
Eventuality in LOTOS with
a Disjunction Operator

Yoshinao ISOBE, Yutaka SATO, Kazuhito OHMAKI

Electrotechnical Laboratory
1-1-4 Umezono, Tsukuba, Ibaraki 305-8568, Japan

E-mail:{ isobe|ysato|ohmaki }@etl.go.jp

Abstract. LOTOS is a formal specification language, designed for the
precise description of open distributed systems and protocols. Our pur-
pose is to introduce the operators of logics (for example, disjunction,
conjunction, greatest fixpoint, least fixpoint in µ-calculus) into (basic)
LOTOS, in order to describe flexible specifications. Disjunction operators
∨ have been already proposed for expressing two or more implementa-
tions in a flexible pecification. In this paper, we propose an extended
LOTOS with two state operators. They can control recursive behavior,
in order to express eventuality. The eventuality is useful for liveness prop-
erties that something good must eventually happen. Then, we present a
method for checking the consistency of a number of flexible specifications,
and a method for producing a conjunction specification of them.

1 Introduction

The design of large scale distributed systems is known to be a complex task.
In order to support the design, formal description techniques (FDTs) are used
for verifying that a realized system conforms to its specification. Process algebra
such as CCS[12], CSP[4], and LOTOS[17] is one of FDTs, and especially LOTOS
is standardized by ISO.
In practise, flexible specifications are often given to a system instead of its

complete specification in the first design step, and the flexible specifications are
refined step by step, for reducing the number of possible implementations. In
this case, a flexible specification represents two or more various implementations,
however a specification described in process algebra usually represents only one
implementation except equivalent implementations with it.
In order to describe such flexible specifications, disjunction operators ∨ have

been proposed by Steen et al.[14] for LOTOS and independently by us[5] for
Basic CCS. These operators are similar to a disjunction operator in logic, and
if P1 is an implementation of a specification S1 and P2 is an implementation of
a specification S2, then the specification S1 ∨ S2 can be implemented by either
P1 or P2, where an implementation is formally an specification expression which
does not contain disjunction operators (i.e. it is executable). It is important to
note that non-determinism of CSP can not always play the disjunction instead
of ∨, because specifications can contain non-determinism, such as for gambling
machines or timeout (see [14]).

For example, the following specificationAB represents implementations which
can iteratively perform the action a or can stop after the action b.

AB := a;AB ∨ b; stop
where ; is a prefix operator, thus a;AB requires its implementations that they can
perform a and thereafter conform to the specification AB. The symbol := is used
for defining the left Constant AB as the right specification, thus it is a recursive
definition. In this case, the disjunction ∨ is recursively resolved. Therefore, all
the following implementations satisfy the specification AB.

A∞ := a;A∞, AB0 := b; stop, AB2 := a; a; b; stop
In the above example, the action b can not be always performed in implementa-
tions satisfying AB, because A∞ satisfies AB.
Designers often require that something good must eventually happen, namely

a liveness property. For example, if the above action b must eventually happen,
then how is AB modified? An answer is to use an infinite disjunction (intuitively,
like

∨
(n>0) a

n; b; stop), but the infinity complicates integration, verification, et
al. of flexible specifications.
In this paper, we propose to use two kinds of stats, called stable states and

unstable states, in order to express eventuality. Intuitively, disjunction operators
must be resolved so that a stable state is eventually selected. For example, the
following specification AB′ represents implementations which can perform finite
a and must eventually stop after b.

AB′ := �a;AB′ ∨ ◦b; stop
where � and ◦ are called an un-stabilizer and a stabilizer, and they make an
unstable stable sate (�a;AB) and a stable state (◦b; stop), respectively. Thus,
(�a;AB) makes it impossible to infinitely select the action a. Consequently, the
above AB0 and AB2 satisfy AB′, but A∞ does not satisfy AB′.
The outline of this paper is as follows. In Section 2, we propose an extended

labelled transition system called µLTS, by introducing unstable states into the
ALTS[14]. The ALTS is an labelled transition system (LTS) extended by adding
unlabeled transitions for disjunction operators. Then, we define a specification
language called µLOTOS based on the µLTS. In Section 3, a satisfaction relation
between an implementation and a specification is defined, and the properties
of unstable states are shown. In Section 4, we present a method for checking
the consistency of a number of specifications, and a method for producing a
conjunction specification of them. In Section 5, we discuss related works. In
Appendix, a table of the notations used in this paper is given.

2 Definition of specifications

In this section, we present a specification language called µLOTOS for describing
flexible specifications. In order to concisely explain our main ideas, we will only
consider a small subset of the operators of LOTOS in this paper, but it is not
difficult to introduce the other operators into µLOTOS.
In Subsection 2.1, the syntax of µLOTOS is defined. In Subsection 2.2, a

µLTS is given, and then the semantics of µLOTOS is defined.

2.1 Syntax

We assume that a finite set of names N is given. The set of actions Act is
defined as Act = N ∪ {i} and α, β, · · · are used to range over Act, where i is a
special action called an internal action (i /∈ N). We give a set of state operators
Ψ = {◦, �}, where ◦ is called a stabilizer and � is called an un-stabilizer. The set
Ψ is ranged over by ψ, φ, · · ·.
We also assume that a set of specification constants (also called Constants)

K and a set of specification variables (also called Variables) X are given. The set
K is ranged over by A,B, · · ·, and the set X is ranged over by X,Y, · · ·.
Then, the syntax of µLOTOS is defined.

Definition 2.1 We define specification expressions M with the following syn-
tax:

M ::= A X stop ψα;M M []M M |[G]|M M ∨M
where A ∈ K, X ∈ X , ψ ∈ Ψ , α ∈ Act, and G ⊆ N . The set of all the
specification expressions is denoted by M and M,N, · · · range over M. The
operators ; , [] , |[G]| , and ∨ are called a Prefix, a Choice, a Parallel, and a
Disjunction, respectively. ��

The difference between the Choice operator [] and the Disjunction opera-
tor ∨ is intuitively explained as follows. For the Choice, users decide whether
M []N behaves like either M or N at run time, i.e. a dynamic choice. For the
Disjunction, designers decide whether M ∨N is implemented by either M or N
in specification phase, i.e. a static choice. Thus, Disjunctions are used only in
specifications and does not remain in implementations.
The Parallel operator |[G]| of LOTOS synchronizes actions included in G

and independently performs the other actions. This can synchronize three or
more specifications.
We write Var(M) for the set of Variables occurring in the specification ex-

pression M , and it is inductively defined as follows :

Var(A) = ∅, Var(ψα;M) = Var(M),
Var(stop) = ∅, Var(M op N) = Var(M) ∪ Var(N),
Var(X) = {X},

where op is [] or |[G]| or ∨. A specification expressionM is called a specification,
if it contains no Variables (i.e. Var(M) = ∅). The set of specifications is denoted
by S, and it is ranged over by S, T, U, · · ·.
A Constant is a specification whose meaning is given by a defining equation.

