
Communicating Process Architectures 2011
P.H. Welch et al. (Eds.)
IOS Press, 2011
c© 2011 The authors and IOS Press. All rights reserved.

1

CONPASU-tool:
A Concurrent Process Analysis Support
Tool based on Symbolic Computation

Yoshinao ISOBE a,1
aNational Institute of Advanced Industrial Science and Technology, Japan

Abstract. This paper presents an analysis-method of concurrent processes with value-
passing which may cause infinite-state systems. The method consists of two steps:
sequentialization and state-reduction. In the sequentialization, the symbolic transition
graph of a given concurrent process is derived by symbolic operational semantics. In
the state-reduction, the number of states in the symbolic transition graph is reduced by
removing needless internal transitions. Furthermore, this paper introduces an analysis-
tool called CONPASU, which implements the analysis-method, and demonstrates how
CONPASU can be used for automatically analyzing concurrent processes. For example,
it can extract abstract behaviors, which are useful for understanding complex behav-
iors, by focusing on some interesting events.
Keywords. symbolic operational semantics, automatic analysis tool, state-reduction,
infinite state process, value-passing process algebra

Introduction

Concurrent processes, which consist of communicating component-processes, are needed in
parallel computation environments such as multi-core CPU and distributed systems. It is,
however, not easy to completely understand the whole behavior of concurrent processes be-
cause it is a result of interactions between communicating component-processes. For exam-
ple, in order to know the causality between events performed at the different component-
processes, internal communications between the component-processes must be considered.

Process algebra such as CSP [1,2] and CCS [3] is a formal framework for analyzing
concurrent processes. In process algebra, implementations and specifications of concurrent
processes can be formally described, and then equalities and/or refinements between an im-
plementation and a specification can be checked. In general, the implementation is a model to
express the structure of the concurrent-process and the behaviors of its component-processes,
while the specification is often a sequential process to express the whole behavior of the
concurrent-process.

Various tools [4,5,6,7], called model checker, based on process algebra have been de-
veloped for automatically checking such equalities and/or refinements, when formal descrip-
tions of an implementation and a specification are given. For example, the following expres-
sion is a formal description (in CSP) of the concurrent process IMPL which consists of two
component-processes IN and OUT.

1Corresponding Author: Yoshinao Isobe, Information Technology Research Institute, National Institute of
Advanced Industrial Science and Technology, Tsukuba Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki, 305-8568
Japan, E-mail: y-isobe@aist.go.jp.

2 CONPASU-tool: A Concurrent Process Analysis Support Tool based on Symbolic Computation

IMPL = (IN [|{| com |}|] OUT) \ {| com |}
IN = in?x→ com!x→ IN

OUT = com?y→ out!y→ OUT

The first line defines the structure of IMPL, and the second and the third lines define behaviors
of IN and OUT, respectively. The meaning of symbols such as → is explained in Section 1.
Here, we assume to expect that IMPL behaves like a buffer whose capacity is 2, thus the
specification can be formally described as follows:

SPEC = in?x→ SPEC1(x)
SPEC1(y) = in?x→ SPEC2(x, y) � out!y→ SPEC

SPEC2(x, y) = out!y→ SPEC1(x)

In fact, the behaviors of IMPL and SPEC are equal (e.g. failures-equivalent [2]) and the equality
can be automatically checked by the model checker FDR [4] if the range of input is finitized.

As shown in the example of IMPL and SPEC, model checker is very useful for checking
relations between an implementation and a specification. It is, however, sometimes difficult
to formally describe specifications. Implementations such as IMPL are often hierarchical and
complex, but they can be more mechanically described than specifications such as SPEC be-
cause designs of structures of systems and behaviors of components are usually given while
it is often difficult to formally describe expected behaviors of systems. Our analysis-tool
CONPASU can automatically generate the specification SPEC from the implementation IMPL.

In this paper, we present an analysis-method for generating specifications (i.e. sequen-
tial processes) from implementations of concurrent processes based on CSP (Communicat-
ing Sequential Processes) [1,2] with value-passing. The analysis-method consists of two
steps: sequentialization of concurrent processes by symbolic operational semantics and state-
reduction by removing needless internal transitions. It is possible to extract abstract behav-
iors from the whole behavior by focusing on only interesting events. Then, we introduce an
analysis-tool CONPASU, which implements the analysis-method, and demonstrate how it ana-
lyzes concurrent processes. The analysis-method and CONPASU have the following features:

• Symbolic transition graphs can be often finite even for value-passing processes with
variables whose ranges are infinite because variables are not instantiated to values.

• Each symbolic transition has assignments (e.g. n := n+1) for updating variables and
it has a location for indicating which processes participate in the transition.

• The presented state-reduction method can be directly applied to the symbolic transi-
tion graphs without instantiating variables.

• The tool CONPASU generates symbolic transition graphs from concurrent processes
described in CSPM used in FDR [4], and then it can automatically reduce the number
of states in symbolic transition graphs with preserving stable-failures-equivalence.

This paper is organized as follows: First, we give a definition of process algebra with
symbolic semantics mainly according to [8] in Section 1. It is used for sequentializing con-
current processes. In Section 2, we present an analysis-method for reducing the number of
states with preserving stable-failures-equivalence based on symbolic approach. Then, in Sec-
tions 3 and 4, we introduce a tool CONPASU which implements the analysis-method presented
in this paper, and demonstrate how CONPASU can analyze concurrent processes. Finally, we
compare this work with related works.

1. Process Algebra with Symbolic Operational Semantics

The analysis-method presented in this paper can be applied to concurrent processes whose
behaviors are expressed by labeled transition systems, without respect to the syntax. It is,

CONPASU-tool: A Concurrent Process Analysis Support Tool based on Symbolic Computation 3

however, convenient to use process algebra for expressing concurrent processes. In this sec-
tion, we briefly introduce a sub-calculus of the process algebra CSP [1,2] in Subsection 1.1
and define the symbolic operational semantics with data-assignment and locality for the sub-
calculus in Subsection 1.2.

1.1. Syntax

We assume that the following sets are given: a set Var of variable ranged over by x, y, . . ., a
set Val of values ranged over by v, . . ., a set Dexp of data-expressions ranged over by e, . . .,
and a set Bexp of boolean-expressions ranged over by b, . . ., where Dexp includes Var∪ Val

and Bexp includes Var ∪ {true, false}. Furthermore, we also assume that a set Chan of
channel-names, ranged over by c, . . ., and a set PN of process-names, ranged over by A, . . .
are given.

Then, the set Event of events, ranged over by a, . . ., is defined as follows:

Event = {c!e | c ∈ Chan, e ∈ Dexp} ∪ {c?x | c ∈ Chan, x ∈ Var}
where the event c!e means sending the evaluation result of e to the channel c, and the event
c?x means receiving a value from the channel c and x is bound to the value. The set Event
does not contain basic-events which do not pass values and are used just for synchronization.
Such basic-events, however, can be expressed by sending a dummy value, for example zero.
In this paper, c!0 is sometimes abbreviated to c if the value 0 has no meaning.

The language used in this paper is the set E of processes, ranged over by E,F, . . ., and it
is a sub-calculus of CSP [1,2] as defined in Definition 1.1.

Definition 1.1 The syntax of processes E is given by

E ::= STOP | a→ E E � E E � E E [|C|]E E \ C b&E A(ẽ)

where a ∈ Event, C ⊆ Chan, b ∈ Bexp, and A ∈ PN. And ẽ ∈ Dexpn is an abbreviation of n
data-expressions e1, . . . , en. A(ẽ) is the process obtained from A(x̃) by replacing n arguments
x̃ ∈ Varn by ẽ.

Since the semantics of processes is given in the next subsection, each operator is briefly ex-
plained here: a→ E can perform the event a and thereafter behaves like E. E � F and E � F
represent choices between E and F, where the choice of E � F is externally made by an event
of either E or F, while the choice of E � F is internally made. E [|C|]F represents a concur-
rent composition of E and F, where they communicate through channels included in the set
C and independently perform events whose channel is not in C. E\C hides communications
through channels in C. b&E behaves like E if b is true, otherwise it is inactive. The operators
have decreasing binding power in the following order: E\C, a→ E, b&E, E � F, E � F,
and E [|C|]F.

