇒ for every subexpres-
sion M ′ of M such that X ∈ Var(M ′), M ′ is of
the form either ψα;M ′′ or M ′′

1 []M ′′
2 or M ′′

1 ∧M ′′
2

or
∨
i∈IM

′′
i or X .

2. X is guarded in M ⇐⇒ each occurrence of X is
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within some subexpression M ′ of M such that M ′

is of the form ψα;M ′′.

For example, the variable X is sequential and guarded
in (◦a;X) ∨ (◦c; stop |[∅]| ◦d; stop) [] (◦b;X).

Then, Proposition 4.1 holds. Intuitively, if X ∈
Path◦(M), then the loop defined by M is infinite, and
if X ∈ Path�(M ), then the loop defined byM is finite.
Proposition 4.1: Assume that X is sequential and
guarded in M , Var(M)⊂= {X}, and A :=M{A/X}.

1. Let X ∈ Path◦(M ). Then

P |= A ⇐⇒ P |=M〈n〉{T/X} for any n >= 0.

2. Let X ∈ Path�(M ). Then

P |= A ⇐⇒ P |=M 〈n〉{F/X} for some n >= 0.

where M 〈n〉 is inductively defined from M as follows:

M〈0〉 ≡ X, M 〈n+1〉 ≡M{M 〈n〉/X}.

Proof (outline) 1. (⇒): This is easily shown by Propo-
sition 3.3 and P |= T. (⇐): At first, inductively define
|=(n) as follows:

|=(0)= Pr × Sp, |=(n+1)= θ(|=(n)).

Then,
⋂
i>=0
|=(i) is a satisfaction relation. Hence, we

show P |=(n) A for any n. In fact, we can show that
P |=(n) A if P |=M 〈n〉{T/X}.

2. (⇐): This is easily shown by Proposition 3.3
and P �|= F. (⇒): It can be shown by induction
on n that if (P,N{A/X}) ∈ θ(n)(|=), then P |=
N{M〈n+1〉{F/X}/X}, where Var(N )⊂= {X}, X is se-
quential in N , and X ∈ Path�(N ). The key points
are (1) if N{A/X} is stable then Var(N ) = ∅, because
X ∈ Path�(N ), and (2) X is guarded in N{M/X}
and Proc(N{A/X}) = Proc(N{M/X}{A/X}). The
initial transitions of N{M/X}{A/X} do not depend
on A, because A is guarded. This proof technique by
guarded expressions is used in the proof of unique so-
lution for equality in [12](p.158).

We explain Proposition 4.1 by using the following
example.

M1 ≡ ◦a;X1 ∨ ◦b; stop (X1 ∈ X◦)
M2 ≡ �a;X2 ∨ ◦b; stop (X2 ∈ X�)
Ai :=Mi{Ai/Xi} for each i ∈ {1,2}
P := a;P

By Definition 4.2, X1 ∈ Path◦(M1), X2 ∈ Path�(M2).
In this case, P |= A1, because P |= M

〈n〉
1 {T/X} for

any n. On the other hand, P �|=A2, because there is
no integer n such that P |= M

〈n〉
2 {F/X}. Intuitively,

A2 requires that b must be eventually performed. For
example, if the process Q is defined as

Q := a; a; b; stop,

then Q |= A2, because Q |=M〈3〉
2 {F/X}.

Finally, Theorem 4.2 is presented. This theorem
shows that fixpoints can be expressed by Constants.
Theorem 4.2: Assume that X is sequential and
guarded in M , Var(M )⊂= {X}, and A :=M{A/X}.

1. If X ∈ Path◦(M), then
A is the greatest fixpoint of M with respect to X .

2. If X ∈ Path�(M), then
A is the least fixpoint of M with respect to X .

Proof By Proposition 3.3, every sequential specifica-
tion expressionM is monotonic. For example, if S " T
then M{S/X} " M{T/X}. And by Rec∨, it can be
easily shown that A ∼=M{A/X}.

1. Assume thatX ∈ Path◦(M) and S ∼=M{S/X}.
Then, let P |= S. SinceM is monotonic, for any n >= 0,

S ∼=M{S/X} ∼= · · · ∼=M〈n〉{S/X} "M 〈n〉{T/X}.

