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1 Introduction

We describe a new tool called Csp-Prover which is an interactive theorem prover
dedicated to refinement proofs within the process algebra Csp. It aims specif-
ically at proofs on infinite state systems, which may also involve infinite non-
determinism. For this reason, Csp-Prover currently focuses on the stable failures
model F as the underlying denotational semantics of Csp.

Semantically, Csp-Prover offers both classical approaches to denotational se-
mantics: the theory of complete metric spaces as well as the theory of complete
partial orders. In this context the respective Fixed Point Theorems are used for
two purposes: (1) to prove the existence of fixed points, and (2) to prove Csp
refinement between two fixed points. Csp-Prover implements both these theo-
ries for infinite product spaces and thus is capable to deal with infinite systems
of process equations.

Technically, Csp-Prover is based on the generic theorem prover Isabelle, using
the logic HOL-Complex. Within this logic, the syntax as well as the semantics
of Csp is encoded, i.e., Csp-Prover provides a deep encoding of Csp. The
tool’s architecture follows a generic approach which makes it easy to re-use
large parts of the encoding for other Csp models. For instance, merely as a by-
product, Csp-Prover includes also the Csp traces model T . More importantly,
Csp-Prover can easily be extended to the failure-divergence model N and the
various infinite traces models of Csp.

Currently Csp-Prover offers as Csp semantics the traces model and stable failure
models.

In this document, we explain how to set up Csp-Prover and to use it.

2 Installing Isabelle2004

Csp-Prover is encoded in Isabelle2004/HOL-Complex. To install the interactive
theorem prover Isabelle follow the instructions of the Isabelle Web page:

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/index.html

For example, download the following files for Linux/x86 from the web page:

Isabelle2004.tar.gz
ProofGeneral-3.5.tar.gz
polyml_base.tar.gz
polyml_x86-linux.tar.gz
HOL_x86-linux.tar.gz
HOL-Complex_x86-linux.tar.gz

Then, uncompress and unpack them into e.g. the directory /usr/local as follows:
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tar -C /usr/local -xzf Isabelle2004.tar.gz
tar -C /usr/local -xzf ProofGeneral.tar.gz
tar -C /usr/local -xzf polyml_base.tar.gz
tar -C /usr/local -xzf polyml_x86-linux.tar.gz
tar -C /usr/local -xzf HOL_x86-linux.tar.gz
tar -C /usr/local -xzf HOL-Complex_x86-linux.tar.gz

Isabelle/Isar/HOL is started by

/usr/local/Isabelle/bin/isabelle -I HOL

Proof General is started by

/usr/local/Isabelle/bin/Isabelle

For the rest of this document, we assume that /usr/local/Isabelle/bin is an
executable path.

3 Setting up Csp-Prover

Download the file Csp-Prover2004-2.tar.gz from

http://staff.aist.go.jp/y-isobe/Csp-Prover/Csp-Prover.html

and unpack it e.g. in the directory

/usr/local/Csp-Prover2004-2

by an unpacking command (e.g. tar zxvf Csp-Prover2004-2.tar.gz).

Figure 1 shows the contents of Csp-Prover2004-2. The directories are used as
follows:

• Csp-Prover contains the theory files for Csp-Prover

• Examples contains small examples for testing Csp-Prover.

• DM contains the theory files for an example to verify a classical mutual
exclusion problem called the Dining mathematicians[CS01].

• DM-Seq is another version of the Dining Mathematicians. A sequential
behavior Seq equivalent to a concurrent behavior Sys is given between a
specification Spc and Sys.

• ep2 contains the theory files for an industrial case study on an electronic
payment system ep2[ep202].

• doc contains documentation about Csp-Prover.

It is recommended to make a heap file: Csp-Prover, although you can directly
load Csp_Prover.thy, and then prove it, and then use it. If you make the
heap file once, you do not prove them again before using them. The heap file
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ep2

Csp-Prover2004-2 src Csp-Prover

Examples

doc

DM

DM-Seq

Figure 1: The directory tree of Csp-Prover2004-2

can be made as follows (or you can also download the heap file for linux from
http://staff.aist.go.jp/y-isobe/Csp-Prover/Csp-Prover.html):

1. Go to the directory Csp-Prover by

cd /usr/local/Csp-Prover2004-2/src/Csp-Prover

2. Make the heap file Csp-Prover by

isatool usedir -b HOL-Complex Csp-Prover

The heap file will be made in your isabelle directory. If you did not specify
the directory, it is probably

~/isabelle/heaps/polyml-*** (which depends on your OS)

It may take time to make the heap file. For example, 7 minutes by Pentium
M (1.5GHz).