The sets of bound variables and free variables in the process E ∈ E are denoted by bv(E)
and fv(E), respectively, where each input event c?x binds the variable x in E of c?x → E.
Similarly, the sets of free variables of the data-expression e and the boolean-expression b are
denoted by fv(e) and fv(b), respectively. The set of processes which have no free variable is
denoted by P and ranged over by P,Q,

The meaning of each process-name is given by a defining equation. We assume that for
every process-name A ∈ PN, there is a defining equation of the form A(x̃) = E, where E ∈ E
and E has no free variables except x̃ ∈ Varn. Process-names are often used for expressing
recursive behaviors. For example, let the process-name SQ(n) be defined by

SQ(n) = ((n > 0)& in?x→ sq!(x ∗ x) → SQ(n− 1)) � ((n == 0)& end → STOP).

4 CONPASU-tool: A Concurrent Process Analysis Support Tool based on Symbolic Computation

If n is greater than 0, SQ(n) firstly receives a value, to which x is bound, from the channel
in, and then sends (x ∗ x) to the channel sq, and thereafter behaves like SQ(n − 1). And if
n is 0, SQ(n) performs the event end, which is the abbreviation of end!0, and then stops. In
other words, SQ(n) iteratively receives a value and sends the square of the value n-times, and
thereafter performs end and then stops.

1.2. Symbolic Operational Semantics

In our analysis method, variables are symbolically computed without instantiated to values.
It means that symbolic approach can express behaviors of processes with value-passing in a
finite graph even if ranges of variables are not finitized or parameters are not fixed. Symbolic
labeled transition systems have been studied, for example in [8,9,10]. In this subsection, we
define a symbolic operational semantics of CSP, based on the standard operational semantics
of CSP [2] with symbolic semantics of CSP (e.g. [11]), and extended with data-assignment
[9] and locality [12]. The locality has been studied in process algebra (e.g. [12,13]) for giving
non-interleaving semantics. In this paper, however, we use interleaving semantics, thus lo-
cations are ignored when checking equality. The locality is used for checking independency
between transitions when reducing states. The symbolic semantics defined in this section is
a combination of existing results [2,9,12] and no new technique is used.

At first, a notation for assigning data-expressions to variables is introduced. An assign-
ment has the form (x̃ := ẽ), which is an abbreviation of (x1 := e1, . . . , xn := en), and means to
simultaneously replace every free variable xi ∈ Var by ei ∈ Dexp. The set of assignments is
denoted by Assign and is ranged over by θ, The sets of the domain and the free variables
of an assignment (x̃ := ẽ) are denoted by dm(x̃ := ẽ) = {x1, . . . , xn} and fv(x̃ := ẽ) = fv(ẽ),
respectively. An assignment θ can be applied to processes E, data-expressions e, and boolean-
expressions b, and they are denoted by Eθ, eθ, and bθ. For example,

(in?x→ out!(x+ y) → STOP)(x := 1, y := 2) = (in?x→ out!(x+ 2) → STOP).

Then, the composition θ◦θ′ such that E(θ◦θ′) = (Eθ)θ′ of two assignments can be defined
by (x̃ := ẽ)◦θ′ = (x̃ := ẽθ′)(θ′ − x̃), where (x̃ := ẽθ) represents (xi := eiθ) for every i and
(θ′ − x̃) is the assignment obtained from θ′ by removing the assignments to x̃.

If an assignment θ has no free variable (i.e. fv(θ) = ∅) and its domain is the set of all
variables (i.e. dm(θ) = Var), then it is called an evaluation. We denote the set of evaluations
by Eval and let ρ, . . . range over evaluations.

Next, locality is introduced for indicating where events occur in concurrent processes.
In the same way to [12], a location δ is a binary tree defined by

δ ::= 0 1 (δδ)

and the set of locations is denoted by Loc, where 0 means the inactive location and 1 means
the active location. For example, in the concurrent process (E0 [|C1|] (E1 [|C2|]E2)), the loca-
tion (0(10)) is attached to events which E1 independently performs and (1(01)) is attached to
events which both E0 and E2 participate in. The locations are used for checking the causality
between events (e.g. the locations (0(10)) and (1(01)) are independent), when searching for
reducible states (see Definition 2.5).

Then, we define the set Act of actions, which are guarded events with assignments and
locations, by

Act = {α[b]/θ@δ | α ∈ Event ∪ {τ}, b ∈ Bexp, θ ∈ Assign, δ ∈ Loc},
where τ is a special event, called internal event, which cannot be observed (τ /∈ Event), and
the set Event∪{τ} is ranged over by α, The action α[b]/θ@δ means if the condition b is
true then the event α can occur at the location δ, and thereafter variables are updated by the

CONPASU-tool: A Concurrent Process Analysis Support Tool based on Symbolic Computation 5

E.Snd
c!e→ E

c!e@1•−→ E
E.Rcv

c?x→ E
c?y@1•−→ E(x := y)

(y is fresh)

E.ECh1 E
α[b]/θ@δ•−−−→ E′

E � F
α[b]/θ@δ•−−−→ E′

(α �= τ) E.ECh2 E
τ [b]/θ@δ•−−−→ E′

E � F
τ [b]/θ@δ•−−−→ E′ � F

E.ICh1
E � F τ@1•−→ E

E.Grd E
α[b′]/θ@δ•−−−→ E′

b&E
α[b∧b′]/θ@δ•−−−−−→ E′

E.PNE(x̃ := ẽ)
α[b]/θ@δ•−−−→ E′

A(ẽ)
α[b]/θ@δ•−−−→ E′

(A(x̃) = E)

E.Par1 E
α[b]/θ@δ•−−−→ E′

E [|C|]F
α[b]/θ@(δ0)•−−−−−→ E′ [|C|]F

(ch(α) /∈ C)

E.Par2 E
c!e[b]/θ@δ•−−−−−→ E′ F

c?x[b′]/θ′@δ′•−−−−−→ F′

E [|C|]F
c!e[b∧b′]/θθ′(x:=e)@(δδ′)•−−−−−−−−−−−−−→ E′ [|C|]F′

(c ∈ C)

E.Par3 E
c!e[b]/θ@δ•−−−−−→ E′ F

c!e′[b′]/θ′@δ′•−−−−−→ F′

E [|C|]F
c!e[(e=e′)∧b∧b′]/θθ′@(δδ′)•−−−−−−−−−−−−−→ E′ [|C|]F′

(c ∈ C)

E.Par4 E
c?x[b]/θ@δ•−−−−−→ E′ F

c?x′[b′]/θ′@δ′•−−−−−→ F′

E [|C|]F
c?x[b∧b′]/θθ′@(δδ′)•−−−−−−−−−→ E′ [|C|]F′(x′ := x)

(c ∈ C)

E.Hide1 E
c!e[b]/θ@δ•−−−→ E′

E \ C
τ [b]/θ@δ•−−−→ E′ \ C

(c ∈ C) E.Hide2 E
c?x[b]/θ@δ•−−−→ E′

E \ C
τ [b]/θ(x:=v)@δ•−−−−−→ E′ \ C

(c ∈ C, v ∈ Val)

E.Hide3 E
α[b]/θ@δ•−−−→ E′

E \ C
α[b]/θ@δ•−−−→ E′ \ C

(ch(α) /∈ C)

Figure 1. The inference rules for transitions
α[b]/θ@δ•−−−→ for performing events (symmetric rules are omitted)

assignment θ. The true condition [true], the identical assignment /ε, and the unique-location
@1 are often omitted like α/θ@δ, α[b]@δ, and α[b]/θ.

By using the actions as labels, two symbolic transitions are defined.

Definition 1.2 Two symbolic transitions •−→⊆ E × Act×E and�⊆ E × Assign×E are
the smallest relations satisfying the inference rules in Figures 1 and 2, respectively. For con-

venience, we write E
α[b]/θ@δ•−−−→ E′ and E θ

� E′ for (E, α[b]/θ@δ,E′) ∈•−→ and (E, θ,E′) ∈�,
respectively.

The first transition E
α[b]/θ@δ•−−−→ E′ is used for performing the event α. The side condition

of the rule E.Rcv means that the bound variable is renamed to a fresh name, which is not
used in the other processes, in order to avoid conflicting with free variables, if necessary.
Though the renaming is represented only in the rule E.Rcv for simplicity, the bound variables
can be actually renamed later, for example when composing processes by E.Pari. We have
implemented such renaming mechanism in the tool CONPASU introduced in Section 3, and for
example the following transition can be inferred.