We assume that for every Constant A ∈ K, there is a defining equation of the
form A := S, where S is a specification which can contain Constants again.
Thus, it is a recursive definition. We assume that recursion must be guarded by
Prefixes, such as A := ◦a;A. For example, we do not consider A := A [] ◦a.stop.
The state operators ◦ and � make stable states and unstable states. A stable

state corresponds to a state in standard LOTOS. If every un-stabilizer � is
replaced with a stabilizer ◦, then µLOTOS is the same as the language of [14].
Note that stabilizer ◦ is often omitted. For example, ◦α;M is written as α;M .

A specification which neither contains Disjunctions nor un-stabilizers, is
called a process or an implementation. Thus, the set of processes P is a sub-
set of S, and the syntax is defined in terms of the following BNF expression:

P ::= A stop ◦α;P P []P P |[G]|P
where A ∈ KP ⊆ K, α ∈ Act, and G ⊆ N . We assume that for every Constant
A ∈ KP , there is a defining equation of the form A := P , where P ∈ P. The set
P is ranged over by P,Q, · · ·.
In order to avoid too many parentheses, operators have binding power in

the following order: Prefix > Parallel > Choice > Disjunction. We also use the
following short notations:

∑
C ≡

{
stop (C = ∅)
M1 []M2 [] · · · []Mn (C = {M1, · · · ,Mn})

∨
C ≡

{
F (C = ∅)
M1 ∨M2 ∨ · · · ∨Mn (C = {M1, · · · ,Mn})

where C is a finite subset of specifications and the relation ≡ represents syntactic
identity. F is a specification constant defined as follows:

F := �i;F

where i is an internal action. Intuitively, no process satisfies F, because F has
only one unstable state. On the other hand, a specification constant T which is
satisfied by all the processes is defined as follows:

T :=
∨
{
∑
{◦α;T : α ∈ A} : A ⊆ Act}

The formal properties of F and T are shown in Proposition 3.2 in Section 3.

2.2 Semantics
At first, we propose an extended labelled transition system called µLTS, by
introducing unstable states into the ALTS[14]. The ALTS is a labelled transition
system (LTS) with unlabeled transitions. The difference between the µLTS and
the ALTS is that the µLTS has the set © of stable states. In other words, if ©
is the set of all the states, then the µLTS is the same as the ALTS.

Definition 2.2 A µLTS is a structure 〈ST, L,→, �→,©〉, where ST is a set of
states, L is a set of labels, →⊆ ST × L × ST is a set of labelled transitions,
�→⊆ ST × ST is a set of unlabelled transitions, and © ⊆ ST is a set of stable
states. As a notational convention, we write s α−→ s′ for (s, α, s′) ∈→ and s �→ s′

for (s, s′) ∈�→. ��

In µLTS, stable states are defined as follows: a state s ∈ ST is stable if and
only if either s ∈ © or s′ �−→ for all s′ such that s �→ s′, where s �−→ means that
there is no pair (α, s′) such that s α−→ s′. So, a stop s is stable, even if s /∈ ©.
The semantics of µLOTOS is given by the µLTS 〈M, Act,→, �→,©〉, where

→ is defined in Definition 2.3, �→ is defined in Definition 2.4, and © is defined
in Definition 2.5. In this paper, we consider only specification expressions with
finite states.

Definition 2.3 The labelled transition relation→⊆M×Act×M is the smallest
relation satisfying the following inference rules.

Name Hypothesis � Conclusion
Act � ψα;M α−→M

Con S
α−→ S′, A := S � A

α−→ S′

Ch1 M
α−→M ′ � M []N α−→M ′

Ch2 N
α−→ N ′ � M []N α−→N ′

Par1 M
α−→M ′, α /∈ G � M |[G]|N α−→M ′ |[G]|N

Par2 N
α−→ N ′, α /∈ G � M |[G]|N α−→M |[G]|N ′

Par3 M
α−→M ′, N

α−→N ′, α ∈ G � M |[G]|N α−→M ′ |[G]|N ′

��

Definition 2.4 The unlabelled transition relation �→ ⊆ M×M is the smallest
relation satisfying the following inference rules.

Name Hypothesis � Conclusion
Act∨ � ψα;M �→ ψα;M
Stop∨ � stop �→ stop
Con∨ S �→ S′, A := S � A �→ S′

Ch∨ M �→M ′, N �→ N ′ � M []N �→M ′ []N ′

Par∨ M �→M ′, N �→ N ′ � M |[G]|N �→M ′ |[G]|N ′

Dis1 M �→M ′ � M ∨N �→M ′

Dis2 N �→ N ′ � M ∨N �→ N ′

��

Definition 2.5 The set of stable states © ⊆ M is the smallest relation satis-
fying the following inference rules.

Name Hypothesis � Conclusion
Act◦ � ◦α;M ∈ ©
Stop◦ � stop ∈ ©
Con◦ S ∈ ©, A := S � A ∈ ©
Ch◦ M ∈ ©, N ∈ © � M []N ∈ ©
Par◦ M ∈ ©, N ∈ © � M |[G]|N ∈ ©
Dis◦ M ∈ ©, N ∈ © � M ∨N ∈ ©

��

The rules for labelled transitions −→ is exactly same as the rules in standard
LOTOS, except ψ in Act. The state operator ψ does not affect −→.
Unstable states can be made from un-stabilizers �, because there is no rule for

�α;M in Definition 2.5. It is noted that there are stable stateM , even ifM /∈ ©.
For example, the specification S ≡ (�a;S1 |[a, b]| ◦b;S2) is stable, because S �→
S′ �−→ for all S′, although S /∈ ©.
Unlabelled transitions �→ [14, 5] are used for resolving disjunction operators,

as shown in the rules Dis1,2. Intuitively, a process P satisfies a specification S, if

and only if S �→ S ′ and P satisfies S′ for some specification S′. For example, the
following specification VM of a vending machine can be implemented by either
(coin; coffee; stop) or (coin; tea; stop),

VM := (coin; coffee; stop) ∨ (coin; tea; stop)

because VM �→ (coin; coffee; stop) and VM �→ (coin; tea; stop).
The definition of �→ is slightly changed from [14]. In our definition, all the

specification can perform unlabelled transitions, and it is not necessary to succes-
sively perform unlabelled transitions twice. Formally, the following proposition
holds, where M0 is the set of specification expressions which do not change
states by unlabelled transitions, thusM0 = {M : {M ′ :M �→M ′} = {M}}.

