
A Process Logic for Distributed System Synthesis

Yoshinao Isobe Kazuhito Ohmaki
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305-8568, Japan

{isobe | ohmaki}@etl.go.jp

Abstract

In this paper, we define a process algebra DS@ to
formally describe distributed systems and a process log-
ic SP@ to formally describe their specifications. Then,
we present a method to synthesize a distributed system
(described in DS@) from given specifications (described
in SP@). The main contribution of this paper is to
show how to check the satisfiability of process logics in
which concurrent behavior is distinct from interleaving
behavior (i.e. considering true concurrency).

1. Introduction

The design of distributed systems is known to be
a complex task, because the behavior of a distribut-
ed system results from interactions between concurrent
processes of which the system consists. Our final pur-
pose is to establish a method to automatically synthe-
size a distributed system from specifications. For this
purpose, we need a formal framework to verify whether
a distributed system satisfies a specification, or not.

Process algebras such as CCS[10] and CSP [2] are
formal frameworks to express both specifications and
concurrent systems, and to verify their behavioral e-
quality. Langerak[7] presented algorithms to equiva-
lently transform a sequential expression (a specifica-
tion) to a concurrent expression (a system), by using
a process algebra LOTOS[15]. However, requirements
for the system behavior must be completely specified
in LOTOS, because ‘equality’ is used between a spec-
ification and a system. Although extended process
algebras[4, 8, 13] have been proposed to express loose
specifications, it has not been discussed how to synthe-
size a concurrent process from sequential specifications.

Process logics such as PL[10] (also called Hennessy-
Milner logic) and µ-calculus[14] are logics with modal
operators. In process logics, specifications can be flexi-
bly expressed by disjunction operators ∨, and they can
be refined by conjunction operators ∧, step by step.

Kimura et al.[6] presented an algorithm to synthesize
a system (described in a process algebra CCS) from
specifications (described in a process logic µ-calculus).
However, since µ-calculus has no notion of concurrency,
the algorithm may synthesize a sequential system (ex.
a.b+b.a) which is observationally equal to the expected
concurrent system (ex. a|b), where a, b are actions, ‘.’
is a sequential operator, + is a choice operator, and | is
a concurrent operator. Although the sequential system
synthesized from logical specifications by the Kimura’s
algorithm, can be transformed into a concurrent system
by the Langerak’s algorithms[7], the concurrent system
often contains more synchronizations than the logical
specifications need, because the medium sequential sys-
tem is synthesized without respect to concurrency. To
synthesize an efficient concurrent system, concurrency
should be considered in logical specifications.

As another approach using logics, Manna et al.[9]
presented an algorithm to synthesize a graph from re-
quirements described in Propositional Temporal Logic
(PTL). However, concurrent requirements cannot be
specified in PTL, in the same way as µ-calculus.

A number of process algebras which can express
(true) concurrency have been proposed in [1, 3, 11], by
considering locality or causality between actions. In
addition, a process logic considering locality has been
also given in [1]. The notion of true concurrency distin-
guishes concurrent behavior from interleaving behavior
as follows: a|b �= a.b + b.a . However, satisfiability of
such process logics has not been discussed yet. The
satisfiability check is necessary for synthesizing a dis-
tributed system from specifications.

In this paper, we define a true concurrent process
algebra DS@ to describe distributed systems and a
process logic SP@ to describe their specifications, in
Section 2 and 3. Then, we present an algorithm to
check the satisfiability of given specifications described
in SP@, and a method to synthesize a distributed sys-
tem described in DS@, in Section 4. Finally, we con-
clude this paper, and discuss abstract expressions in
SP@, in Section 5.

2. Definition of distributed systems

In this section, we define a process algebra DS@ to
describe distributed systems. DS@ is basically an ex-
tended CCS with name operator @ for naming each
process, to specify where actions are performed. Such
a notion is not new as shown in [5]. Our purpose is not
to propose a new process algebra nor a process logic,
but to present a synthesis method of distributed sys-
tems. Thus, we firstly need a simple formal framework
suitable for the purpose. The basic results on DS@ can
be extended to other true concurrent process algebras.

At first, we assume that a set of action names AN =
{a, b, · · ·} and a set of process names PN = {p, q, · · ·}
are given, and they are ranged over by α, β, · · · and
ψ, ϕ, · · ·, respectively. And, subsets of PN are repre-
sented by Ψ,Φ, · · ·. Each action is an action name with
process names, and the set of actions Act is defined by

Act = {αΨ : α ∈ AN,Ψ ⊆ PN, 1 ≤ ‖Ψ‖ ≤ 2},

where ‖Ψ‖ is the number of elements in Ψ. Intuitively,
α{ψ} is an action performed at the port named α in the
process ψ, and α{ψ, ϕ} represents a synchronization
between the two processes ψ andϕ through the port α.