6 CONPASU-tool: A Concurrent Process Analysis Support Tool based on Symbolic Computation

D.STOP
STOP

ε
� STOP

D.Act
α.E ε

� α.E

D.PN
A(ẽ)

ỹ:=ẽ
� A(ỹ)

(A(x̃) = E, ỹ are fresh and distinct)

D.Par E
θ0
� E′ F θ1

� F′

E ⊕ F θ0θ1
� E′ ⊕ F′

(⊕ ∈ {�, �, [|C|] })

D.Res E θ
� E′

E\C θ
� E′\C

D.Grd E θ
� E′

b&E θ
� b&E′

Figure 2. The inference rules for transitions θ
� for updating data

(in?x→ P(x)) [|∅|] (out!x→ Q(x))
in?x0@(10)•−−−−−→ P(x0) [|∅|] (out!x→ Q(x))

By renaming x to x0, the value received through the channel in is correctly passed to P(x0)
and not to Q(x). It is also noted that the location (10) means that the left process performs
the event. If two or more processes synchronize, then all the locations of the processes are
indicated by the active symbol 1, for example the following transition can be inferred.1

(com!x→ P(x)) [|{| com |}|] (com?y→ Q(y))
com!x/(y:=x)@(11)•−−−−−−−−−→ P(x) [|{| com |}|]Q(y)

The second transition E θ
� E′ is used for updating variables by the assignment θ when

process-names are unfolded. For example, the transitions from the process A(n) defined by
A(n) = up!n→ A(n+ 1) are inferred by the rules in Figures 1 and 2 as follows:

A(n)
up!n•−→ A(n+ 1)

(n:=n+1)
� A(n)

It means that the transition graph of A(n) is finite, where the location @1 is omitted. On the
other hand, the standard transitions for A(n) are inferred by the standard operational seman-
tics [2] as follows, when the initial value of n is 0:

A(0)
up!0−→ A(1)

up!1−→ A(2)
up!2−→ A(3)

up!3−→ · · · .
It means that the standard transition graph becomes infinite.

Then, by composing the two symbolic transitions in Definition 1.2, the symbolic opera-
tional semantics used in this paper is defined.

Definition 1.3 The symbolic operational semantics with assignments and locations is given
by the symbolic labeled transition system (E , Act, •−→→⊆ E × Act × E), where •−→→ is
defined by

E
α[b]/θ@δ•−→→ E′′ ⇔ (∃E′, θ1, θ2. E

α[b]/θ1@δ•−−−→ E′, E′ θ2
� E′′, θ = θ2 ◦ θ1).

The process SQ(n), given in Subsection 1.1, is used again here. Figure 3 shows the tran-
sition graph derived from SQ(n) by the symbolic operational semantics in Definition 1.3. The
transition graph shows that SQ(n) iteratively receives a value and sends the square of the value
n-times, and thereafter performs end and then stops for any n.
1In this paper, we denote the set of channels c1, . . . , cn by {| c1, . . . , cn |} rather than {c1, . . . , cn} according

to the syntax of CSPM used in FDR[4].

CONPASU-tool: A Concurrent Process Analysis Support Tool based on Symbolic Computation 7

in?x[n>0]

STOP
sq!(x*x)/n:=n-1

SQ(n)
end[n==0]

Figure 3. The transition graph of SQ(n) by the symbolic operational semantics with assignment

SQ(3)

in?1

in?0

sq!1

sq!0

SQ(2) STOP
end

in?2 sq!4

SQ(1) SQ(0)

in?1

in?0

sq!1

sq!0

in?2 sq!4

in?1

in?0

sq!1

sq!0

in?2 sq!4

Figure 4. The transition graph of SQ(3) by the standard operational semantics

To compare the symbolic semantics with standard semantics given in [2], we show the
transition graph of SQ(n) by the standard operational semantics in Figure 4, where every vari-
able has to be instantiated to a value for each transition. The graph in Figure 4 has infinite
number of branches because the range of values received through the channel in is not re-
stricted, and the initial value of n must be fixed. On the other hand, the graph in Figure 3 is
finite for any n because infinite number of values can be expressed by the variable x.

Here, we give the relations between the symbolic operational semantics
α[b]/θ@δ•−→→ and the

(not-symbolic) standard operational semantics α0−→ in [2], where α0 ∈ Act0 and Act0 is the
set of events without variables:

Act0 = {c.v | c ∈ Chan, v ∈ Val} ∪ {τ}.
It is similar to the result presented for value-passing CCS [8,9].

Lemma 1.1 Eρ α−→ P′ if and only if for some b, θ, δ, and E′, either

for some c, v, x, E
c?x[b]/θ@δ•−−−→→ E′, α = c.v, bρ, and P′ ≡ E′θ(x := v)ρ,

or for some c, e, E
c!e[b]/θ@δ•−−−→→ E′, α = c.(eρ), bρ, and P′ ≡ E′θρ,

or E
τ [b]/θ@δ•−−−→→ E′, α = τ , bρ, and P′ ≡ E′θρ.

Finally, the process-name SP(→→,E)(x̃) is defined for generating a sequential process for
any symbolic transition relation→→.
Definition 1.4 Let→→⊆ E×Act×E be a symbolic transition relation. Then, for any process
E ∈ E , the process-name SP(→→,E)(x̃) is defined as follows:

SP(→→,E)(x̃) = �{b& obs(α) → (SP(→→,E′)(x̃′)θ) | E α[b]/θ@δ−−−−→→ E′}
where x̃ of SP(→→,E)(x̃) is the list of free variables of E, � {E1, . . . ,En} is an abbreviation
of E1 � · · · � En, namely replicated external choice, and obs(α) is defined as follows:

obs(α) =

{
tmp (if α = τ)
α (otherwise)

where tmp is a special observable event which is not used in the processes E. As a special
case, if→→ is •−→→, which is defined in Definition 1.3, it is often omitted, thus

SP(E)(x̃) = SP
(•−→→,E)(x̃).

8 CONPASU-tool: A Concurrent Process Analysis Support Tool based on Symbolic Computation

The event tmp is used instead of the internal event τ for choosing one from external
choice processes (E1 � · · · � En) because the external choice is not executed by τ (see
the rule E.ECh2 in Figure 1). As expected, E and SP(E)(x̃)\{tmp} are strongly bisimilar[3],
where locations δ are ignored, because the following relation can be easily proved:

SP(E)(x̃)\{tmp}
α[b]/θ@1•−−−→→ SP(E′)(x̃′)\{tmp} ⇐⇒ ∃ δ.E α[b]/θ@δ•−−−→→ E′.

2. State Reduction

As shown in Figure 3, the symbolic semantics with assignment can avoid replicating states
for each value because variables are not instantiated to values. In this section, we present a
method for reducing the number of states by removing some needless internal transitions.

In order to reduce the number of states, there has been a method for finding an equal
pair of states and then folding them to one state, e.g. [14]. It is, however, impossible to
automatically check whether two symbolic transition graphs with assignments are equal or
not in general as discussed in [9,10]. Therefore, instead of finding all such equal pairs, we
present a method for automatically finding some equal pairs.

At first, we prepare some notations: the composition of locations, the independent rela-
tion between locations, the composition of symbolic internal transitions, and a consecutive
symbolic transition relation, where Trns is an abbreviation of E ×Bexp×Assign×Loc×E
and it is used for expressing a subset of internal transitions.

Definition 2.1 Let δ, δ′ ∈ Loc. The composition of locations is defined as follows:

δ•δ′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(δ0•δ′0 δ1•δ′1) (if δ = (δ0δ1) and δ′ = (δ′0δ

′
1))

δ′ (if δ = 0)
δ (if δ′ = 0)
1 (otherwise)

Definition 2.2 Let δ, δ′ ∈ Loc. The independency of locations is defined as follows:

δ⊥ δ′ =

⎧⎪⎨⎪⎩
(δ0⊥ δ′0) ∧ (δ1 ⊥ δ′1) (if δ = (δ0δ1) and δ′ = (δ′0δ

′
1))

true (if δ = 0 or δ′ = 0)
false (otherwise)

The composition of two locations works like the disjunction-operator, for example,
((01)(01))•((00)(11)) = ((01)(11)). The independency of two locations checks whether
the same process participates in the two locations or not, for example,

((10)(01))⊥ ((01)0) = true, ((10)(01))⊥ ((01)(01)) = false.