Proposition 2.1 If M �→M ′, then M ′ ∈ M0.
Proof By induction on the length of the inference ofM �→M ′. We show only one
case by Par∨, here. By Par∨,M �→M ′ implies that for someM1, M2, M ′

1,M ′
2,

and G, M ≡ M1 |[G]|M2, M ′ ≡ M ′
1 |[G]|M ′

2, M1 �→ M ′
1, and M2 �→ M ′

2. Thus,
by induction,M ′

1 ∈M0 andM ′
2 ∈ M0. These imply that ifM ′ ≡M ′

1 |[G]|M ′
2 �→

M ′′, then M ′′ ≡M ′
1 |[G]|M ′

2 by Par∨. Hence, M ′ ∈ M0. ��

In the rest of this paper, M0 (which is a subset of M) is ranged over by
M0, N0, · · ·. And also, we use S0 to denote the set of M0 which contain no
Variables, thus S0 = S ∩M0, and S0 is ranged over by S0, T0, · · ·.

3 Satisfaction

In this section, we define a satisfaction P |= S of a process P for a specification
S as an extension of the satisfaction P |=[14] S in [14]. The definition of |=[14]
has been given as follows: the satisfaction |=[14] is the largest relation such that,
P |=[14] S implies that for some S0, S �→ S0 and for all α ∈ Act the following
two conditions hold:

(i.[14]) if P α−→ P ′ then, for some S′, S0
α−→ S′ and P ′ |=[14] S

′,
(ii.[14]) if S0

α−→ S′ then, for some P ′, P α−→ P ′ and P ′ |=[14] S
′.

This requires that there exists an S0 which satisfies (i.[14]) and (ii.[14]).
This makes it possible that a specification can be satisfied by two or more vari-
ous processes. As shown in Proposition 2.1, S0 can not be resolved any more by
�→, but it may be resolved again after an labelled transition S0

α−→ S′. There-
fore, the definition of the satisfaction is inductive. For example, the specification
(a; (b; stop ∨ c; stop) ∨ d; stop) can be implemented by either (a; b; stop), or
(a; c; stop), or (a; b; stop []a; c; stop), or (d; stop).
In the definition of |=[14], the specification S0 can be freely selected from

{S0 : S �→ S0}. On the other hand, we can control the selection by state operators
◦ and �. The key point is that S must eventually reach a stable state. Then, our
satisfaction is defined as follows.

Definition 3.1 A relation R ⊆ P × S is a satisfaction relation, if (P, S) ∈ R
implies (P, S) ∈ θ(R), where θ(R) ⊆ P×S is inductively defined for any relation
R, as follows:
• (P, S) ∈ θ(0)(R) iff for some S0, S �→ S0, S0 ∈ ©, and for all α ∈ Act,

(i) if P α−→ P ′ then, for some S′, S0
α−→ S′ and (P ′, S′) ∈ R,

(ii) if S0
α−→ S′ then, for some P ′, P α−→ P ′ and (P ′, S ′) ∈ R,

• (P, S) ∈ θ(n+1)(R) iff for some S0, S �→ S0 and for all α ∈ Act,

(i) if P α−→ P ′ then, for some (m,S′), S0
α−→ S′, (P ′, S ′) ∈ θ(m)(R), m ≤ n,

(ii) if S0
α−→ S′ then, for some (m,P ′), P α−→ P ′, (P ′, S′) ∈ θ(m)(R), m ≤ n,

• (P, S) ∈ θ(R) iff (P, S) ∈ θ(n)(R), for some n. ��

Definition 3.2 P satisfies S, written P |= S, if (P, S) ∈ R, for some satis-
faction relation R. (i.e. |= is the relation

⋃
{R : R is a satisfaction relation}).

We use the notation Proc(S) for the set of all the processes which satisfy the
specification S (i.e. Proc(S) = {P : P |= S}). ��

The relation |= is the largest satisfaction relation, and we can prove that
P |= S if and only if (P, S) ∈ θ(|=). P |= S requires that S must reach a stable
state S0 after finite transitions, where P and S must keep the relation |=. It is
noted that if P �−→ and S �→ S0 �−→ for some S0, then (P, S) ∈ θ(1)(|=), even if
S0 /∈ ©, because S0 is stable. For example, (stop, �a;S1 |[a, b]| ◦b;S2) ∈ θ(1)(|=).
The following relations between |= and |=[14] can be easily shown.

– if P |= S, then P |=[14] S.
– if P |=[14] S and S has only stable states, then P |= S

The important proposition for the Disjunction ∨ shown in [14] holds also for our
satisfaction.

Proposition 3.1 Let S, T ∈ S. Then Proc(S ∨ T) = Proc(S) ∪ Proc(T).
Proof This is similar to the proof of Proposition 7 in [14]. ��

In Subsection 2.1, we defined two special specifications T and F. Two propo-
sitions for T and F are given: Proposition 3.2 shows that all the processes satisfy
T and no process satisfies F. Proposition 3.3 shows the properties for substi-
tution, where the notation M{N/X} indicates the substitution of N for ev-
ery occurrence of the Variable X in M , and the notation M̃ is an indexed set
M1, · · · ,Mn. For example, {S̃/X̃} represents {S1/X1, S2/X2, · · · , Sn/Xn}, and
{T/X̃} represents {T/X1,T/X2, · · · ,T/Xn}.

Proposition 3.2 (1) Proc(T) = S and (2) Proc(F) = ∅.
Proof (1) T has only stable states and any combination of actions (A ⊆ Act) can
be selected by �→ from T. (2) F has only one unstable state, because �i;F /∈ ©
and F has always a transition by i. ��

Proposition 3.3 Let M contain Variables X̃ at most. For any S̃ ∈ S, the
following relations hold.

1. Proc(M{S̃/X̃}) ⊆ Proc(M{T/X̃}).
2. Proc(M{F/X̃}) ⊆ Proc(M{S̃/X̃}).
Proof (outline)

1. We can show that the following R is a satisfaction relation.
R = {(P, T) : ∃S, P |= S, T ∈ TR(S), P ∈ P , S ∈ S}∪ |=

where TR(S) is the set of all the specifications obtained from the specification
S by replacing some subexpressions of S by T.