We assume that a set of process-constants ConsP ,
ranged over by A,B, · · ·, is also given. Then, the set
of processes Pr is the smallest set which contains the
following expressions:

0 : Stop,
A : Recursion (A ∈ ConsP),

α.P : Prefix (α ∈ AN),
P +Q : Summation,

where P,Q are already in Pr. The set Pr is ranged over
by P,Q, · · ·. The set of distributed systems Ds is the
smallest set which contains the following expressions:

P@ψ : Naming (P ∈ Pr,ψ ∈ PN),
D|E : Composition (Pn(D) ∩ Pn(E) = ∅),
E � D : Environment (E ⊆ Act),

where D,E are already in Ds. The function Pn :
Ds → 2PN is defined as follows : Pn(P@ψ) = {ψ},
Pn(D|E) = Pn(D) ∪ Pn(E), and Pn(E � D) = Pn(D).

To avoid too many parentheses, these operators have
the binding power: Prefix > Summation > Naming >
Composition> Environment. The notation D ≡ E is
used to mean that D and E are syntactically identical.

Each operator is briefly explained as follows.
The process α.P can perform the action α, and then

behaves like P . The process P +Q behaves like either
P or Q. The meaning of a process-constant is given
by a defining equation. We assume that for every A ∈
ConsP , there is a defining equation of the form A

def= P .

Name Hypothesis � Conclusion
Pre � α.P

α·−→ P

Sum1 P
α·−→ P ′ � P + Q

α·−→ P ′

Sum2 Q
α·−→ Q′ � P + Q

α·−→ Q′

Rec A
def= P, P

α·−→ P ′ � A
α·−→ P ′

Figure 1. The inference rules for →̇

Name Hypothesis � Conclusion

Name P
α·−→ P ′ � P@ψ

α{ψ}−→ P ′@ψ

Com1 D
αΨ−→ D′ � D|E αΨ−→D′|E

Com2 E
αΨ−→ E′ � D|E αΨ−→D|E′

Com3 D
α{ψ}−→ D′, E

α{ϕ}−→ E′ � D|E α{ψ,ϕ}−→ D′|E′

Env D
αΨ−→ D′, αΨ ∈ E � E � D

αΨ−→ E � D′

Figure 2. The inference rules for →

P@ψ names the process P the name ψ. The func-
tion Pn is used to uniquely assign a process name, and
Pn(D) represents the set of process names used in D.
It is important that (a.0@p|b.0@q) cannot be expand-
ed to (a@p.b@q.0 + b@q.a@p.0), because p and q are
given to each process (not to each action), where D|E
represents a distributed system consisting of D and E.

An environment E is a set of feasible actions. Intu-
itively, it represents a network connection. For exam-
ple, the environment {in{p}, out{q}, sync{p, q}} shows
that p and q can independently perform in and out, re-
spectively, and can synchronize through sync.

The following function env : Ds → 2Act is useful to
estimate all the feasible actions:

env(P@ψ) = {α{ψ} : α ∈ AN},
env(D|E) = {α{ψ, ϕ} :α{ψ}∈env(D), α{ϕ}∈env(E)}

∪ env(D) ∪ env(E),
env(E � D) = {αΨ ∈ E : Ψ ⊆ Pn(D)} ∩ env(D).

And the function pn : 2Act → 2PN is often used for
extracting process names from an environment, and it
is defined as : pn(E) = {ψ : ∃αΨ. αΨ ∈ E , ψ ∈ Ψ}.

The semantics of processes and distributed systems
is given by the labelled transition systems 〈Pr,AN, →̇〉
and 〈Ds,Act,→〉, respectively, where the transitions
→̇ and → are the smallest sets satisfying the inference
rules in Figure 1 and Figure 2, respectively.

The rule Com3 restricts the number of synchronous
actions to 2, although DS@ is easily extended with
n-synchronizations. This means that α{ψ, ϕ} cannot
synchronize with the other actions. Thus, α{ψ, ϕ} is
uncontrollable, and it corresponds to an internal ac-
tion. The synchronous name α can be abstracted by
defining an equation such that αΨ � α′Ψ if ‖Ψ‖ = 2.

3. Definition of specifications

In this section, a process logic SP@ is defined to de-
scribe specifications. SP@ is an extended PL with pro-
cess names, recursion, and a cost operator. Intuitively,
the cost operator indicates that the system synthesized
from S1 ∨ S2 should satisfy which specification S1 or
S2, if both specifications are satisfiable.

We assume that a set of specification-constants (al-
so called Constants) Cons, ranged over by A,B, · · ·, is
given. Then, the set of specifications Sp is the smallest
set which contains the following expressions:

tt : True,
ff : False,
A : Recursion (A ∈ Cons),

〈αΨ〉S : Possibility (αΨ ∈ Act),
[αΨ]S : Necessity (αΨ ∈ Act),
S ∧ T : Conjunction,
S ∨ T : Disjunction,
r::S : Cost (r : a positive real number),

where S, T are already in Sp. The set Sp is ranged
over by S, T, · · ·. To avoid too many parentheses, these
operators have binding power such that: { Possibility,
Necessity, Cost } > Conjunction > Disjunction.

The possibility 〈αΨ〉S requires that the action αΨ
can be performed, and then S can be satisfied after αΨ.
And the necessity [αΨ]S requires that if the action αΨ
can be performed, then S is always satisfied after αΨ.