Thus, for any n, P |=M 〈n〉{T/X}. Finally, by Propo-
sition 4.1, P |= A. This means that for every S such
that S ∼=M{S/X}, S " A.

2. Assume thatX ∈ Path�(M) and S ∼=M{S/X}.
Then, let P |= A. By Proposition 4.1, for some n,
P |=M 〈n〉{F/X}. Since M is monotonic,

M 〈n〉{F/X} "M 〈n〉{S/X} ∼= · · · ∼=M{S/X} ∼= S

Hence, P |= S. This means that for every S such that
S ∼=M{S/X}, A " S.

In the rest of this section, we formally explain the
liveness property that the action β must be eventually
performed for every execution path. If a process P sat-
isfies the liveness property, then we write P

β
❀, and it

is formally defined as follows.

Definition 4.4: Let β ∈ Act. The set
β
❀ ⊂=Pr is

inductively defined as follows:

1. P β
❀(0) iff act(P ) = {β},

2. P
β
❀(n+1) iff for every P ′ ∈ deriβ(P ) |= ∅,

for some m, P ′ β
❀(m) and m <= n,

3. P
β
❀ iff P

β
❀(n), for some n,

where deriβ(P ) = {P ′ : ∃α, P �→ α−→ P ′, α |= β} and
act(P ) = {α : ∃P ′ : P �→ α−→ P ′}.

The condition deriβ(P ) |= ∅ guarantees that pro-
cesses do not stop before that β is performed. For the
following examples PE1 and PE2, PE1

e
❀ and PE2 � e❀,

because an execution path abf which does not contain
the action e exists in PE2.

PE1 ≡ a; (b; e; f ; stop []e; stop) []c; d; e; stop,
PE2 ≡ a; (b; f ; stop []e; stop) []c;d; e; stop
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This liveness property can be expressed by the
Constant LIVEβ , as shown in the following proposition.
The Constant LIVEβ is the least fixpoint of Mβ with
respect to X, because X ∈ Path�(Mβ).
Proposition 4.3: Let β ∈ Act. Define the Constant
LIVEβ as LIVEβ :=Mβ{LIVEβ/X}, where X ∈ X� and
Mβ is defined as follows :

Mβ ≡
∨
{N(β,A) : A⊂=Act,A |= ∅},

N(β,A)≡
∑
{�α;X : β |= α ∈ A} []

∑
{�β;T : β ∈ A}.

Then, P |= LIVEβ ⇐⇒ P
β
❀ .

Proof (⇒) If (P,LIVEβ) ∈ θ(n)(|=), then n >= 1, be-
cause if LIVEβ �→ �S′�, then S′ |∈ Stb. We prove that

if (P,LIVEβ) ∈ θ(n+1)(|=) then P
β
❀(n) by induction.

For the base case n = 0, assume that (P,LIVEβ) ∈
θ(1)(|=). By Definition 3.1, for some S′, LIVEβ �→ �S′�
and the pair (P, S′) satisfies (i1) and (ii1). By Act∨,
Ch∨, and Dis∨, for some A, S′ ≡ N(β,A){LIVEβ/X}
and A |= ∅. Here, if A |= {β}, then for some α and
P ′, β |= α ∈ A, P �→ α−→ P ′ and (P ′, LIVEβ) ∈ θ(0)(R),
because (P, S′) satisfies (ii1). But this is impossible as
mentioned above. Therefore, A = {β}. This implies

that act(P ) = {β}. Hence, P β
❀(0).

For the induction case, assume that (P,LIVEβ) ∈
θ(n+2)(|=). By a similar argument to the base case,
LIVEβ �→ �S′�, S′ ≡ N(β,A){LIVEβ/X}, A = act(P ) |=
∅, and the pair (P, S′) satisfies (in+2) and (iin+2). The
case A = {β} is easy. Then, assume that A− {β} |= ∅.
This implies that deriβ(P ) |= ∅. Let P ′ ∈ deriβ(P ),
thus for some α and P ′, P �→ α−→ P ′ and α |= β. Since
(P, S′) satisfies (in+2), for some m, �S′� α−→ LIVEβ ,
(P ′, LIVEβ) ∈ θ(m+1)(R), and m <= n. Hence, by in-

duction, P ′ β
❀(m). Finally, P

β
❀(n+1), because for every

P ′ ∈ deriβ(P ) |= ∅, for some m, P ′ β
❀(m) and m <= n.