Definition 2.3 Let (E, b, θ, δ,E′), (F, b′, θ′, δ′,F′) ∈ Trns. The composition of the transitions
is defined by

(E, b, θ, δ,E′) • (F, b′, θ′, δ′,F′) =

{
(E, b ∧ b′θ, θ′◦θ, δ•δ′,F′) (if E′ ≡ F)
undefined (otherwise)

then the composition is extended over sets of transitions T, T ′ ⊆ Trns by

T •T ′ = {tr • tr′ | tr ∈ T, tr′ ∈ T ′, tr • tr′ is defined}.

CONPASU-tool: A Concurrent Process Analysis Support Tool based on Symbolic Computation 9

Furthermore, the iterative composition T• of copies of T ⊆ Trns is the smallest set satisfying
the following inclusions:

{(E, true, ε, 0,E) | E ∈ E} ⊆ T• and (T•) •T ⊆ T•.

Definition 2.4 The consecutive symbolic internal transition
τ []/ @•=⇒⇒ ⊆ Trns is defined by

τ []/ @•=⇒⇒ = (
τ []/ @•−→→)• = {(E, b, θ, δ,E′) | E τ [b]/θ@δ•−→→ E′}•.

Conveniently, we write E
τ [b]/θ@δ•=⇒⇒ E′ for (E, b, θ, δ,E′) ∈ τ []/ @•=⇒⇒ .

Thus, E
τ [b]/θ@δ•=⇒⇒ E′ represents that if the condition b is true then E can reach to E′ by

zero or more internal transitions and thereafter the variables are updated by the assignment
θ, where δ indicates the locations of all the processes which participate in the consecutive
transition.

Next, we define a set R of internal transitions such that (E, b, θ, δ,F) ∈ R implies that
E may be removed without changing behavior.

Definition 2.5 Let R ⊆ τ []/ @•=⇒⇒ . Then R is a symbolically reducible set, if for all α[b]/θ@δ

and E′ such that E
α[b]/θ@δ•−→→ E′,

(i) for all b0, θ0, δ0, and F such that (E, b0, θ0, δ0,F) ∈ R, and sat(b ∧ b0),
if δ⊥ δ0 then for some F′, F

α[b]/θ@δ•−→→ F′ and (E′, b0, θ0, δ0,F′) ∈ R,
else δ = δ0, α = τ , and (E, b, θ, δ,E′) ∈ R,

(ii) for all b0, θ0, δ0, and F′ such that (E′, b0, θ0, δ0,F′) ∈ R and sat(b ∧ b0),
if δ⊥ δ0 then for some F,F

α[b]/θ@δ•−→→ F′ and (E, b0, θ0, δ0,F) ∈ R,

where sat() is the predicate for checking satisfiability, thus sat(b) iff (∃ ρ. bρ = true).

The symbolically reducible set is used for reducing needless internal transitions mainly
caused by interleaving. For example, Figure 6(a) is the transition graph of the concurrent
process Abs(x, z) defined in Figure 5. Abs(x, z) consists of two processes Caller(x) and
Callee(z): Callee(z) returns the absolute value of x passed from Caller(x) if z is not zero,
otherwise nondeterministically returns x or −x. Caller(x) can independently perform task,
while Callee(z) is checking the sign of x and reversing the sign if necessary. The inde-
pendency is expressed by interleaving the events, for example the conditional internal event
τ [b1] can occur before and after task in Figure 6(a). Then, the followingR is a symbolically
reducible set:

R = {(S1, b1, ε, (01), S3), (S1, b2, ε, (01), S4), (S2, b1, ε, (01), S5), (S2, b2, ε, (01), S6),
(S3, true, (y := −y), (01), S4), (S5, true, (y := −y), (01), S6)}

where each process (state) Si corresponds to the node i in Figure 6(a) and S0 is the initial state
of Abs. In this case, the states S1 and S3 can be bypassed2 and removed like the transition
graph shown in Figure 6(b) whose initial state is Abs′, where Proposition 2.1 given later
guarantees that Abs and Abs′ are stable-failures-equivalent.

If the internal transition from S2 to S5 does not exist in the transition graph Abs of Fig-
ure 6(a), then Abs and Abs′ are not stable-failures-equivalent because Abs can deadlock at S2
2The method to bypass reducible states is given in Definition 2.6 later.

10 CONPASU-tool: A Concurrent Process Analysis Support Tool based on Symbolic Computation

Abs(x, z) = Caller(x)[| {| call, ret |} |](Callee(z) \ {| chk, minus |})
Caller(x) = call!x→ task → ret?x→ prt!x→ STOP

Callee(z) = call?y→ Check(y, z)
Check(y, z) = ((y<0 ∨ z==0)& chk → minus → Ret(−y)) � ((¬(y<0) ∨ z==0)& chk → Ret(y))

Ret(y) = ret!y→ STOP

Figure 5. A concurrent process Abs(x,z)

0
call!x/(y:=x)@(11)

1
task@(10)

2

3 5

4 6

7

ret!y/(x:=y)@(11)

τ[b1]@(01)

τ[b2]@(01)
τ[b1]@(01)

(a) the original transition graph of Abs

b1 = (y<0) , b2 = (y<0)

Abs

τ[b2]@(01)

prt!x@(10)

8

τ/y:= -y@(01)
τ/y:= -y@(01)

task@(10)

task@(10)

0

call!x[b2’]/(y:=x)@(11)

4 6

ret!y/(x:= y)@(11)

(b) the reduced transition graph

Abs’

task@(10)

call!x[b1’]/(y:= -x)@(11)

b1’ = (x<0) , b2’ = (x<0)

7

prt!x@(10)

8

Figure 6. The basic idea for reducing the number of transitions

if x = 0 and z �= 0. The condition (i) in Definition 2.5 requires that the internal transition
from S2 to S5 must exist if the internal transition from S1 to S3.

On the other hand, if the internal transition from S1 to S3 does not exist, the state S1 must
remain for the case ¬b2 even after making a bypass from S0 to S4. It means that the nonde-
terminism in the case z = 0 disappears by the bypass (i.e. if z = 0 then x is deterministically
returned), thus Abs and Abs′ are not stable-failures-equivalent. The condition (ii) in Defini-
tion 2.5 requires that the internal transition from S1 to S3 must exist if the internal transition
from S2 to S5 exists.

In Figure 6, it is noted that Abs and Abs′ are not weakly bisimilar [3] because Abs has
a nondeterministic choice at S1 after call if z = 0. This is an important reason why stable-
failures-equivalence is used in this paper.

Then, the process-name BP(n)(R,E)(x̃) is defined for bypassing reducible states.

Definition 2.6 Let R be a symbolically reducible set and n ∈ Nat. Then, the bypassed tran-
sition relation •−→→(R,n)⊆ E × Act × E with respect to R and n is the smallest relation
satisfying the following rules:

• (base): if E
α[b]/θ@δ•−−−→→ E′ then E

α[b]/θ@δ•−−−→→(R,0) E′

• (bypass): if (E
α[b]/θ@δ•−→→(R,n) E′ ∧ (E′, b0, θ0, δ0,E′′) ∈ R ∧ bv(α) ∩ fv(b0θ) = ∅)

then E
α[b∧b0θ]/θ0◦θ@(δ•δ0)•−−−−−→→(R,n+1) E′′,

• (rest): if E
α[b]/θ@δ•−→→(R,n) E′ then E

α[b∧rest(R,E,α,θ)]/θ@δ

•−−−−−−−−−→→(R,n+1) E′,

where rest() is the boolean expression defined by

rest(R,E,α,θ) =
∧{¬b0 | ∃ θ0, δ0,E′. (E, b0, θ0, δ0,E′) ∈ R, bv(α) ∩ fv(b0θ) = ∅}.

CONPASU-tool: A Concurrent Process Analysis Support Tool based on Symbolic Computation 11

P1(x)

a

P2(x)

P3 P4

τ[x==0]τ[x==0]

STOP

z nz

B1(x)

a[x==0 x==0]

B2(x)

B3 B4

τ[x==0]τ[x==0]

STOP

z nz

a[x==0] a[x==0]

(a) original graph (b) bypassed graph

C1(x)

C3 C4

STOP

z nz

a[x==0] a[x==0]

(c) cleaned graph

Figure 7. The bypassed transition graph (every location is 1 and is omitted)

Then, by using •−→→(R,n), the bypassed process BP
(n)
(R,E)(x̃) is defined as follows:

BP
(n)
(R,E)(x̃) = SP

(•−→→(R,n),E)
(x̃)

where SP(...,E)(x̃) is the process-name defined in Definition 1.4.