In the same way as process-constants, a Constant
is a specification whose meaning is given by a defining
equation. We assume that for every Constant A ∈
Cons, there is a defining equation of the form A

def= S.
The cost operator is mainly used for expressing

communication costs. For example, the specification
5::〈c{p1, p2}〉S∨3::〈c{p1, p3}〉S indicates that the com-
munication cost between the processes p1 and p2 is
higher than the cost between p1 and p3. To synthe-
size a system from such disjunctive specifications, a low
cost specification should be selected as far as possible.

Next, an extended labelled transition system is de-
fined to give the semantics of specifications.

Definition 3.1 A requirement labelled transition sys-
tem (RLTS) is a tuple 〈St, Lb, �→,−→〈〉,−→[]〉, where
St is a set of states, Lb is a set of labels, �→⊆ St× St
is a disjunctive transition, −→〈〉⊆ St × Lb × St is a
possible transition, −→[]⊆ St× Lb× St is a necessary
transition. We use ξ to range over the set {〈〉, []}, and
write −→ξ for −→〈〉 or −→[]. We often write s �→ s′

for (s, s′) ∈�→ and s
e−→ξ s′ for (s, e, s′) ∈−→ξ.

In the RLTS, each transition represents a require-
ment. Intuitively, a state s ∈ St is satisfied, if for some

Name Hypothesis � Conclusion
True∨ � tt �→ tt
Pos∨ � 〈αΨ〉S �→ 〈αΨ〉S
Nec∨ � [αΨ]S �→ [αΨ]S
Con∨ S �→ S0, T �→ T0 � S ∧ T �→ S0 ∧ T0

Dis1∨ S �→ S0 � S ∨ T �→ S0

Dis2∨ T �→ T0 � S ∨ T �→ T0

Rec∨ A
def= S, S �→ S0 � A �→ S0

Cos∨ S �→ S0 � r::S �→ r::S0

Figure 3. The inference rules of �→

Name Hypothesis � Conclusion

Pos � 〈αΨ〉S αΨ−→〈〉 S

Nec � [αΨ]S αΨ−→[] S

Con1 S0
αΨ−→ξ S

′ � S0 ∧ T0
αΨ−→ξ S′

Con2 T0
αΨ−→ξ T ′ � S0 ∧ T0

αΨ−→ξ T ′

Cos S0
αΨ−→ξ S

′ � r::S0
αΨ−→ξ S′

Figure 4. The inference rules of −→ξ

s′ such that s �→ s′, every transition s′
e−→ξ s′′ is sat-

isfied. A possible transition s
e−→〈〉 s′ requires that e

can be performed and then s′ can be satisfied, and a
necessary transition s

e−→[] s
′ requires that if e can be

performed then s′ is always satisfied after e. Note that
a state s such that s ��→ is never satisfied, and s such
that for some s′, s �→ s′ �−→ξ is always satisfied.

The semantics of specifications is given by the RLTS
〈Sp,Act, �→,−→〈〉,−→[]〉, where the transitions �→ and
→ξ are the smallest sets satisfying the inference rules
in Figure 3 and Figure 4, respectively.

It can be proven that if S �→ S′ �→ S′′ then S′ ≡ S ′′.
This means that it is not necessary to successively per-
form disjunctive transitions twice. The set of undis-
junctive specifications just after a disjunctive transition
is denoted by Sp0, and it is ranged over by S0, T0, · · ·.
Thus, Sp0 = {S0 : ∃S ∈ Sp. S �→ S0}. Note that undis-
junctive specifications may become disjunctive specifi-
cations after a possible (or a necessary) transition.

Then, the satisfaction is defined as follows.

Definition 3.2 A set R ⊆ Ds × Sp is a satisfaction
set, if (D,S) ∈ R implies that for some S0, S �→ S0

and the following (i), (ii) hold for every αΨ and S′,

(i) if S0
αΨ−→〈〉S

′, then ∃D′. D
αΨ−→D′ and (D′, S′)∈R,

(ii) if S0
αΨ−→[]S

′ and D
αΨ−→D′, then (D′, S ′)∈R.

Then, if (D,S) ∈ R for some satisfaction set R,
then D satisfies S, written D |= S.

Definition 3.2 requires that there is S0 such that
S �→ S0 and (i), (ii) are satisfied. The idea of the
disjunctive transition was proposed in [12]. And, (i)
requires that D can perform the action αΨ, and it can
satisfy S′ after αΨ, and (ii) requires that if D can
perform the action αΨ, then it always satisfies S ′ after
αΨ. Proposition 3.1 shows the property of |=.
Proposition 3.1

(1) D |= tt, D �|= ff

(2) D |= 〈αΨ〉S ⇔ ∃D′. (D αΨ−→ D′, D′ |= S)
(3) D |= [αΨ]S ⇔ ∀D′. (D αΨ−→ D′ ⇒ D′ |= S)
(4) D |= S ∧ T ⇔ D |= S, D |= T
(5) D |= S ∨ T ⇔ D |= S or D |= T
(6) D |= r::S ⇔ D |= S

(7) D |= A ⇔ ∃S. (D |= S, A def= S)

4. Satisfiability and synthesis

A number of incomplete specifications (in which re-
quirements have not been uniquely fixed) are some-
times given to a system instead of its complete specifi-
cation, because many designers work on the same sys-
tem design in parallel. Such design method decreases
responsibility of each designer, but it raises two impor-
tant issues: consistency check of the incomplete speci-
fications and synthesis of a system to satisfy them.