2. We can show that the following R is a satisfaction relation.
R = {(P,M{S̃/X̃}) : P |=M{F/X̃}, P ∈ P, S ∈ S}∪ |=

For this proof, the following property is used : IfM{F/X̃} �→ T0 and P |= T0,
then for some M0, M �→ M0, T0 ≡ M0{F/X̃}, M0 is guarded, and for any
S̃, M{S̃/X̃} �→M0{S̃/X̃} ��

Next, we show examples of P |= S. At first, consider the following process
PAB and the specification SAB:

PAB := a; a; b;PAB SAB := �a;SAB ∨ ◦b;SAB
In the specification SAB, only (◦b;SAB) is stable. Thus, SAB requires that the
action b must always eventually be performed, although the action a may be
performed zero or more times before b. In this case, we can show that PAB |=
SAB, because the following R is a satisfaction relation,

R = {(PAB, SAB), (a; b;PAB, SAB), (b;PAB, SAB)}
because (PAB, SAB) ∈ θ(2)(R), (a; b;PAB, SAB) ∈ θ(1)(R), and (b;PAB, SAB)
∈ θ(0)(R).
Secondly, the following specification FILE is considered.

FILE := open;OPENED× creat;FILE
OPENED := �write;OPENED× �read;OPENED× close;FILE

where M ×N is the short notation defined as follows.

M ×N ≡M ∨N ∨ (M []N)
The specification OPENED requires that the action close must be eventually
performed, because of the un-stabilizers of �write and �read. Thus, this speci-
fication FILE requires that a file must be eventually closed by the action close
after opened by the action open, and/or that a file can be created by the ac-
tion creat. The subexpression (�write;OPENED×�read;OPENED) permits that
actions write and read are inserted after open and before close. For example,
FILE can be implemented by the following processes READ or UPDATE (i.e.
READ |= FILE and UPDATE |= FILE).

READ := open; read; close;READ []creat;READ
UPDATE := open; read; (close;UPDATE []write; close;UPDATE)

FILE

creat

open

READ read

open

close

UPDATE

read
open

close

write
close

creat

read write

close

Fig. 1. The transition graphs of READ, UPDATE, and FILE (◦ : a stable state)

The transition graphs of READ, UPDATE, and FILE are shown in Fig. 1, where
each circle in FILE means a stable state, and unlabelled transitions which do
not change states are omitted.
The un-stabilizers � in OPENED guarantee that the action close must be

eventually performed. If the un-stabilizer of �read in OPENED is replaced by
a stabilizer ◦, then FILE can be also implemented by the following unexpected
process READLOOP .

READLOOP := open;LOOP, where LOOP := read;LOOP

As another example, a special case IS := �i; IS ∨ S is interesting, where i is
an internal action. This means that zero or more finite internal actions can be
performed before S. Although the internal action is not distinguished from any
other actions in Definition 3.1 like strong bisimilarity[12], it is possible by IS to
ignore finite internal actions like in weak branching bisimilarity[3] for convergent
specifications (no internal action cycles (p.148 in [12])).
In the rest of this section, important properties of state operators ◦ and �

are shown. At first, we define two subsetsMν andMµ ofM as follows.

Definition 3.3 The specification expressions M in Mν are defined with the
following syntax:

M ::= A X stop ◦α;M M []M M |[G]|M M ∨M
where A ∈ Kν ⊆ K, X ∈ X , α ∈ Act, and G ⊆ N . We assume that for every
A ∈ Kν , there is a defining equation of the form A := P and P ∈ Mν. ��

Definition 3.4 The specification expressions M in Mµ are defined with the
following syntax:

M ::= X S �α;M M []M M |[G]|M M ∨M

where S ∈ S, α ∈ Act, and G ⊆ N . ��

It is important to note that differences between Mν and Mµ are not only
◦α;M and �α;M . Every specification in Mν contains no unstable states, and
Mν is the same as the language in [14]. On the other hand,Mµ can contain the
specification ◦α;M , if M contains no Variable, becauseMµ contains S ∈ S.
Then, Theorem 3.4 holds, where the indexed definition Ã := M̃{Ã/X̃} rep-

resents Ai :=Mi{A1/X1, · · · , An/Xn} for each i ∈ {1, · · · , n}.

Theorem 3.4 Let M̃ be guarded by Prefixes and contain Variables X̃ at most,
and let Ã := M̃{Ã/X̃}.
1. Let M̃ ∈Mν . P |=Mi{Ã/X̃} if and only if P |=M 〈n〉

i {T/X̃} for any n.
2. Let M̃ ∈Mµ. P |=Mi{Ã/X̃} if and only if P |=M 〈n〉

i {F/X̃} for some n.

where M 〈n〉
i is the specification expression defined inductively as follows:

M
〈0〉
i ≡ Xi, M

〈n+1〉
i ≡Mi{M̃ 〈n〉/X̃}

Proof (outline)
1. The ‘only if part’ is directly shown by Proposition 3.3(1). For the ‘if part’,
we use another inductive definition

⋂
i≥0 |=(i) of |=, where |=(0) = P ×

S and |=(n+1)= θ(|=(n)). Then we can show that for any n, if P |=(n)

N{M̃〈n〉/X̃}{T/X̃}, then P |=(n) N{M̃ 〈n〉/X̃}{Ã/X̃}, where N ∈ Mν and
N contain Variables X̃ at most. This is not difficult, because N and M̃ have
no unstable states. Finally, we can set N ≡ Xi, then the result follows.

2. The ‘if part’ is directly shown by Proposition 3.3(2). For the ‘only if part’,
we show that the following R is a satisfaction relation.
R = {(P,N{M̃ 〈n〉/X̃}{F/X̃}) : Ã := M̃{Ã/X̃}, (P,N{Ã/X̃}) ∈ θ(m)(|=),

n ≥ m,N and M̃ are guarded and contain Variables X̃ at most,
N ∈Mµ, M̃ ∈Mµ}∪ |=

The key points are that (1) N{M̃ 〈n〉/X̃} is still guarded after n transitions,
(2) N{Ã/X̃} must reach a stable state after m′ transitions for some m′ ≤ m,
because (P,N{Ã/X̃}) ∈ θ(m)(|=), and (3) if N ′{F/X̃} is stable and N ′ ∈
Mµ, then N ′ contains no Variables (i.e. N ′{F/X̃} ≡ N ′{Ã/X̃}). ��

Since we consider only finite state specifications, Theorem 3.4 shows that if
M̃ ∈ Mν then Ã is the greatest fixpoint of recursive equations X̃ = M̃ , and if
M̃ ∈ Mµ then Ã is the least fixpoint of them. For example, if M ≡ a;X ∨ b;T,
A := M{A/X}, and P |= A, then P may not perform b (i.e. may infinitely
perform a), because M ∈ Mν. On the other hand, if M ≡ �a;X ∨ b;T, A :=
M{A/X}, and P |= A, then P must eventually perform b, because M ∈ Mµ.