(⇐) By a similar way to the case (⇒), it can be

proven that if P β
❀(n) then (P,LIVEβ) ∈ θ(n+1)(|=).

For the previous examples PE1 and PE2, by Propo-
sition 4.3, PE1 |= LIVEe and PE2 �|= LIVEe, because
PE1

e
❀ and PE2 � e❀.

5. Satisfiability

A number of specifications are sometimes given to a
large system instead of its complete specification, be-
cause many designers work on the same system design
in parallel, and it is not easy for each designer to know
the whole system. Such design method decreases re-
sponsibility of each designer, but it raises two impor-
tant issues: consistency check of the specifications and
synthesis of a system to satisfy them.

Since µLOTOSR has a Conjunction, the consisten-
cy of specifications S1, · · · , Sn can be checked by a sat-
isfiability of the specification S1 ∧ · · · ∧ Sn, where S is

satisfiable if and only if Proc(S) |= ∅. Thus, if a process
P such that P |= S is found, then S is satisfiable. But
it is impossible to check that P |= S for every P ∈ Pr,
because Pr is an infinite set. Then, we present an in-
ductive characterization of satisfiability as follows.
Definition 5.1: The set Sat is defined as

Sat =
⋃
{S : S is a satisfiable set}⊂=Sp

where a set S is a satisfiable set, if S ⊂=Θ(S)⊂=Sp, where
Θ(S) is inductively defined for any set S, as follows:

1. S ∈ Θ(0)(S) iff for some S′, S �→ �S′� ∈ �Stb�, and
for every α ∈ Act, if �S′� α−→ S′′ then, S ′′ ∈ S,

2. S ∈ Θ(n+1)(S) iff for some S′, S �→ �S′� |∈ �Stb�
and for every α ∈ Act, if �S′� α−→ S′′ then, for
some m, S′′ ∈ Θ(m)(S) and m <= n,

3. S ∈ Θ(S) iff S ∈ Θ(n)(S), for some n.

As similar to the definition of the satisfaction |=
(Definition 3.1), S ∈ Sat if and only if S must eventu-
ally reach either a stable state or a stop state. In fact,
the following expected proposition holds.
Proposition 5.1: Let S ∈ Sp. Then,

S ∈ Sat ⇐⇒ for some P , P |= S

Proof The case (⇒): By Definition 5.1 and Defini-
tion 2.4, we can show that if S ∈ Sat, then for some S′,
S �→ �S ′� ∈ �Sat�. Hence, we show that the following
R is a satisfaction relation:

R = {(Pr(S′), S) : S �→ �S′� ∈ �Sat�}

where the process Pr(S) is a Constant defined from the
specification S as follows.

Pr(S) :=
∑
{α;Pr(S′′) : ∃S′, �S� α−→S′, S′′∈Min(S′)}

Min(S) = {S′ : S �→ �S′� ∈ �Sat�, |S ′| = |S|}
|S| = min{n : S ∈ Θ(n)(Sat)}

The depth |S| represents the minimum number of tran-
sitions to reach either a stable state or a stop state.
Let (Pr(S′), S) ∈ R, thus S �→ �S′� ∈ �Sat�. By the
definition of Sat, for some n, S ′ ∈ Θ(n)(Sat). Then, we
can derive (Pr(S ′), S) ∈ θ(n)(R) from S′ ∈ Θ(n)(Sat)
by induction on n, like Lemma Appendix A.1.

The case (⇐): It is easily shown that S ∈ Θ(n)(S)
from (P,S) ∈ θ(n)(|=), where S = {S : ∃P,P |= S}.

In the proof of Proposition 5.1, the method to syn-
thesize a process from a specification is shown as the
definition of a Constant Pr(S). This means that when
a number of specifications S1, · · · , S2 are given, the con-
sistency of them can be checked by S1 ∧ · · · ∧S2 ∈ Sat,
and a process to satisfy them is synthesized by Pr(S′),
where S1 ∧ · · · ∧ S2 �→ �S′� ∈ �Sat�.
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Example 5.1: The specifications SAB and SBA of
Example 3.2 are used again. As shown in Example 3.2,
SAB ∧ SBA can be satisfied by the process PR, thus it
is satisfiable. In fact, SAB ∧ SBA ∈ Sat, because the
following set S is a satisfiable set.