A process logic can express incomplete specifications
by disjunction operators ∨ and so on. And the consis-
tency of specifications S1, · · · , Sn can be checked by the
satisfiability of S1 ∧ · · · ∧ Sn.

In addition, not only behaviors but environments
are often required for distributed systems. Thus, it
is important to check whether distributed systems to
satisfy given behaviors and environments exist, or not.
This conditional satisfiability is defined as follows.

Definition 4.1 Let E ⊆ Act. S is E-satisfiable if and
only if for some D, D |= S and env(D) = E .

In this section, we present an algorithm to check the
E-satisfiability of a specification described in SP@, and
to synthesize a distributed system described in DS@.

4.1. Problem

If process names are removed, the satisfiability of
SP@ can be checked by imposing each necessary re-
quirement [a]S on possible requirements 〈a〉T for each
state, like 〈a〉(S ∧T). For example, the requirement of
the following S1 is equal to the requirement of S′

1.

S1 ≡ 〈a〉〈b〉tt ∧ [a]ff
S′

1 ≡ 〈a〉(〈b〉tt ∧ ff)∧ [a]ff

Thus, S1 is not satisfiable, because S′
1 requires the false

ff after 〈a〉. On the other hand, the following S2 is
satisfiable,

S2 ≡ 〈a〉〈b〉tt∧ [b]ff

because the action b is forbidden by [b]ff until some
action is performed. Thus, b can be performed after a.

However, if process names are attached, then the
satisfiability check is not so easy, because independen-
cy of processes must be considered. For example, al-
though the differences between S2 and the following S3

are only process names, S3 is not satisfiable,

S3 ≡ 〈a{p}〉〈b{q}〉tt ∧ [b{q}]ff

because the action b is forbidden by [b{q}]ff until some
action is performed by the process q. This means that
the process q cannot know the state-changes of the oth-
er process p without communications. Thus, the pro-
cess q cannot perform b even after p has performed a.

In general, a necessary requirement for a process
may be imposed on a possible requirement for the pro-
cess, passing requirements for the other processes. For
example, the following [a{p}]ff may be imposed on
〈a{p}〉tt, passing 〈b{q}〉, · · · , [c{q}], · · ·.

[a{p}]ff ∧ 〈b{q}〉(· · · ([c{q}](· · · 〈a{p}〉tt) ∨ S1)) ∧ S2

Therefore, every such possible requirement should be
checked at the beginning. However, it is difficult, be-
cause requirements are not fixed by disjunctions. Fur-
thermore, it is impossible to fix every disjunction at the
beginning, because of recursions. Thus, we stepwise
check the satisfiability by a trial and error method.

4.2. Preliminary

Our algorithm assigns specifications in an array
whose dimension is decided by process names, in or-
der to clarify independency of processes.

At first, for each Ψ ⊆ PN , the set of pointers PntΨ
ranged over by u, v, · · ·, the set of arrays AryΨ ranged
over by ρ, σ, · · ·, and the set of array-transitions TrnΨ

ranged over by r, s, · · ·, are defined as follows:

PntΨ=



{∅} (Ψ=∅),
{{(ψ; i)} : i ∈ I} (Ψ={ψ}),
{u ∪ v : u∈PntΦ, v∈PntΘ} (Ψ=Φ∪Θ,Φ∩Θ �=∅),

AryΨ= {ρ : ρ ⊆ {(u, S) : u ∈ PntΨ, S ∈ Sp}},
TrnΨ= {r : r ⊆ I × AN × PN × I},

where I is the set of integers. Intuitively, each point
{(ψn; in) : n ∈ N} represents a state of a distributed
system in which the state-ID of process ψn is in, and
each element (u, S) in an array represents that a state
of a distributed system pointed by u satisfies S.

The set Ary0
Ψ, ranged over by ρ0, σ0, · · ·, is an im-

portant subset of AryΨ, and it is given as follows:

Ary0
Ψ = {ρ0 : ρ0 ⊆ {(u, S0) : u ∈ PntΨ, S0 ∈ Sp0}}.

The pointer u[v] ∈ PntΨ obtained by replacing a part
of u ∈ PntΨ with v ∈ PntΦ is defined as follows:

u[v] = {(ψ; i) ∈ u : ψ /∈ Φ} ∪ {(ψ; i) ∈ v : ψ ∈ Ψ}.

For example, u[v] = {(p1; 1), (p2; 4), (p3; 3)}, where
u = {(p1; 1), (p2; 2), (p3; 3)} and v = {(p2; 4), (p5; 5)}.
And the state-ID of the process ψ in a pointer u is
denoted by u(ψ). For example, {(p; 3), (q; 4)}(p)=3.

Then, the important notion to check E-satisfiability
is defined as follows.