The first rule (base)means that •−→→(R,0) is exactly •−→→. The second rule (bypass)
is used for bypassing E′ by the action α[b ∧ b0θ]/θ0◦θ@(δ•δ0) if E α[b]/θ@δ•−→→(R,n) E′ and
(E′, b0, θ0, δ0,E′′) ∈ R, and the value received by α does not affect the next condition b0 (i.e.
bv(α) ∩ fv(b0θ) = ∅). The third rule (rest) is used for strengthening the condition of the
existing original transition by rest(). It means that the original transition can be performed
only if the condition of every bypassed-transition is false (i.e. rest() = true). For example,
in the transition graph of Figure 7(a), the following setR is a symbolically reducible set.

R = {(P2, x = 0, ε, 1, P3), (P2, x �= 0, ε, 1, P4)}
Then, Figure 7(b) shows that the process B1 generated from P1 by bypassing the reducible
state P2 (i.e. B1 = BP

(1)
(R,P1)(x)). Here, it is important to note that the transition from B1 to B2

is never performed. Therefore, it can be removed as shown Figure 7(c). This transformation
seems to be easy, but it is difficult to find such reducible states and to bypass transitions
because there are generally many interleaving transitions in concurrent processes.

Then, in order to prove that the original process and the bypassed process are stable-
failures-equivalent [2], we give the following lemma.

Lemma 2.1 Let t ∈ Act∗0 and R be a symbolically reducible set. If Eρ t−→ P′, then for
some E′ and ρ′, P′ ≡ E′ρ′ and for all b0, θ0, δ0, and F′ such that (E′, b0, θ0, δ0,F′) ∈ R•

and b0ρ′, for some b′0, θ′0, δ′0, and F′′, (E′, b′0, θ′0, δ′0,F′′) ∈ R•, b′0ρ′, (E′, b0, θ0, δ0,F′) �
(E′, b′0, θ′0, δ′0,F′′), and (BP(n)(R,E)(x̃)\{tmp})ρ t̂

=⇒ (BP
(n)
(R,F′′)(x̃

′)\{tmp})(θ′0◦ρ′), where tr1 �
tr2 represents that tr1 and tr2 are comparable (i.e. tr1 � tr2 ∨ tr2 � tr1) by the partial order
� defined by: tr1 � tr2 ⇔ ∃ tr. tr1 • tr = tr2. 3
Proof: This lemma can be proved by induction on the length of t and n. Especially, the
following sublemma is the key for proving it at the last transition of t.

Sublemma: If Eρ α−→ P′ then for some E′ and ρ′, P′ ≡ E′ρ′ and
for all b′0, θ′0, δ′0, and F′

0 such that (E′, b′0, θ′0, δ′0,F′
0) ∈ R• and b′0ρ′,

for some b0, θ0, δ0, and F0, (E, b0, θ0, δ0,F0) ∈ R•, b0ρ and
for all b1, θ1, δ1, and F such that (E, b0, θ0, δ0,F0) � (E, b1, θ1, δ1,F) ∈ R• and b1ρ,

3P t−→ P′ is the sequential standard transition from P to P′ by t ∈ Act∗0, t̂ is the event-sequence obtained
from t by deleting τ , and P t

=⇒ P′ is the weak standard transition, where zero or more internal transitions can
be inserted between observable transitions (e.g. see [3] for the weak standard transition).

12 CONPASU-tool: A Concurrent Process Analysis Support Tool based on Symbolic Computation

(4) (E’, b’1, θ’1, δ’1, F’) R

(1) (E’, b’0, θ’0, δ’0, F’0) R(2) (E, b0, θ0, δ0, F0) R

(3) (E, b1, θ1, δ1, F) R

α

(BP {tmp}) θ1ρ(R,F)

(n)
(x)

(BP {tmp}) θ’1ρ’
(R,F’)

(n)
(x’)

P = Eρ P’ = E’ρ’

α

Figure 8. The relation between E and (BP(n)(R,F)(x̃))\{tmp} in the sublemma in Lemma 2.1

for some b′1, θ′1, δ′1, and F′, (E′, b′0, θ′0, δ′0,F′
0) � (E′, b′1, θ′1, δ′1,F′), b′1ρ′,

and (BP(n)(R,F)(x̃)\{tmp})θ1ρ α̂
=⇒ (BP

(n)
(R,F′)(x̃

′)\{tmp})θ′1ρ′.
When comparing the event-sequences of original process E and the bypassed process

(BP
(n)
(R,F)(x̃))\{tmp}, it is noted that E has to perform more internal events than the bypassed

process because the bypassed process can bypass reducible states. Therefore, α̂ is used in
the bypassed process for deleting the extra internal event τ of E (note: τ̂ = ε). The re-
lation between E and (BP

(n)
(R,F)(x̃))\{tmp} is shown in Figure 8. See the proof-note in the

CONPASU website [15] for the details.

A bypass often makes the other bypasses possible. Therefore, the bypassed process
BP

(n)
(R,E)(x̃) has the parameter n for iteratively bypassing by using the set R. It is important

thatR can be reused at each step n in the iterative bypass, in other words, it is not necessary
to computeR for each step.

Then, we present Proposition 2.1 which guarantees that the original process and the
bypassed process are stable-failures-equivalent [2].

Proposition 2.1 Let E ∈ E , n ∈ Nat, andR be a symbolically reducible set. Then,

E =F BP
(n)
(R,E)(x̃)\{tmp}

Proof: Lemma 2.1 implies traces(Eρ) ⊆ traces((BP
(n)
(R,E)(x̃)\{tmp})ρ), where traces(P)

is the set of traces of P. The opposite direction “⊇” can be proven by the following sub-
lemma:

Sublemma: if (BP(n)(R,E)(x̃)\{tmp})ρ α−→ P′, then for some E′ and ρ′, Eρ α−→ ε
=⇒ E′ρ′

and P′ ≡ (BP
(n)
(R,E′)(x̃

′)\{tmp})ρ′.
This sublemma is easier than Lemma 2.1. Furthermore, it is easy to show that E′ and
BP

(n)
(R,E′)(x̃)\{tmp} have the same refusals for any E′. Here, F′′ of BP(n)(R,F′′)(x̃

′)\{tmp} in
Lemma 2.1 is not necessarily the same as E′, but if E′ is stable (i.e. has no internal transi-

tion), then E′ ≡ F′′ because (E′, b′0, θ′0, δ′0,F′′) ∈ R• ⊆ τ []/ @•=⇒⇒ . Hence, failures(Eρ) =

failures((BP
(n)
(R,E)(x̃)\{tmp})ρ), where failures(P) is the set of failures of P.

By Proposition 2.1, internal transitions in R can be bypassed with preserving the be-
havior up to stable-failures-equivalence. In order to apply the proposition, however, it is nec-
essary to find a symbolically reducible set R, according to Definition 2.5. In general, it is
difficult to find the largest reducible set because

τ []/ @•=⇒⇒ may be infinite by compositions of
assignments (e.g. the infinite composition of (n := n + 1)) even if the symbolical transition
graph is finite. Therefore, we present a method for generating a reducible set, which is not
necessarily largest.

CONPASU-tool: A Concurrent Process Analysis Support Tool based on Symbolic Computation 13

Definition 2.7 Let S ⊆ E . Then, the set SRS ⊆ τ []/ @•=⇒⇒ is defined as follows:

SRS =
⋂
n≥0 SR

(n)
S ,

SR
(0)
S = {(E, b0, θ0, δ0,F) | E ∈ S, E τ [b0]/θ0@δ0•−−−→→ F, E �≡ F},

SR
(n+1)
S = SRB(SRF(SR

(n)
S)),

where SRF(R), SRF(R) ⊆ τ []/ @•=⇒⇒ are defined as follows:

SRF(R) = {(E, b0, θ0, δ0,F) ∈ R | ∀α, b, θ, δ,E′. (wsat(b ∧ b0), E α[b]/θ@δ•−→→ E′)

⇒ (if δ⊥ δ0 then (∃F′.F
α[b]/θ@δ•−→→ F′, (E′, b0, θ0, δ0,F′) ∈ R)

else (δ = δ0, α = τ, (E, b, θ, δ,E′) ∈ R))}

SRB(R) = {(E′, b0, θ0, δ0,F′) ∈ R | ∀α, b, θ, δ,E. (wsat(b ∧ b0), E α[b]/θ@δ•−→→ E′)

⇒ (if δ⊥ δ0 then (∃F.F α[b]/θ@δ•−→→ F′, (E, b0, θ0, δ0,F) ∈ R))}
where wsat() is a predicate such that if b is satisfiable then wsat(b) is true.