4 Integration of specifications

A number of flexible specifications are sometimes given to a large system instead
of its complete specification, because many designers work on the same system
design in parallel, and it is not easy for each designer to know the whole system.
Such design method decreases responsibility of each designer, but it raises two

important issues: consistency check of the flexible specifications and integration
of them. In general, since the integrated specification satisfies all of them, it
corresponds to a conjunction specification of them. The consistency and the
conjunction specification are defined as follows.

Definition 4.1 Let Si ∈ S. The specifications S1, · · · , Sn are consistent with
each other, if

⋂
1≤i≤n Proc(Si) �= ∅. And the specification S is a conjunction

specification of S1, · · · , Sn, if Proc(S) =
⋂

1≤i≤n Proc(Si) �= ∅. ��

In Subsection 4.1, a relation ∼ is given for checking the consistency between
two specifications. In Subsection 4.2, a method called the ∧-method is given
for producing a conjunction specification of two specifications. A conjunction
specification of three or more specifications can be produced by iteratively using
∼ and the ∧-method.

4.1 Consistency check
In this subsection, we consider the consistency of two specifications. At first, a
relation ∼ is defined as a generalized relation from the satisfaction |=.

Definition 4.2 A relation R ⊆ S × S is a consistent relation, if (S, T) ∈ R
implies (S, T) ∈ Θ(R), where Θ(R) ⊆ S × S is inductively defined for any
relation R, as follows:
• (S, T) ∈ Θ(0)(R) iff for some S0 and T0, S �→ S0, T �→ T0, S0 ∈ ©, T0 ∈ ©,

(i) if S0
α−→ S′ then, for some T ′, T0

α−→ T ′ and (S′, T ′) ∈ R,
(ii) if T0

α−→ T ′ then, for some S′, S0
α−→ S′ and (S′, T ′) ∈ R,

• (S,T) ∈ Θ(n+1)(R) iff for some S0 and T0, S �→ S0, T �→ T0,

(i) if S0
α−→ S′ then, for some (m,T ′), T0

α−→ T ′, (S′, T ′) ∈ Θ(m)(R), m ≤ n,
(ii) if T0

α−→ T ′ then, for some (m,S′), S0
α−→ S′, (S′, T ′) ∈ Θ(m)(R), m ≤ n,

• (S,T) ∈ Θ(R) iff (S, T) ∈ Θ(n)(R), for some n. ��

Definition 4.3 S ∼ T , if (S, T) ∈ R for some consistent relation R. ��

The relation Θ(R) is an extension of θ(R) in Definition 3.2 to over S × S,
and we can show that S ∼ T if and only if (S, T) ∈ Θ(∼). The relation S ∼ T
requires that S and T must eventually reach stable states at the same time.
It is important to note that the relation ∼ is too strong to check the consis-

tency between two specifications. For example, the following two specifications
SAB and SBA (SAB was also used in Section 3) are consistent with each other,

SAB := �a;SAB ∨ ◦b;SAB, SBA := ◦a;SBA∨ �b;SBA
because there exist processes P such that P |= SAB and P |= SBA, for example
PAB := a; a; b;PAB. On the other hand, S �∼T , because SAB and SBA can not
reach stable states at the same time.
In this paper, we present a method for checking the consistency after trans-

forming a specification into a standard form. At first, the following set is defined
in order to define the standard form, where Dri(S0) = {S′ : ∃α, S0

α−→ S′}.

Definition 4.4 Let U ⊆ S. A set V ⊆ S is a pre-U set, if S ∈ V implies that,
(pre1) if S �→ S0 /∈©, then Dri(S0) ⊆ V ,
(pre2) if S �→ S0 ∈ ©, then Dri(S0) ⊆ U .

Then, Pre(U) =
⋃
{V : V is a pre-U set}. ��

Then, the standard form is defined as follows, where S) T represents
Proc(S) = Proc(T).

Definition 4.5 A set U ⊆ S is a standard set, if S ∈ U implies that,

(1) if S �→ S0 /∈ ©, then for some S′
0 ∈ ©, S �→ S′

0) S0, Dri(S′
0) ⊆ Pre(U),

(2) if S �→ S0, then for some S′
0, S �→ S′

0) S0, Dri(S′
0) ⊆ U ,

(3) if S �→ S0, then either Dri(S0) ⊆ U or Dri(S0) ⊆ Pre(U).
Then, STD =

⋃
{U : U is a standard set}. ��

Definition 4.6 Let S ∈ S.

1. S is in standard form, if S ∈ STD.
2. S is in pre-standard form, if S ∈ Pre(STD). ��

As shown in Definition 4.5, if S ∈ STD then for any S0 such that S �→ S0,
for some S′

0 ∈ © such that S �→ S′
0, Proc(S0) = Proc(S′

0). And furthermore,
for every derivation S′ such that S0

α−→ S′, S′ ∈ Pre(STD). This condition (1)
makes it possible to immediately reach a stable state if S is in standard form, and
thereafter S′ must be in pre-standard form. In order to return to be in standard
form, S′ must eventually reach a stable state. The condition (2) requires that S
can keep in standard form, and (3) requires that S must keep in either standard
form or pre-standard form.
Then, a specification ST(S) produced form S is defined as follows.

Definition 4.7 Let S ∈ S. The specification ST(S) is defined as follows.
ST(S) :=

∨
{ST0(S0) : S �→ S0} ∨

∨
{SS0(S0) : S �→ S0 /∈ ©}

PST(S) :=
∨
{ST0(S0) : S �→ S0 ∈ ©} ∨

∨
{PST0(S0) : S �→ S0 /∈©}

ST0(S0) ≡
∑
{ψα;ST(S′) : S0

α−→ S′, St(S0) = ψ}
PST0(S0) ≡

∑
{ψα;PST(S′) : S0

α−→ S′, St(S0) = ψ}
SS0(S0) ≡

∑
{◦α;PST(S′) : S0

α−→ S′}
where St : S0 → Ψ is a state function defined as : if S0 ∈ © then St(S0) = ◦,
otherwise St(S0) = �. ��
The specifications ST(S) and PST(S) are Constants. Since we consider only

specifications S with finite states, the number of states of ST(S) is also finite.
The key point is that ST(S) contains a stable state SS0(S0) if S �→ S0 /∈©. It is
important to note that the derivation of SS0(S0) is PST(S′) instead of ST(S′).
In order to return ST, S′ must eventually reach a stable state (This is similar to
the requirement of STD).
Proposition 4.1 shows that the set of processes which satisfy S is not changed

by the transformation ST. And Proposition 4.2 shows that ST(S) is in standard
form for any S. Therefore, for any specification S, we can transform S into a
standard form S′ such that S) S′ by ST.