Definition 4.2 Let E ⊆ Act, ρ0 ∈ Ary0
pn(E), and r ∈

Trnpn(E). A pair (ρ0, r) is E-closed if and only if for
every (u, S0) ∈ ρ0 and for every αΨ and S′,

(1) if S0
αΨ−→〈〉 S

′, then ∃v ∈ PntΨ. αΨ ∈ E,
(∀ψ ∈ Ψ. (u(ψ), α, ψ, v(ψ)) ∈ r),
∃S′

0. S
′ �→ S ′

0, and (u[v], S
′
0) ∈ ρ0,

(2) if S0
αΨ−→[] S

′, v ∈ PntΨ, αΨ ∈ E , and
(∀ψ ∈ Ψ. (u(ψ), α, ψ, v(ψ)) ∈ r), then
∃S′

0. S
′ �→ S ′

0, and (u[v], S
′
0) ∈ ρ0.

For example, (ary, trn) is (net)-closed, where

ary = {((1, 1), S01), ((2,1), S02), ((4, 1), S03),
((1, 3), 1::〈c{p, q}〉S03), ((2, 3), 〈e{q}〉S2)},

trn = {(1, a, p, 2), (1, c, p, 4), (4, d, p, 1),
(1, b, q, 3), (3, c, q,1), (3, e, q, 1)}

net = {a{p}, b{q}, c{p, q}, d{p}, e{q}}

where each (i, j) in ary is an abbreviation of the pointer
{(p; i), (q; j)}, and each Si is defined as follows:

S1
def= S01 ≡ 〈a{p}〉S2 ∧ [b{q}]S3 ∧ [d{p}]ff,

S2
def= S02 ≡ 〈b{q}〉〈e{q}〉S2,

S3
def= S03 ∨ 1::〈c{p, q}〉S03, S03 ≡ 〈d{p}〉S1.

Figure 5 shows the requirement graph of S1 and the en-
vironment net. The array ary and the array-transition
trn are illustrated as shown in Figure 6.

The following Propositions 4.1 and 4.2 show the nec-
essary and sufficient condition for E-satisfiable. Thus,
a specification S is E-satisfiable if and only if for some
E-closed pair (ρ0, r), ρ0 contains S0 such that S �→ S0.

Proposition 4.1 If D |= S, then for some env(D)-
closed pair (ρ0, r), for some (u, S0) ∈ ρ0, S �→S0.

b{q}

S01

S3

d{p}

a{p}

ff

c{p,q}

b{q}

S02

e{q}
d{p}

S1

S03

S2

Process q

Process p

a d

c

b e

environment net

c{p,q} S031::

e{q} S2

Figure 5. The requirements S1 and net

b,q

S01

c,p

e,q

a,p

e{q} S2

S03S02

d,p

c,q

(p;1) (p;2) (p;4)

(q;1)

(q;3) c{p,q} S031::

Figure 6. The (net)-closed pair (ary, trn)

Proposition 4.2 Assume that (ρ0, r) is E-closed. If
(u, S0) ∈ ρ0 and S �→ S0, then DsrE(u) |= S, where the
distributed system DsrE (u) is defined as follows:

DsrE (u) ≡ E �
∏
{Prrψ(i)@ψ : (ψ; i) ∈ u},

Prrψ(i)
def=

∑
{α.Prrψ(i′) : (i, α, ψ, i′) ∈ r},

where
∏
{Di : 1 ≤ i ≤ n} and

∑
{Pi : 1 ≤ i ≤ n}

represent D1| · · · |Dn and P1 + · · ·+ Pn, respectively.

Furthermore, Proposition 4.2 gives a method to
synthesize a distributed system to satisfy a specifica-
tion. For example, the following distributed system
Dstrnnet(1, 1) synthesized from the previous (net)-closed
pair (ary, trn) satisfies S1 by Proposition 4.2.

Dstrnnet(1, 1) ≡ net � (Prtrnp (1)@p|Prtrnq (1)@q)

Prtrnp (1) def= a.0+ c.d.Prtrnp (1)
Prtrnq (1) def= b.(c.Prtrnq (1) + e.Prtrnq (1))

4.3. Algorithm

For each E ⊆ Act, the algorithm SatE is presented
in Figure 7. This algorithm checks whether distributed
systems (whose environment is E) to satisfy a specifi-
cation exist, or not. The input is a specification to
be checked, and the output is a tuple (b, ρ0, r), where
b ∈ {tt,ff}, ρ0 ∈ Ary0

pn(E), and r ∈ Trnpn(E). The
meaning of the output is shown in Theorem 4.3.

SatE(S) = DisE(∅, ∅, σ), where σ = {{((ψ; 1) : ψ ∈ pn(E)}, S)}.

DisE (ρ0, r, σ) = (b, ρ′0, r′), where
if σ = ∅, then (b, ρ′0, r′) := (tt, ρ0, r), (*1)
else if ∃(u, S) ∈ σ. S ��→, then (b, ρ′0, r

′) := (ff, ρ0, r), (*2)
else (b, ρ′0, r

′) := RecE (ρ0, r,σ0 − ρ0), where
σ0 ∈ ✵0 := {σ′

0 : (∀(u, S) ∈ σ. ∃S0. S �→ S0, (u, S0) ∈ σ′
0), (∀(u, S0) ∈ σ′

0. ∃S. S �→ S0, (u, S) ∈ σ)}, (*3)
(check(RecE(ρ0, r, σ0 − ρ0)) = tt or (∀σ′

0 ∈ ✵0. σ
′
0 !D σ0)), (*4)