S = {(SAB ∧ SBA), (SBA∧ SAB)}

Furthermore, the depth of each satisfiable specification
is estimated as follows:

|SAB ∧ SBA| = 0, |SBA∧ SAB| = 0,
|◦b;SAB ∧ �b;SBA| = 0, |◦a;SBA∧ �a;SAB| = 0,
|�a;SAB ∧ ◦a;SBA| = 1, |�b;SBA∧ ◦b;SAB| = 1.

Then the following process is defined.

PAB ≡ Pr(◦b;SAB ∧ �b;SBA) := b;PBA
PBA ≡ Pr(◦a;SBA∧ �a;SAB) := a;PAB

The process PAB (also written PAB := b; a;PAB) al-
ternately performs a and b. By the proof of Proposi-
tion 5.1, PAB |= SAB ∧ SBA, because SAB ∧ SBA �→
�◦b;SAB ∧ �b;SBA� ∈ �Sat�. Furthermore, by Proposi-
tion 3.2, PAB |= SAB and PAB |= SBA. Thus, PAB is a
common process of SAB and SBA.

6. Related work

For integration or refinement of specifications, a num-
ber of approaches were proposed, for example [3], [10],
[13]. Brinksma[3] proposed a refined parallel operator
with multiple labels. This operator is used to effec-
tively implement logical conjunction in LOTOS. Steen
et al.[13] proposed a conjunction operator and a join
operator in order to yield a common reduction and a
common extension, respectively, in LOTOS. Larsen et
al.[10] defined a conjunction operator ∧ for loose speci-
fications in modal CCS. However, these approaches do
not consider Disjunction and least fixpoints. Therefore,
these are not directly useful for µLOTOSR.

For logical requirements, synthesis algorithms of
processes were proposed in [8] and [11]. Kimura et
al.[8] presented a synthesis algorithm for CCS-processes
by subcalculus of µ-calculus, but the subcalculus does
not contain Disjunction. Manna et al.[11] presented
an algorithm to synthesize a graph from requirements
described in Propositional Temporal Logic (PTL). In
PTL, eventualities can be expressed by an operator %,
but the synthesized graph from PTLs does not always
represent all the processes which satisfy the PTLs, thus
it is not conjunction.

7. Conclusion

In this paper, we have presented a process algebra
µLOTOSR which has logical properties : conjunction,
disjunction, least fixpoint, and greatest fixpoint, as
shown in Proposition 3.2 and Theorem 4.2. Further-
more, the consistency of specifications can be checked

and a process to satisfy them can be synthesized by
Proposition 5.1.

µLOTOSR contains a Parallel composition, but
several expected properties do not always hold for the
Parallel composition as follows:

1. It may be expected that every satisfiable specifica-
tion must eventually reach a stable state. But, we
have defined the satisfiability such that every sat-
isfiable specification must eventually reach either
a stable state or a stop state, because unstable
stop states are described by the Parallel compo-
sition. For example, if S12 ≡ �a;S1 |[a, b]|�b;S2,
then S12 ∈ Θ(1)(Sat), because S12 �→ �S12� �−→
and �S12� |∈ �Stb�. In fact, S12 is satisfiable, for
example, stop |= S12.

2. Even if S1 |[G]|S2 is satisfiable, S1 and S2 are not
always satisfiable. For example, if S1 := ◦a;S1 and
S2 := �b;S2, then S1 |[∅]|S2 is satisfiable, but S2
is not satisfiable. It is difficult to completely and
soundly define the stability of S1 |[G]|S2.

3. The refinement " is not preserved by the Parallel
composition. For example, if S1 ≡ ◦a; (◦b; stop ∨
◦c; stop), S2 ≡ ◦a; ◦b; stop∨◦a; ◦c; stop∨S3, and
S3 ≡ ◦a;◦b; stop []◦a; ◦c; stop, then S1 " S2, but
S13 ≡ S1 |[a, b, c]|S3 �" S2 |[a, b, c]|S3 ≡ S23, be-
cause P ∈ Proc(S13) and P |∈ Proc(S23), where
P ≡ a; b; stop []a; c; stop.