The set S in Definition 2.7 is usually the set of all the reachable states from the initial
process. The sets SRF(R) and SRB(R) are used for removing internal transitions which do
not satisfy the conditions (i) and (ii) in Definition 2.5, respectively. Here, it is noted that if
it is hard to decide the satisfiability of b then wsat(b) can be true for the safety because
only one direction (b is satisfiable⇒ wsat(b)) is required in Definition 2.7. It is useful for
implementing an automatic tool based on Definition 2.7.

By Definition 2.7, since SRF(R) ⊆ R and SRB(R) ⊆ R (i.e. SR(n+1)
S ⊆ SR

(n)
S) for any

n, there is necessarily a natural number m such that SR(m)S = SR
(m+1)
S if the set S of reachable

states is finite. Then, the expected proposition is presented.

Proposition 2.2 If SR(m)S = SR
(m+1)
S , then SR(m)S is a symbolically reducible set.

Proof: It can be shown that the followingR is a symbolically reducible set.

R = {(E, b, θ, δ.F) | ∃m. (E, b, θ, δ,F) ∈ SR
(m)
S = SR

(m+1)
S }

It is not difficult because the conditions in Definition 2.7 imply ones in Definition 2.5.

Consequently, by Propositions 2.1 and 2.2, the following corollary is derived.

Corollary 2.1 Assume that n,m ∈ Nat, E ∈ E , R = SR
(m)
S = SR

(m+1)
S , and S ⊆ E is the set

of reachable states from E. Then, E =F BP
(n)
(R,E)(x̃)\{tmp}.

The set SRS is not necessarily the largest reducible set. Interactive theorem provers like
Isabelle [16] may allow us to find such largest reducible sets. In this paper, however, we
are more interested in automatically reducing the number of states than semi-automatically
minimizing it. Therefore, our reduction method is sound but not complete. We, however,
expect that the method can remove many needless internal transitions caused by interleaving.
It is demonstrated in Sections 3 and 4 by implementing the method.

3. CONPASU-tool: an Implementation

We have implemented the analysis-method, which is presented in Sections 1 and 2, in a
prototype-tool called CONPASU (CONcurrent Process Analysis SUpport tool) in Java (cur-

14 CONPASU-tool: A Concurrent Process Analysis Support Tool based on Symbolic Computation

CAL(N) = (SQREM(N) [|{|rem,end2|}|] SUM(0)) \ {|rem,end2|}

SQREM(n) = (SQ(n) [|{|sq,end1|}|] REM) \ {|sq,end1|}

SQ(n) = ((n>0) & in?x1 -> sq!(x1*x1) -> SQ(n-1)) [] ((n==0) & end1!0 -> STOP)

REM = sq?x2 -> rem!(x2%10) -> REM [] end1?z1 -> end2!z1 -> STOP

SUM(y) = rem?x3 -> prt!x3 -> SUM(y+x3) [] end2?z2 -> prts!y -> STOP

Figure 9. The concurrent process CAL(N) (a readable script by CONPASU)

rently about 6,000 lines). It means that CONPASU is a tool for generating a sequential process
E from each concurrent process F such that E =F F. It can also generate a script in the DOT
language [17] for drawing the symbolic transition graph of the generated sequential process,
for example by using Graphviz (Graph Visualization Software) [18].

In this section, it is explained by the example CAL(N) in Figure 9 how to use CONPASU for
analyzing concurrent processes , where N is the initial value of n in SQ(n). The input-language
of CONPASU is a sub-language of CSPM (Machine-readable dialect of CSP) used in FDR [4],
and CONPASU can directly read the script of Figure 9. The concurrent process CAL(N) con-
sists of three processes: SQ(n), REM, and SUM(y). The process SQ(n) has been explained in
Section 1. The processes REM and SUM(y) behave as follows. If REM receives a value from the
channel sq, then sends the remainder of dividing the value by 10 and then returns to REM, and
if it receives a value from the channel end1, then forwards it to the channel end2 and then
stops. If SUM(y) receives a value, to which x is bound, from the channel rem, then prints it
and behaves like SUM(y+ x), and if it receives a value from the channel end2, then prints y
and then stops

At first, Figure 10 shows the transition graph generated from CAL(N) by CONPASU, ac-
cording to the symbolic operational semantics with assignments and locations in Defini-
tion 1.3, where Graphviz [18] is used for drawing the graph. And Figure 11 shows the re-
duced transition graph generated from the graph in Figure 10 by CONPASU, according to the
state-reduction method presented in Section 2. By the state-reduction, the numbers of states
and transitions decrease by 5 (from 12 to 7) and 7 (from 17 to 10), respectively.

Figure 11 is useful for understanding the whole behavior of the concurrent process
CAL(N). However, it is not avoidable that transition graphs become very complex for large
scale systems even if the state-reduction is applied. In such cases, more abstract behaviors
can be extracted by hiding uninteresting events. For example, although CAL(N) prints a value
by prt at each receiving, we can see the abstract behavior by focusing on the input in and
the final result prts, in other words, by hiding prt as follows.

ACAL(N) = CAL(N)\{|prt|}

In this case, ACAL(N) is expected to behave like the specification SPEC(N) in Figure 12. The
specification means that SPEC(N) iteratively receives a value, to which x is bound, and adds
x*x%10 to the variable y, n-times, and thereafter y is printed by prts. In fact, the model
checker FDR can verify that ACAL(N) and SPEC(N) are stable-failures-equivalent by fixing
the initial value N and finitizing the range of the input and the variable y. The specification
SPEC(N) is simple and is easily described. It is, however, sometimes more difficult to describe
such specifications than implementations.

CONPASU can automatically generate specifications (in CSPM script) from implemen-
tations. Figures 13 and 14 show the transition graph of ACAL(N) after state-reduction and
the sequential process S(N), respectively, generated by CONPASU. Therefore, it is guaranteed
by Corollary 2.1 that S(N) and ACAL(N) are stable-failures-equivalent for any initial value N
and any input. By comparing the generated specification S(N) with the ideal specification
SPEC(N), S(N) has an extra internal transition (from S0(n, y) to S4(n, y)), but it is easy to man-

CONPASU-tool: A Concurrent Process Analysis Support Tool based on Symbolic Computation 15

S(N)

S0(n,y)

 /n:=N,y:=0

S1(n,x1,y)

 in?x1
 [n>0]
 @((10)0)

S2(z1,y)

 tau
 [n==0]
 /z1:=0
 @((11)0)

S3(n,x2,y)

 tau
 /n:=n-1,x2:=x1*x1
 @((11)0)

S4(y)

 tau
 @((01)1)

S5(x2,n,x1,y)

 in?x1
 [n>0]
 @((10)0)

S6(n,x3,y)

 tau
 /x3:=x2%10
 @((01)1)

S7

 prts!y
 @(01)

S8(n,x1,x3,y)

 tau
 /x3:=x2%10
 @((01)1)

 prt!x3
 /y:=y+x3
 @(01)

 in?x1
 [n>0]
 @((10)0)

S9(x3,y,z1)

 tau
 [n==0]
 /z1:=0
 @((11)0)

 prt!x3
 /y:=y+x3
 @(01)

S11(n,x3,y,x2)

 tau
 /n:=n-1,x2:=x1*x1
 @((11)0)

 prt!x3
 /y:=y+x3
 @(01)

 prt!x3
 /y:=y+x3
 @(01)

S12(x3,y,x2,n,x1)

 in?x1
 [n>0]
 @((10)0)

 prt!x3
 /y:=y+x3
 @(01)

Figure 10. The symbolic transition graph of CAL(N) (the top box points to the initial state)

ually prove that S(N) and SPEC(N) are stable-failures-equivalent for any initial value N and
any input. As shown in this example, specifications generated by CONPASU are not necessarily
ideal. However, such generated specifications are helpful for formally describing ideal spec-
ifications used in FDR. CONPASU will be also used as a support tool of FDR when formally
describing specifications of concurrent processes. We are now considering how to improve
the analysis-method of CONPASU for generating more ideal specifications.

CONPASU is still a prototype and has not been polished yet. The current CONPASU soundly
checks the unsatisfiability of boolean expressions by transforming them to disjunctive normal
forms, and it is not complete. The incompleteness, however, does not invalidate Corollary 2.1
because Definition 2.7 only requires that if ¬wsat(b) is ture then b is unsatisfiable. Further-
more, the syntactical identity is used for the equality over data-expressions (e.g. x+1 �= 1+x).
The syntactical identity seems strong, but it is expected to be still useful for reducing many
transitions caused by interleaving, and it has been shown in the example CAL(N) and it is also
demonstrated in Section 4.