(∀σ′
0 ∈ ✵0 such that σ′

0 !D σ0. check(RecE(ρ0, r, σ
′
0 − ρ0)) = ff). (*5)

RecE (ρ0, r, σ0) = PosE (g(ρ0), g(r), g(σ0)− g(ρ0)), where
g ∈ G := {g′ : ∀(ψ, i). (g′(ψ, i) = i or ∃(u, S0) ∈ σ0. ∃u′. (u′, S0) ∈ ρ0 ∪ σ0, u(ψ) = i, u′(ψ) = g′(ψ, i)}, (*6)
(check(PosE(g(ρ0), g(r), g(σ0)− g(ρ0))) = tt or (∀g′ ∈ G. g′ !R g)), (*7)
(∀g′ ∈ G such that g′ !R g. check(PosE(g′(ρ0), g′(r), g′(σ0)− g′(ρ0))) = ff). (*8)

PosE(ρ0, r, σ0) = (b, ρ′0, r′), where
if {αΨ : ∃(u,S0) ∈ σ0. ∃S ′. S0

αΨ−→〈〉 S
′} − E �= ∅, then (b, ρ′0, r

′) = (ff, ρ0, r), (*9)
else (b, ρ′0, r

′) = NecE (ρ0 ∪ σ0, r ∪ r′′, σ), where
r′′ := {(u(ψ), α, ψ, v(ψ)) : ∃S′. ∃Ψ. (u, αΨ, v, S′) ∈ new, ψ ∈ Ψ}, (*10)
σ := {(u[v], S′) : ∃αΨ. (u, αΨ, v, S′) ∈ new}, (*11)
new := {(u, αΨ, v, S′) : ∃S0. (u, S0) ∈ σ0, S0

αΨ−→〈〉S
′, v = {(ψ;newid(ρ0 ∪ σ0, u, αΨ, S′)) : ψ ∈ Ψ}}. (*12)

NecE(ρ0, r, σ) = DisE (ρ0, r,σ ∪ σ′′), where
σ′ := {(u[v], S′) : ∃S0. ∃αΨ ∈ E . (u, S0) ∈ ρ0, S0

αΨ−→[] S
′, v ∈ PntΨ, (∀ψ∈Ψ. (u(ψ), α, ψ, v(ψ)) ∈ r)}, (*13)

σ′′ := {(u, S′) ∈ σ′ : ∀S ′
0 such that S′ �→ S′

0. (u, S′
0) /∈ ρ0}. (*14)

Figure 7. The algorithm SatE for E-satisfiability check

Theorem 4.3 Assume that SatE(S) terminates.

(1) check(SatE(S)) = tt if and only if S is E-satisfi-
able, where for each (b, ρ0, r), check(b, ρ0, r) = b.

(2) If SatE (S) = (tt, ρ0, r), then (ρ0, r) is E-closed
and for some (u, S0) ∈ ρ0, S �→ S0.

By Propositions 4.2 and Theorem 4.3, if S is E-
satisfiable, then a distributed system can be synthe-
sized. However, we have not proven the termination of
the algorithm SatE (S) yet, even if S has finite states
(i.e. S can contain recursive requirements, if the num-
ber of reachable states is finite), although we speculate
that SatE(S) terminates. The proof is not so trivial
by disjunctions, recursions, and independency of pro-
cesses. If a specification S contains no disjunction and
has finite states (may contain recursions), then we have
already proven that SatE (S) terminates.

4.3.1. Outline of the algorithm SatE . The algo-
rithm SatE consists of four sub-algorithmsDisE , RecE ,
PosE, and NecE . The meaning of the input tuple

(ρ0, r, σ(or σ0)) to the sub-algorithms is as follows: The
array ρ0 contains specifications whose possible transi-
tions have been checked. The array σ (or σ0) contains
specifications whose disjunctive transitions (or possi-
ble transitions) have not been checked yet. And, r is
the array-transition produced by possible transitions
of specifications in ρ0. The meaning of the output is
the same as one of SatE . Then, each sub-algorithm is
explained, where (*n) points a line in Figure 7.

DisE returns tt, if there is no specification to be
checked (*1), and it returns ff, if some specification
has no disjunctive transition (*2). Otherwise, it selects
the least set σ0 (with respect to the order !D) of E-
satisfiable undisjunctive specifications from the set ✵0

(*3,4,5). If every σ′
0 in ✵0 is not E-satisfiable, then the

greatest one is selected (*4). The order!D is explained
with the order !R in RecE at the end of this sub-
subsection.

RecE attempts to fold the array (ρ0 ∪ σ0) for cre-
ating recursive processes. The algorithm SatE cannot
terminate for recursive specifications without RecE . A
function g : PN × I → I is a renumbering function.

The function renumbering the state i of process ψ to
j is denoted by (ψ; i → j). This function is extended
over pointers, arrays, and array-transitions as follows:

g(u) = {(ψ; g(ψ, i)) : (ψ; i) ∈ u},
g(ρ) = {(g(u), S) : (u, S) ∈ ρ},
g(r) = {(g(ψ, i), α, ψ, g(ψ, i′)) : (i, α, ψ, i′) ∈ r}.