It is not easy to redefine a Parallel composition to hold
the expected properties, even though Instabilizers � are
removed (note 3). The notion of locality[2] may be use-
ful for solving these problems. It is a future work.
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Appendix A: Lemma

The following lemma is used in the proof of Proposi-
tion 3.2.
Lemma Appendix A.1: Let T ≡ S1 ∧ S2 and R =
{(P, S1) : P |= S1 ∧ S2} ∪ {(P, S1) : P |= S2 ∧ S1}. If
(P, T ) ∈ θ(n)(|=), then (P, S1) ∈ θ(n)(R).
Proof This proceeds by induction on n. The base
case n = 0 is similar to and easier than the induc-
tion case. We show the induction case n + 1 (n >= 0).
By Definition 3.1, since (P, T ) ∈ θ(n+1)(|=), for some
T ′, T �→ �T ′� |∈ �Stb� and the pair (P, T ′) satisfies
(in+1) and (iin+1). By Con∨, the disjunctive transition
T ≡ S1∧S2 �→ �T ′� implies that S1 �→ �S′

1�, S2 �→ �S′
2�,

and T ′ ≡ S′
1 ∧ S′

2. Here, by ConS , S ′
1 |∈ Stb, because

S′
1 ∧ S′

2 |∈ Stb.
(in+1) Let P �→ α−→ P ′. Since (P, T ′) satisfies

(in+1), for some (m,T ′′
1 ), �T ′� α−→ T ′′

1 and (P ′, T ′′
1 ) ∈

θ(m)(|=), m <= n. This transition must be inferred by
either Con3 or Con4, because T ′ |∈ Stb. The case by
Con3 is omitted, because it is easier than the case by
Con4. By Con4, the transition �T ′� α−→ T ′′

1 implies
that for some S′′

2 , �S′
2�

α−→ S′′
2 and T ′′

1 ≡ S′′
11 ∧ S′′

2 ,
where S′′

11 ≡
∨
{S′′′

11 : �S′
1�

α−→ S′′′
11}.

Furthermore, since (P ′, T ′′
1 ) ∈ θ(m)(|=), it can be

shown that for some T ′′′, T ′′
1 �→ �T ′′′� and (P ′, T ′′′) ∈

θ(m)(|=). By Con∨, this implies that for some S′′′
1 and

S′′′
2 , S ′′

11 �→ S′′′
1 , S′′

2 �→ S ′′′
2 , T ′′′ ≡ S′′′

1 ∧ S ′′′
2 . By Dis∨,

the transition S′′
11 �→ S′′′

1 implies that for some S′′
1 ,

�S′
1�

α−→ S′′
1 �→ S′′′

1 . Then, by Con∨, T ′′ �→ �T ′′′�,
because S′′

1 �→ S ′′′
1 and S′′

2 �→ S ′′′
2 , where T ′′ ≡ S ′′

1 ∧S ′′
2 .

Thus, (P ′, T ′′) ∈ θ(m)(|=) by Definition 3.1, because
T ′′ �→ �T ′′′� and (P ′, T ′′′) ∈ θ(m)(|=). Finally, by in-
duction, (P ′, S ′′

1 ) ∈ θ(m)(R), because T ′′ ≡ S′′
1 ∧ S ′′

2 ,
(P ′, T ′′) ∈ θ(m)(|=), and m <= n. These are summa-
rized as : �S′

1�
α−→ S′′

1 , (P ′, S′′
1 ) ∈ θ(m)(R), and m <= n.

(iin+1) Let �S′
1�

α−→ S′′
1 . This case is easier than

the case (in+1), and we can obtain that P �→ α−→ P ′,
(P ′, S′′

1 ) ∈ θ(m)(R), and m <= n.
Consequently, (P, S1) ∈ θ(n+1)(R), because S1 �→

�S′
1� |∈ �Stb� and for every α ∈ Act, (in+1) and (iin+1)

hold for the pair (P, S′
1).
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