4. Application

In this section, we demonstrate how CONPASU analyzes concurrent processes by using the
example TransferSys given in Figure 15. It is a system for transferring data-sequences

16 CONPASU-tool: A Concurrent Process Analysis Support Tool based on Symbolic Computation

S(N)

S0(n,y)

 /n:=N,y:=0

S6(n,x3,y)

 in?x1
 [n>0]
 /x3:=x1*x1%10,n:=n-1
 @((11)1)

S4(y)

 tau
 [n==0]
 @((11)1)

 prt!x3
 /y:=y+x3
 @(01)

S11(n,x3,y,x2)

 in?x1
 [n>0]
 /n:=n-1,x2:=x1*x1
 @((11)0)

S9(x3,y,z1)

 tau
 [n==0]
 /z1:=0
 @((11)0)

S7

 prts!y
 @(01)

 prt!x3
 /x3:=x2%10,y:=y+x3
 @((01)1)

S12(x3,y,x2,n,x1)

 in?x1
 [n>0]
 @((10)0)

 prt!x3
 /y:=y+x3
 @((01)1)

 prt!x3
 /n:=n-1,x2:=x1*x1,x3:=x2%10,y:=y+x3
 @((11)1)

Figure 11. The symbolic transition graph of CAL(N) after state-reduction

SPEC(N) = LOOP(N,0)

LOOP(n,y) = (n>0) & in?x -> LOOP(n-1,y+x*x%10) [] (n==0) & prts!y -> STOP

Figure 12. The expected specification of the abstract concurrent process ACAL(N)

S(N)

S0(n,y)

 /n:=N,y:=0

 in?x1
 [n>0]
 /y:=y+x1*x1%10,n:=n-1
 @((11)1)

S4(y)

 tau
 [n==0]
 @((11)1)

S7

 prts!y
 @(01)

Figure 13. The symbolic transition graph of ACAL(N)

S(N) = S0(N,0)\{|tmp|}

S0(n,y) = (n>0) & in?x1 -> S0(n-1,y+x1*x1%10) [] (n==0) & tmp!0 -> S4(y)

S4(y) = prts!(y) -> S7

S7 = STOP

Figure 14. A specification S(N) generated from ACAL(N) by CONPASU

CONPASU-tool: A Concurrent Process Analysis Support Tool based on Symbolic Computation 17

TransferSys = (UI [|{|input,quit0,succ,ok,ng|}|] Transfer)

\ {|input,quit0,succ,ok,ng|}

Transfer = (Sender [|{|start,net,term,quit1,ack|}|] Receiver)

\ {|start,net,term,quit1,ack|}

UI = upload?ds -> input!ds -> (ok?a -> Wait [] ng?a -> UI)

Wait = (cancel?b -> quit0!0 -> UI)

[](succ?u -> complete!0 -> UI)

Sender = input?ds0 -> Check(ds0)

Check(ds0) = ((#ds0>0) & ok!0 -> start!0 -> Sending(ds0))

[]((not #ds0>0) & ng!0 -> Sender)

Sending(ds0) = ((#ds0>0) & net!(head(ds0)) -> Sending(tail(ds0)))

[]((not #ds0>0) & term!0 -> Term)

[](quit0?x -> quit1!0 -> Sender)

Term = ack?z -> (succ!0 -> Sender [] quit0?x -> Sender)

Receiver = start?y -> Receiving(<>)

Receiving(ds1) = (net?d -> Receiving(ds1^<d>))

[](term?y -> output!ds1 -> ack!0 -> Receiver)

[](quit1?y -> Receiver)

Figure 15. The CSPM-script of the system TransferSys for transferring data-sequences with UI

UI

input

ok

ng

quit0

succ

Sender

start

net

term

quit1

ack

Receiver

upload

cancel

complete

Transfer

output

TransferSys

Figure 16. The structure of the transfer system TransferSys

from the process Sender to the process Receiver. The process UI is the user-interface for
controlling Sender. The structure of TransferSys is shown in Figure 16.

The system TransferSys behaves as follows:

• Start phase: The process UI receives a data-sequence from upload and then sends
it to the channel input. The process Sender checks the length of the data-sequence
received from input, and if the length is greater than zero then Sender replies ok
to UI and thereafter sends the start signal start and moves to the transfer phase,
otherwise Sender replies ng to UI and thereafter both processes returns to the initial
states. If Receiver receives the start signal, then it initializes the data-sequence ds1
to the empty sequence <>, and moves to the transfer phase.

• Transfer phase: After starting the transfer, if the length of the data-sequence is greater
than zero (#ds0>0), then Sender iteratively sends the first data head(ds0) to the
channel net and retains the remain tail(ds0), otherwise sends the terminal signal
term and moves to the termination phase. At the same time, if Receiver receives a
data from net, then adds it to the sequence by ds1^<d>, and if Receiver receives the
terminal signal then moves to the termination phase.

• Termination phase: The process Receiver sends the data-sequence ds1 to the chan-
nel output and then acknowledges the completion to Sender. After receiving the ac-

18 CONPASU-tool: A Concurrent Process Analysis Support Tool based on Symbolic Computation

S

S0

S1(ds)

 upload?ds
 @(10)

S2(ds0)

 tau
 /ds0:=ds
 @(1(10))

 tau
 [not#ds0>0]
 @(1(10))

S3(ds0)

 tau
 [#ds0>0]
 @(1(10))

S5(ds0)

 cancel?b
 @(10)

S6(ds0,ds1)

 tau
 /ds1:=<>
 @(0(11))

S8(ds0,ds1)

 tau
 /ds1:=<>
 @(0(11))

 tau
 [#ds0>0]
 /ds0:=tail(ds0),ds1:=ds1^<head(ds0)>
 @(0(11))

 cancel?b
 @(10)

S9(ds1)

 tau
 [not#ds0>0]
 @(0(11))

 tau
 [#ds0>0]
 /ds0:=tail(ds0),ds1:=ds1^<head(ds0)>
 @(0(11))

S10(ds1)

 tau
 [not#ds0>0]
 @(0(11))

S11

 tau
 @(1(10))

 cancel?b
 @(10)

S12

 output!ds1
 @(0(01))

S13

 output!ds1
 @(0(01))

 tau
 @(0(11))

S14(ds)

 upload?ds
 @(10)

 cancel?b
 @(10)

S15

 tau
 @(0(11))

S16

 tau
 @(0(11))

 tau
 @(0(11))

 cancel?b
 @(10)

S17

 tau
 @(1(10))

 tau
 @(1(10))

 complete!0
 @(10)

Figure 17. The symbolic transition graph of TransferSys in Figure 15

knowledgment, Sender replies the success to UI, and then UI reports the success to
users.

• Cancel: Users can cancel the transfer by the channel canncel in the transfer phase.
The cancel is forwarded to Sender and Receiver by the quit-signals quit0 and
quit1.

Since the processes have a lot of interactions in the system TransferSys, it is not easy to
understand the whole behavior. Figure 17 shows the transition graph derived from the CSPM-
script in Figure 15 by the symbolic operational semantics in Definition 1.3. Then, it can be
reduced to the graph in Figure 18 by hiding the channel complete and reducing internal
transitions by Corollary 2.1. These graphs can be automatically generated by CONPASU. In
Figure 18, we can know how TransferSys behaves, for example, as follows:

• The label on the loop from/to the state S6,
tau[#ds0>0]/ds0:=tail(ds0),ds1:=ds1^<head(ds0)>@(0(11))

CONPASU-tool: A Concurrent Process Analysis Support Tool based on Symbolic Computation 19

S

S0

S2(ds0)

 upload?ds
 /ds0:=ds
 @(1(10))

 tau
 [not#ds0>0]
 @(1(10))

S6(ds0,ds1)

 tau
 [#ds0>0]
 /ds1:=<>
 @(1(11))

 tau
 [#ds0>0]
 /ds0:=tail(ds0),ds1:=ds1^<head(ds0)>
 @(0(11))

S8(ds0,ds1)

 cancel?b
 @(10)

S9(ds1)

 tau
 [not#ds0>0]
 @(0(11))

 tau
 @(1(11))

 tau
 [#ds0>0]
 /ds0:=tail(ds0),ds1:=ds1^<head(ds0)>
 @(0(11))

S10(ds1)

 tau
 [not#ds0>0]
 @(0(11))

 cancel?b
 @(10)

S15

 output!ds1
 @(0(11))

 output!ds1
 @(1(11))

 cancel?b
 @(1(10))

 tau
 @(1(10))

Figure 18. The reduced symbolic transition graph of TransferSys \ {| complete |}

means that if the length of the data-sequence ds0 held in Sender is greater than 0,
then the first data is attached to the tail of ds1 held in Receiver.