The set G collects renumbering functions g′ such that if
i �= g′(ψ, i), then (∗) both the states i and g′(ψ, i) of the
process ψ satisfy the same specification (*6). Thus, it
creates a recursive process. However, the condition (∗)
is not a sufficient condition to identify the two states
of the process ψ, because a disjunctive specification is
satisfied by two or more different processes. Therefore,
G always contains the identical function id such that
for every (ψ, i), id(ψ, i) = i.
PosE firstly checks whether actions forbidden by the

environment E are required, or not (*9). If such an
action exists, then PosE returns ff. Otherwise, it adds
new transitions into r, according to possible transitions
of specifications contained in σ0 (*10,12). And it sets the
destinations of the possible transitions in σ, to satisfy
the condition (1) in Definition 4.2 (*11). The function
newid assigns a new identical integer which is not used
in ρ0 ∪ σ0, for each (u, αΨ, S′).
NecE searches all the necessary transitions induced

by transitions in r, and it adds the destinations of the
necessary transitions in σ, to satisfy the condition (2)
in Definition 4.2 (*13), where the destinations which
have already checked are removed from σ (*14).

The orders!D and!R in DisE and RecE are used
for selecting an element from the sets ✵0 and G, respec-
tively (*5,8). It is important to note that Theorem 4.3
does not depend on how to select an element by the
orders !D and !R. Therefore, it is not necessary
to carefully define the orders. However, the following
points should be considered.

• The order !D should be defined such that a low
cost specification is selected. For example, the cost
of each specification S0 ∈ Sp0 is defined as:

Cos(tt) = Cos(〈αΨ〉S) = Cos([αΨ]S) = 0,
Cos(S0 ∧ T0) = Cos(S0) + Cos(T0),
Cos(r::S0) = r + Cos(S0).

• The order !R should be defined such that a
renumbering function which changes many differ-
ent integers into an integer is selected, in order to
create recursive processes and terminate SatE .

4.3.2. Demonstration. To demonstrate the algo-
rithm SatE , the example in Subsection 4.2 is used a-
gain. By applying Satnet to the specification S1 of

Figure 5, the tuple (tt, ρ′05, r
′
5) is returned as shown in

Figure 8, where (ρ′05, r
′
5) is the same as (ary, trn) given

in Subsection 4.2.
In Figure 8, the steps 6, 7, and 11 are important.

In the step 6, the element ((1, 3), S3) is induced by

S01
b{q}−→[] S3 and S02

b{q}−→〈〉 〈e{q}〉S2. This shows that
requirements for the process q are preserved between
S01 and S02, although there is a requirement 〈a{p}〉 for
the process p between S01 and S02.

In the step 7, 1::〈c{p, q}〉S03 is selected from S3, al-
though the cost 1 is higher than the cost 0 of S03,
because if S03 is selected in this step, then it is incon-
sistent with [d{p}]ff. The synchronization c{p, q} is
needed for satisfiable.

In the step 11, the state-ID 5 of the process q is
changed into 1 by g1, because ((2, 5), S02) ∈ σ05 and
((2, 1), S02) ∈ ρ04. By the renumbering, a recursion is
created, and the element ((2, 5), S02) in σ05 is removed.

5. Conclusion and discussion

We have presented an algorithm SatE to check the
E-satisfiability of a process logic SP@, in which con-
current behavior is distinct from interleaving behavior.
Although the termination of SatE has not been proven
yet, SatE is useful for synthesizing a distributed system
described in a process algebra DS@ from specifications
described in SP@.

SP@ has no abstract synchronous name like τ of
CCS, because an abstract name makes the algorithm
SatE be (somewhat) more complex, and such name can
be expressed by short notations in SP@ as follows:

〈τ〉S ≡
∨
{〈αΨ〉S : α ∈ AN,Ψ ⊆ PN, ‖Ψ‖ = 2},

[τ]S ≡
∧
{[αΨ]S : α ∈ AN,Ψ ⊆ PN, ‖Ψ‖ = 2},

where
∨
{Si : 1 ≤ i ≤ n} and

∧
{Si : 1 ≤ i ≤ n}

represent S1 ∨ · · · ∨ Sn and S1 ∧ · · · ∧ Sn, respectively.
We can remove every concrete synchronous name from
DS@ and SP@ by using 〈τ 〉S, [τ]S, and the equation �
over synchronous actions given at the end of Section 2.

It seems to be difficult for designers to directly de-
scribe specifications in SP@, because SP@ is very prim-
itive. Then, short notations are helpful for designers.
For example, synchronizations (communications) can
be abstracted by the following notations:

〈〈αΨ〉〉S ≡ 〈αΨ〉S ∨ 〈τ 〉〈αΨ〉S,
[[αΨ]]S ≡ [αΨ]S ∧ [τ][αΨ]S.