Proposition 4.1 Let S ∈ S and S0 ∈ S0. Then

S) ST(S)) PST(S),
S0) ST0(S0)) PST0(S0)) SS0(S0)

Proof (outline) For S) ST(S)) PST(S), we can show that the following R1,2

are satisfaction relations.

R1 = {(P,ST(S)) : P |= S} ∪ {(P,PST(S)) : P |= S}
R2 = {(P, S) : P |= ST(S)} ∪ {(P, S) : P |= PST(S)}

The relation S0) ST0(S0)) PST0(S0)) SS0(S0) can be shown by similar
satisfaction relations. ��

Proposition 4.2 Let S ∈ S. Then ST(S) ∈ STD and PST(S) ∈ Pre(STD).
Proof (outline) We can show that the following V and U are a pre-U set and a
standard set, respectively : V={PST(S) : S∈S} and U={ST(S) : S∈S}. ��

The above examples SAB and SBA are used, again. The specification SAB is
transformed by ST into the following specification:

ST(SAB) := �a;ST(SAB) ∨ ◦b;ST(SAB) ∨ ◦a;PST(SAB)
PST(SAB) := �a;PST(SAB) ∨ ◦b;ST(SAB)

The specification ST(SBA) is symmetrical with ST(SAB) for a and b. The state
(◦a;PST(SAB)) is important, thus ST(SAB) contains a stable state which can
perform the action a. This implies that ST(SAB) and ST(SBA) can reach stable
states at the same time. In fact, we can prove that ST(SAB) ∼ ST(SBA).
Now, the relation ∼ can be used for checking the consistency of two specifica-

tions as shown in Proposition 4.3. The relation ∼ can be automatically checked
by a similar algorithm to one for bisimilarity [6].

Proposition 4.3 Let S, T ∈ STD. Then S ∼ T iff Proc(S) ∩ Proc(T) �= ∅.
Proof (‘if’ part) We show that the following R is a consistent relation.

R = {(S, T) : P |= S, P |= T, S ∈ STD ∪ Pre(STD), T ∈ STD ∪ Pre(STD)}

Let P |= S, P |= T , S ∈ STD, and T ∈ STD. Since P |= S, there exists S0 such
that S �→ S0 and P |= S0. Here, by Definition 4.5, for some S′

0 ∈ ©, S �→ S′
0

and P |= S ′
0. Similarly, for some T

′
0 ∈ ©, T �→ T ′

0 and P |= T ′
0.

For (i), let S′
0

α−→ S′. Since P |= S′
0 ∈ S0, for some P ′, P α−→ P ′ and

P ′ |= S′. Furthermore, since P |= T ′
0, for some T ′, T ′

0
α−→ T ′ and P ′ |= T ′.

Here, by Definition 4.5, S ′ ∈ STD∪Pre(STD) and T ′ ∈ STD∪Pre(STD). Thus,
(S′, T ′) ∈ R. For (ii), it is symmetrical. Consequently, (S, T) ∈ Θ(0)(R).
For the other cases such that S ∈ Pre(STD) and T ∈ STD, S can reach

either a state S ′ ∈ STD or a stop, because P |= S (i.e. S must reach a stable
state). Hence, these cases can be shown by induction on n of (P, S) ∈ Θ(n)(|=).
(‘only if ’ part) Assume that S ∼ T . By the definition of ∼, there exist S0

and T0 such that S0 ∼ T0, S �→ S0, and T �→ T0. Then, it can be proven that the

following process CP(n)(S0, T0) satisfies both S0 and T0, where n = |S0, T0| =
min{n : (S0, T0) ∈ Θ(n)(∼)}. The detail is omitted.
CP(n)(S0, T0) :=

∑
{◦α;CP(n′)(S′

0, T
′
0) : ∃(S′, T ′), |S′

0, T
′
0| = n′, n = 0,

S0
α−→S′ �→ S′

0, T0
α−→T ′ �→ T ′

0, S
′
0 ∼ T ′

0} []∑
{◦α;CP(n′)(S′

0, T
′
0) : ∃(S′, T ′), |S′

0, T
′
0| = n′≤n− 1,

S0
α−→S′ �→ S′

0, T0
α−→T ′ �→ T ′

0, S
′
0 ∼ T ′

0} ��

By Proposition 4.3, the above relation ST(SAB) ∼ ST(SBA) implies that
ST(SAB) and ST(SBA) have common processes. Furthermore, this implies SAB
and SBA have common processes by Proposition 4.1, thus they are consistent.
Proposition 4.3 shows a method to produce a common process CP(n)(S0, T0)

of two specifications S and T (i.e. CP(n)(S0, T0) ∈ Proc(S) ∩ Proc(T)). We can
also useCP(n)(S0, S0) for producing an executable process P from a specification
S such that P |= S, where S �→ S0.
In the rest of this section, we give a relation ∼= which implies).

Definition 4.8 A relation R ⊆ S×S is a full consistent relation, if (S, T) ∈ R
implies that the following conditions (1) and (2) hold:
(1) for all S0 such that S �→ S0, for some T0, T �→ T0, and (i), (ii), (iii) hold,
(2) for all T0 such that T �→ T0, for some S0, S �→ S0, and (i), (ii), (iii) hold,
(i) for all α and S′, if S0

α−→S′ then, for some T ′, T0
α−→T ′, and (S′, T ′)∈R,

(ii) for all α and T ′, if T0
α−→T ′ then, for some S′, S0

α−→S′, and (S′, T ′)∈R,
(iii) either S0 �−→ or S0 ∈ © if and only if either T0 �−→ or T0 ∈ © ��

Definition 4.9 S and T are fully consistent, written S ∼= T , if (S, T) ∈ R for
some full consistent relation R. ��

The condition (iii) requires that S0 is stable if and only if T0 is stable. For
example, (S1 ≡ �a;S []a;S) and (S2 ≡ �a;S) are fully consistent, because both
S1 and S2 are unstable.
The full consistency is an equivalence relation. And the full consistency im-

plies that two specifications have the same processes as follows.

Proposition 4.4 Let S, T ∈ S. If S ∼= T ,then S) T (i.e. Proc(S) = Proc(T)).
Proof It can be shown that the relation {(P, T) : ∃S, P |= S, S ∼= T} is a
satisfaction relation. This proof is not difficult. ��

The opposite direction of Proposition 4.4 (i.e. if S) T , then S ∼= T) does
not always hold. For example, A1 := a;A1 and A2 := �a;a;A2 have the same
processes, but A1 �∼=A2. The relation ∼= is a simple sufficient condition for).

4.2 Conjunction specification
In this subsection, we present a method for producing a conjunction specification
from two specifications. The pair of this method and the relation ∼ allows to
check the consistency of three or more specifications, and to produce a conjunc-
tion specification of them.