• The loop from/to the state S8 means that data may be transfered even after the cancel
because forwarding the quit-signals may delay.

In the end of this section, the termination phase of Sender is reconsidered. The process
Term in Figure 15 can receive the quit signal quit0 even after receiving the acknowledgment.
It seems needless, but the system TransferSys’, which is the same as TransferSys except
that Term is replaced by the following Term’

Term’ = ack?z -> succ!0 -> Sender,

has a deadlock because it is possible to perform the cancel just after the successful termina-
tion. Figure 19 is the reduced transition graph generated from TransferSys’\{|complete|},
and it shows how the system reaches to the deadlock state S16.

5. Related Work

There are various model checkers for process algebra, for example, FDR [4], PAT [5],
CWB [6], and mCRL2 [7]. The main purpose of such model checkers is to check equali-
ties or refinements between an implementation and a specification. On the other hand, the
main purpose of this work is to automatically generate a specification (an abstract sequential
process) from an implementation (a concurrent process).

Some model checkers provide functionalities to display transition graphs. For example,
Figures 20 and 21 show two transition graphs of CAL(N), introduced in Section 3 (see Fig-
ure 9), displayed by PAT [5] and LTSA [19], respectively. In Figures 20 and 21, the number
of states are 105 in PAT and 42 (after minimized) in LTSA even if the parameter N is fixed to
3 and the input values from in is restricted to {0, 1}. The reason why the numbers of states

20 CONPASU-tool: A Concurrent Process Analysis Support Tool based on Symbolic Computation

S

S0

S2(ds0)

 upload?ds
 /ds0:=ds
 @(1(10))

 tau
 [not#ds0>0]
 @(1(10))

S6(ds0,ds1)

 tau
 [#ds0>0]
 /ds1:=<>
 @(1(11))

 tau
 [#ds0>0]
 /ds0:=tail(ds0),ds1:=ds1^<head(ds0)>
 @(0(11))

S8(ds0,ds1)

 cancel?b
 @(10)

S9(ds1)

 tau
 [not#ds0>0]
 @(0(11))

 tau
 @(1(11))

 tau
 [#ds0>0]
 /ds0:=tail(ds0),ds1:=ds1^<head(ds0)>
 @(0(11))

S10(ds1)

 tau
 [not#ds0>0]
 @(0(11))

 cancel?b
 @(10)

S15

 output!ds1
 @(0(11))

S16

 output!ds1
 @(0(11))

 tau
 @(1(10))

 cancel?b
 @(10)

Figure 19. The reduced symbolic transition graph of TransferSys′ \ {| complete |}

are larger than one in Figure 11 is that they use standard semantics, thus variables must be
instantiated to each value.

Li and Chen [9] presented an algorithm to translate the problem for checking bisimula-
tion between symbolic transition graphs with assignment into the problem of solving a pred-
icate equation system. The translation is sound and complete, but it is hard to automatically
solve the generated predicate equation system.

Interactive theorem provers [20,21,22] for process algebra have been presented. In the-
orem provers, infinite state processes can be verified. It takes, however, time to make proof-
scripts for giving proof-instructions. Especially, it is often necessary and difficult to manu-
ally give expected relations between a concurrent process and a sequential process. Probably,
CONPASU can support to make such proof-script even for infinite state processes.

6. Conclusion

We have presented an analysis-method for reducing the number of states of the symbolic
transition graphs based on a symbolic operational semantics with assignments and loca-
tions. It is guaranteed that the original process and the reduced process are stable-failures-
equivalent. Then, we have implemented the symbolic operational semantics and the state-
reduction method in the tool CONPASU, and demonstrated it. As far as we know, there is no
other tool which can automatically generate symbolic transition graphs such as Figure 18
from concurrent processes such as Figure 15.

The sequential processes generated by CONPASU do not necessarily correspond to the
expected ideal specifications. It is, however, often difficult to formally describe such ideal
specifications. The generated sequential processes can give useful information for describing

CONPASU-tool: A Concurrent Process Analysis Support Tool based on Symbolic Computation 21

Figure 20. The transition graph of CAL(3) displayed by PAT (input-value ∈ {0, 1})

Figure 21. The minimized transition graph of CAL(3) displayed by LTSA (input-value ∈ {0, 1})

such ideal specifications.
The current CONPASU is a prototype and we have not discussed the performance of

CONPASU yet. It is a future work to polish CONPASU and evaluate the performance. As a sam-
ple, it took 39 msec for computing the symbolically reducible set from the process in Fig-
ure 15 by Definition 2.7 and 46 msec for bypassing the process by Intel Core 2 Duo CPU
P9600, 2.66 GHz, and 4 GB RAM. In the theoretical side, we are considering how bypass

22 CONPASU-tool: A Concurrent Process Analysis Support Tool based on Symbolic Computation

affects divergence. We have confirmed that divergence is not newly created in bypassed pro-
cess of Definition 2.6, but we are still carefully discussing whether divergence can disappear
by bypass or not. We conjecture that E and (BP

(n)
(R,E)(x̃))\{tmp} in Corollary 2.1 are also

failures/divergence-equivalent.

Acknowledgments

This work was supported by JSPS-KAKENHI 20500023.

References

[1] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[2] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.
[3] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[4] Formal Systems (Europe) Limited. Failures-divergence refinement: FDR2. http://www.fsel.com/.
[5] National University of Singapore. PAT: Process analysis toolkit.

http://www.comp.nus.edu.sg/~pat/.
[6] The University of Edinburgh. The concurrency workbench.

http://homepages.inf.ed.ac.uk/perdita/cwb/.
[7] Technische Universiteit Eindhoven. mcrl2. http://www.mcrl2.org/mcrl2/wiki/index.php/Home.
[8] M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer Science, 138(2):353–389, 1995.
[9] Z. Li and H. Chen. Computing strong/weak bisimulation equivalences and observation congruence for

value-passing processes. In TACAS ’99, LNCS 1579, pages 300–314. Springer-Verlag, 1999.
[10] H. Lin. Symbolic transition graph with assignment. In CONCUR ’96, LNCS 1119, pages 50–65. Springer-

Verlag, 1996.
[11] R. S. Lazic. A Semantic Study of Data Independence with Applications to Model Checking. PhD thesis,

Oxford University Computing Laboratory, 1999.
[12] U. Montanari and D. Yankelevich. A parametric approach to localities. In ICALP ’92, LNCS 623, pages

617–628. Springer-Verlag, 1992.
[13] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. Observing localities. Theoretical Computer Science,

114:31–61, June 1993.
[14] R. Wimmer, M. Herbstritt, and B. Becker. Minimization of large state spaces using symbolic branching

bisimulation. In DDECS’06, 2006.
[15] Y. Isobe. Webpage on CONPASU. http://staff.aist.go.jp/y-isobe/conpasu/.
[16] T. Nipkow, L. C. Paulon, and M. Wenzel. Isabelle/HOL. LNCS 2283. Springer, 2002.
[17] E. Gansner, E. Koutsofios, and S. North. Drawing graphs with dot, 2006.

http://www.graphviz.org/Documentation/dotguide.pdf.
[18] J. Ellson, E. Gansner, E. Koutsofios, S. North, and G. Woodhull. Graphviz - graph visualization software.

http://www.graphviz.org/.
[19] Imperial College London. LTSA - labelled transition system analyser.

http://www.doc.ic.ac.uk/ltsa/.
[20] B. Dutertre and S. Schneider. Using a PVS embedding of CSP to verify authentication protocols. In

TPHOL 1997, LNCS 1275, pages 121–136. Springer, 1997.
[21] Y. Isobe and M. Roggenbach. Webpage on CSP-Prover.

http://staff.aist.go.jp/y-isobe/CSP-Prover/CSP-Prover.html.
[22] Y. Isobe and M. Roggenbach. A generic theorem prover of CSP refinement. In TACAS 2005, LNCS 3440,

pages 108–123. Springer, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