Intuitively, a synchronization is allowed before the ac-
tion αΨ by 〈〈αΨ〉〉S, and the necessity for the action αΨ
is available after a synchronization by [[αΨ]]S. More
abstract operators can be defined by combination of

1 Satnet(S1) = Disnet(∅, ∅, σ1) σ1 := {((1, 1), S1)}
2 =Recnet(∅, ∅, σ01) = Posnet(∅, ∅, σ01) σ01 := {((1, 1), S01)}
3 =Necnet(σ01, r1, σ2) = Disnet(σ01, r1, σ2) r1 = {(1, a, p, 2)}, σ2 := {((2, 1), S2)}
4 =Recnet(σ01, r1, σ02) = Posnet(σ01, r1, σ02) σ02 := {((2, 1), S02)}
5 =Necnet(ρ02, r2, σ3) ρ02 := σ01 ∪ σ02, r2 := r1 ∪ {(1, b, q, 3)}, σ3 := {((2,3), 〈e{q}〉S2)}
6 =Disnet(ρ02, r2, σ4) σ4 := σ3 ∪ {((1, 3), S3)}
7 =Recnet(ρ02, r2, σ04) = Posnet(ρ02, r2, σ04) σ04 := σ3 ∪ {((1, 3), 1::〈c{p, q}〉S03)}
8 =Necnet(ρ04, r4, σ5) ρ04 := ρ02 ∪ σ04, r4 := r2 ∪ {(1, c, p, 4), (3, c, q, 4), (3, e, q, 5)},
9 =Disnet(ρ04, r4, σ5) σ5 := {((4, 4), S03), ((2, 5), S2)}
10 =Recnet(ρ04, r4, σ05) σ05 := {((4, 4), S03), ((2,5), S02)}, g1 := (q; 5→ 1)
11 =Posnet(ρ04, r

′
4, σ

′
05) r′4 := g1(r4), σ′

05 := g1(σ05)− g1(ρ04) = {((4, 4), S03)}
12 =Necnet(ρ05, r5, σ6) = Disnet(ρ05, r5, σ6) ρ05 := ρ04 ∪ σ′

05, r5 := r′4 ∪ {(4, d, p, 6)}, σ6 := {((6, 4), S1)}
13 =Recnet(ρ05, r5, σ06) σ06 := {((6, 4), S01)}, g2 := (p; 6 → 1)(q; 4→ 1)
14 =Posnet(ρ′05, r′5, ∅) =Necnet(ρ′05, r′5,∅) ρ′05 := g2(ρ05), r′5 := g2(r5), g2(σ06)− ρ′05 = ∅
15 =Disnet(ρ′05, r

′
5, ∅) = (tt, ρ′05, r

′
5)

Figure 8. The application of Satnet to the specification S1

basic operators. By these short notations, designer-
s can describe week specifications without respect to
synchronizations. If synchronizations are needed, then
they are automatically inserted by the algorithm SatE

Acknowledgments

The authors wish to express our gratitude to Dr.
Izumi Takeuti for helpful discussions.

References

[1] G.Boudol, I.Castellani, M. Hennessy, and
A.Kiehn: Observing localities, Theoretical Com-
puter Science, Vol.114, pp.31-61, 1993.

[2] C.A.R.Hoare :Communicating Sequential Process-
es, Prentice-Hall, 1985.

[3] P.Degano and C.Priami : Causality for Mobile
Processes, ICALP’95, LNCS 944, Springer-Verlag,
pp.660 - 671, 1995.

[4] Y.Isobe, Y.Sato and K.Ohmaki : Least Fix-
point and Greatest Fixpoint in a Process Algebra
with Conjunction and Disjunction, IEICE Trans.
on Fundamentals, Vol.E83-A, No.3, pp.401-411,
2000.

[5] P.Krishnan : Distributed CCS, CONCUR’91, L-
NCS 527, Springer-Verlag, pp.393-407, 1991.

[6] S.Kimura, A.Togashi and N.Shiratori : Synthesis
Algorithm for Recursive Processes by µ-calculus,
Algorithmic Learning Theory, LNCS 872, pp.379-
394, 1994.

[7] R.Langerak : Decomposition of functionality : a
correctness preserving LOTOS transformation, P-
STV X, pp.229-242, 1990.

[8] K.G.Larsen, B.Steffen, and C.Weise : A Con-
straint Oriented Proof Methodology Based on
Modal Transition Systems, TACAS’95, LNCS
1019, pp.17-40, 1995.

[9] Z.Manna and P.Wolper : Synthesis of Commu-
nicating Processes from Temporal Logic Specifi-
cations, ACM Trans. on Programming Languages
and Systems, Vol.6, No.1, pp.67-93, 1984.

[10] R.Milner : Communication and Concurrency,
Prentice-Hall, 1989.

[11] U.Montanari and D.Yankelevich : A Paramet-
ric Approach to Localities, ICALP’92, LNCS 623,
Springer-Verlag, pp.617 - 628, 1992.

[12] M.W.A.Steen, H.Bowman, J.Derrick, and E.A.
Boiten : Disjunction of LOTOS specification,
FORTE X/PSTV XVII, pp.177-192, 1997.

[13] M.W.A.Steen : Consistency and Composition of
Process Specifications (Chap.5). Ph.D Thesis, U-
niversity of Kent at Canterbury, 1998.

[14] C.Stirling : An Introduction to Modal and Tem-
poral Logics for CCS, Concurrency: Theory, Lan-
guage, and Architecture, LNCS 491, Springer-
Verlag, pp.2-20, 1989.

[15] ISO 8807: Information Processing Systems–Open
System Interconnection–LOTOS–A formal de-
scription technique based on the temporal order-
ing of observational behavior, 1989.