The key idea for producing conjunction specifications is the standard form
defined in Definition 4.6. If two specifications are not in standard form, then
eventualities of them will be confused with each other. Another important point
of our method is that non-determinism of Choices [] and Disjunctions ∨ is con-
sidered. By this non-determinism, each state in a specification can consist with
a number of various states in another specification. By considering the non-
determinism, we present the ∧-method which produces a specification constant
S ∧ T from two specifications S and T . Since we consider only finite state spec-
ifications S and T , the number of states of S ∧ T is also finite.

Definition 4.10 Let S, T ∈ S. The specification S ∧ T is defined as follows.

S ∧ T :=
∨
{S0 * T0 : S �→ S0, T �→ T0, S0 ∼ T0}

S0 * T0 ≡
∑
{ψα;

∨
{S′ ∧ T ′ : T0

α−→ T ′, S ′ ∼ T ′} : S0
α−→ S′, St(S0) = ψ} []∑

{ψα;
∨
{S′ ∧ T ′ : S0

α−→ S′, S ′ ∼ T ′} : T0
α−→ T ′, St(T0) = ψ} ��

The specification S ∧ T performs common actions of S and T , like S |[G]|T .
The main difference from S |[G]|T is that S ∧ T keeps the relation ∼ between S
and T . For example, compare the following Sab ∧ Sac and Sab |[a, b, c]|Sac.

Sab ∧ Sac
∼= a; stop , Sab |[a, b, c]|Sac

∼= a; stop ∨ stop
where Sab ≡ a; stop∨b; stop and Sac ≡ a; stop∨c; stop. Sab∧Sac is rightly the
common specification a; stop of Sab and Sac. On the other hand, Sab |[a, b, c]|Sac

contains also the specification stop. The stop arises from non-determinism
of Disjunctions ∨, for example, by unlabelled transitions Sab �→ b; stop and
Sac �→ c; stop, where b; stop |[a, b, c]| c; stop �−→. The condition S0 ∼ T0 in Def-
inition 4.10 avoids mismatches by non-determinism, such as b; stop and c; stop.
Furthermore, by non-determinism of Choices [] , there may exist two or more

specifications T ′
i such that T0

α−→ T ′
i , S

′ ∼ T ′
i , and T

′
i �∼ T ′

j, for each S0
α−→ S′.

For example, if S0 ≡ a; (b; stop ∨ c; stop) and T0 ≡ a; b; stop []a; c; stop, then
S0

a−→ S′ ≡ b; stop ∨ c; stop, T0
a−→ T ′

1 ≡ b; stop, T0
a−→ T ′

2 ≡ c; stop,
S′ ∼ T ′

1, S ′ ∼ T ′
2, and T ′

1 �∼ T ′
2. In this case, a consistent pair such as (S′, T ′

i)
can not be uniquely decided. Therefore, all the consistent pairs are flexibly com-
bined by Disjunctions, as shown in the part

∨
{S′ ∧ T ′ | T0

α−→T ′, S′ ∼ T ′} in
Definition 4.10.
Then, we give an expected proposition for the ∧-method.

Proposition 4.5 Let S, T ∈ STD. If S ∼ T , then S ∧ T is a conjunction speci-
fication of the specifications S and T , thus Proc(S ∧ T) = Proc(S) ∩ Proc(T).
Proof We can show that the following R1 and R2 are satisfaction relations.

R1 = {(P, S) : ∃(S0, T0), S �→ S0, S0 ∼ T0, P |= S0 * T0}
R2 = {(P,U) : ∃(S0, T0), U �→ S0 * T0, P |= S0, P |= T0,

(Dri(S0), Dri(T0) ⊆ either STD or Pre(STD))}

For R2, the key point is that S0 and T0 can reach stable states at the same time,
because all the derivations of them are in (pre-)standard form. This means that
S0 * T0 can also reach a stable state. The detail is omitted. ��

The two specifications ST(SAB) and ST(SBA) in Subsection 4.1 are used,
again. By the ∧-method, the following specifications are produced.

C1 ≡ ST(SAB) ∧ ST(SBA) := �a;C1 ∨ �b;C1 ∨ ◦a;C2 ∨ ◦b;C3

C2 ≡ PST(SAB) ∧ ST(SBA) := �b;C1 ∨ �a;C2 ∨ ◦b;C3

C3 ≡ ST(SAB) ∧PST(SBA) := �a;C1 ∨ ◦a;C2 ∨ �b;C3

Then, By Proposition 4.1 and Proposition 4.5,

Proc(C1) = Proc(ST(SAB)) ∩ Proc(ST(SBA)) = Proc(SAB) ∩ Proc(SBA).

In order to reach a stable state from C1, either (◦a;C2) or (◦b;C3) must be even-
tually selected. If (◦a;C2) is selected, then C2 requires that b must be eventually
performed. Thus, C1 requires that a and b must be always eventually performed.
Finally, we give a theorem to produce a conjunction specification of three or

more specifications by iteratively using ∼ and the ∧-method (and the transfor-
mation by ST(S)). This theorem also shows how to check their consistency.

Theorem 4.6 Let T1, T2 ∈ STD, T1 be a conjunction specification of S1, · · · , Sm,
and T2 be a conjunction specification of Sm+1, · · · , Sn.

(1) If T1 ∼ T2, then T1 ∧ T2 is a conjunction specification of S1, · · · , Sn.
(2) If T1 �∼T2, then S1, · · · , Sn are not consistent.

Proof This is easily proven by Proposition 4.3, Proposition 4.5, and the prop-
erties of intersection of sets. ��

5 Conclusion and related work

In this paper, we have considered how to introduce least fixpoint and conjunc-
tion of µ-calculus[1, 7, 15] into LOTOS. In order to express the least fixpoint in
a Labelled Transition System, we have proposed an extended LTS called µLTS,
and have defined a language µLOTOS based on the µLTS. Then, the ∧-method
has been presented for producing a conjunction specification. In general, the con-
junction specification S is not executable, because it may contain Disjunctions,
but an executable process can be produced from S by CP in Proposition 4.3.
As a related work on flexible specifications, Larsen presented Modal Specifi-

cations to express loose specifications by required transitions −→✷ and allowed
transitions −→	 in [8] and a language called modal CCS based on the transitions
in [9, 10]. The difference between modal CCS and µLOTOS is explained by the
following specifications S1 in modal CCS and S2 in µLOTOS.

S1 := a	;S1 []b✷; stop, S2 := �a;S2 ∨ b; stop,
where a	 represents an allowed action and b✷ represents a required action (LO-
TOS syntax is used also for S1). The following process P1 satisfies both S1 and
S2, while the process P2 satisfies only S1, because the action a must not be in-
finitely performed in S2, and the process P3 satisfies only S2, because the action
b can not be postponed in S1.

P1 := b; stop, P2 := a;P2 []b; stop, P3 := a; b; stop

The basic idea of the µLTS arose from the notion of divergence [16] (p.148
in [12]) which can avoid infinite loop by internal actions in the notion of diver-
gence. An unstable state in µLTS is intuitively considered as a state which can
perform internal actions. But internal actions are needed for expressing dynamic
behavior such as timeout, and they should not be used for controlling resolution
of Disjunction operators. Therefore, we have introduced an un-stabilizer �.
For integration or refinement of specifications, a number of approaches were

proposed, for example [2] [13] [10]. Brinksma[2] proposed a refined parallel op-
erator for multiple labels. This operator is used to implement conjunction of
LOTOS specifications. Steen et al.[13] proposed a conjunction operator ⊗ and a
join operator ✶ in order to yield a common reduction and a common extension,
respectively, in LOTOS. Larsen et al.[10] defined a conjunction operator ∧ for
loose specifications in modal CCS. However, these approaches do not consid-
er the non-determinism of Disjunction operators ∨. Therefore, they can not be
directly applied to µLOTOS.
For logical requirements, synthesis algorithms of processes were proposed

in [7] and [11]. Kimura et al.[7] presented a synthesis algorithm for recursive
processes by subcalculus of µ-calculus, but the subcalculus does not contain the
disjunction ∨. Manna et al.[11] presented an algorithm for synthesizing a graph
from requirements described in Propositional Temporal Logic (PTL). In PTL,
eventualities can be expressed by an operator ,, but the synthesized graph from
PTLs does not always represent all the common processes of them.

References
1. R.Barbuti : Selective mu-calculus: New Modal Operators for Proving Properties on

Reduced Transition Systems, Formal Description Techniques and Protocol Speci-
fication, Testing and Verification, FORTE X/PSTV XVII, pp.519-534, 1997.

2. E.Brinksma : Constraint-oriented specification in a constructive formal description
technique, LNCS 430, Springer-Verlag, pp.130-152, 1989.

3. P.J.B.Glabbeek and W.P.Weijland: Branching Time and Abstraction in Bisimula-
tion Semantics, Journal of the ACM, Vol.43, No.3, pp.555-600, 1996.

4. C.A.R.Hoare :Communicating Sequential Processes, Prentice-Hall, 1985.
5. Y.Isobe, H.Nakada, Y.Sato, and K.Ohmaki : Stepwise Synthesis of Multi-

Specifications using Static Choice Actions (in Japanese). Foundation of Software
Engineering IV (FOSE’97), Lecture Notes 19, Kindaikagaku-sha, pp.12-19, 1997.

6. P.C.Kanellakis and S.A.Smolka: CCS Expressions, Finite State Processes, and
Three Problems of Equivalence, Information and Computation, Vol.86, pp.43-68,
1990.

7. S.Kimura, A.Togashi and N.Shiratori : Synthesis Algorithm for Recursive Processes
by µ-calculus, Algorithmic Learning Theory, LNCS 872,Springer-Verlag, pp.379-
394, 1994.

8. K.G.Larsen : Modal Specifications, Automatic Verification Methods for Finite S-
tate Systems, LNCS 407, Springer-Verlag, pp.232-246, 1989.

9. K.G.Larsen : The expressive Power of Implicit Specifications, Automata, Lan-
guages and Programming, LNCS 510, Springer-Verlag, pp.204-216, 1991.

10. K.G.Larsen, B.Steffen, and C.Weise : A Constraint Oriented Proof Methodology
Based on Modal Transition Systems, Tools and Algorithms for the Construction
and Analysis of Systems, LNCS 1019, Springer-Verlag, pp.17-40, 1995.

11. Z.Manna and P.Wolper : Synthesis of Communicating Processes from Temporal
Logic Specifications, ACM Trans. on Programming Languages and Systems, Vol.6,
No.1, pp.67-93, 1984.

12. R.Milner : Communication and Concurrency, Prentice-Hall, 1989.
13. M.W.A.Steen, H.Bowman, and J.Derrick : Composition of LOTOS specification,

Protocol Specification, Testing and Verification, XV, pp.73-88, 1995
14. M.W.A.Steen, H.Bowman, J.Derrick, and E.A.Boiten, : Disjunction of LOTOS

specification, Formal Description Techniques and Protocol Specification, Testing
and Verification, FORTE X/PSTV XVII, pp.177-192, 1997.

15. Colin Stirling : An Introduction to Modal and Temporal Logics for CCS, Concur-
rency: Theory, Language, and Architecture, LNCS 491, Springer-Verlag, pp.2-20,
1989.

16. D.J.Walker : Bisimulations and Divergence, Proc. of third annual IEEE symposium
on Logic in Computer Science, pp.186 - 192, 1988.

17. ISO 8807: Information Processing Systems–Open System Interconnection–
LOTOS–A formal description technique based on the temporal ordering of ob-
servational behavior, 1989.

A Appendix
Table 1. The notations used in this paper

Notation Meaning

N the set of names a, b, · · ·
Act the set of actions α, β, · · ·, (Act = N ∪ {i})
Ψ the set of state operators ψ,φ, · · ·, (Ψ = {◦, �})
K the set of specification constants (Constants) A,B, · · ·
X the set of specification variables (Variables) X,Y, · · ·
M the set of specification expressions M,N, · · ·
M0 the set of specification expressions such that if M0 �→ M ′

0 then M0 ≡ M ′
0

Mν ,Mµ subsets of M, Definition 3.3 and 3.4
S the set of specifications S, T, U, · · ·
S0 the set of specifications such that if S0 �→ S′

0 then S0 ≡ S′
0

P the set of processes P,Q, · · ·
STD the set of specifications in standard form, Definition 4.6
Pre(STD) the set of specifications in pre-standard form
Var(M) the set of Variables in M
Proc(S) the set of all the processes to satisfy S, (Proc(S) = {P : P |= S})
Dri(S0) the set of derivations of S0 (Dri(S0) = {S′ : ∃α,S0

α−→ S′})
|= satisfaction
∼ a relation for checking consistency
� the relation {(S, T) : Proc(S) = Proc(T)}
∼= full consistency, Definition 4.9
:= definition of specification constants
≡ syntactic identity
θ(R) a relation to define |=, Definition 3.1
Θ(R) a relation to define ∼, Definition 4.2
St a state function (if S0 ∈ © then St(S0) = ◦, otherwise St(S0) = �
ST(S) a specification in standard form, transformed from S

This article was processed using the LaTEX macro package with LLNCS style