In addition, if you like to comfortably read theory files of Csp-Prover by
browsers (e.g. Netscape, mozilla, · · ·), you can make html files for them as
follows:

1. Go to the directory src by

cd /usr/local/Csp-Prover2004-2/src

2. Make html-files by

isatool usedir -i true HOL-Complex Csp-Prover

3. Browse theory files and theory dependency-graphs by

mozilla ~/isabelle/browser_info/HOL/HOL-Complex/Csp-Prover/
index.html

isatool browser ~/isabelle/browser_info/HOL/HOL-Complex/
Csp-Prover/session.graph

where Java is needed for displaying graphs. The dependency-graph created
by isatool for Csp-Prover is shown in Figure 2.



5
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Figure 2: The dependency-graph for Csp-Prover
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4 Starting Csp-Prover

You can start Csp-Prover in a shell window by

isabelle -I Csp-Prover

or start it in Proof General[Asp00] by

Isabelle -l Csp-Prover

It is recommended to use Proof General, which is a superior interface for Isabelle.
Proof General sometimes conflicts your .emacs and fails. To avoid this, you may
use an option “-u” as follows:

Isabelle -u false -l Csp-Prover

This option disallows Proof General to use your .emacs.

In Proof General, you can also select a logic (e.g. Csp-Prover, HOL, HOL-Complex,
· · ·) used in Isabelle from the menu bar. Click the button [Isabelle/Isar] → [Log-
ics] → [Csp-Prover].

In addition, you can also activate X-symbols in Proof General from the menu
bar. Click the button [Proof General] → [option] → [X-Symbol]. Csp-Prover
also provides a more conventional syntax of processes based on X-symbols. For
example, the external choice P [+] Q in ASCII mode is replaced with P � Q in
X-symbol mode.

5 Small demonstrations

Try to prove small examples, for getting the outline how Csp-Prover works. If
you use a shell window and an editor window, then the proof is proceeding as
follows:

1. Start Csp-Prover in the shell window by

isabelle -I Csp-Prover

2. Open the following example in the editor window:

/usr/local/Csp-Prover2004-2/src/Examples/Inc_nat.thy

3. Copy the commands from “Inc_nat.thy” and paste them to the isabelle
window line by line until the proof finishes.

If you can use Proof General, the proof is more elegant as follows:

1. Start Proof General with Csp-Prover by

Isabelle -l Csp-Prover

2. Open the following example in the Proof General window:
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Figure 3: A screen shot of a proof by Csp-Prover

/usr/local/Csp-Prover2004-2/src/Examples/Inc_nat.thy

3. Click the button “Next” in the menu bar until the proof finishes.

More conventional Csp-syntax can be displayed as shown in Figure 3 if you use
Proof General and activate X-symbols from the menu bar.

Similarly, try to prove another example:

/usr/local/Csp-Prover2004-2/src/Examples/Test_Seq.thy

The examples ep2 and DM are explained in the web-page:

http://staff.aist.go.jp/y-isobe/Csp-Prover/Csp-Prover.html
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P ::= SKIP %% successful terminating process
| STOP %% deadlock process
| a -> P %% action prefix
| c ! v -> P %% sending v over channel c (*)
| c ? x : X -> P(x) %% receiving x∈X on channel c (*)
| c !! x : X -> P(x) %% non-deterministic sending x∈X on c (*)
| c !! x -> P(x) %% non-deterministic sending x on c (*)
| ? x : X -> P(x) %% external prefix choice
| ! x : X -> P(x) %% internal prefix choice (*)
| P [+] P %% external choice
| P |~| P %% internal choice
| ! x : X .. P(x) %% replicated internal choice
| IF b THEN P ELSE P %% conditional
| P |[X]| P %% generalized parallel
| P ||| P %% interleaving (*)
| P || P %% synchronous parallel (*)
| P -- X %% hiding
| P [[r]] %% relational renaming
| P ;; P %% sequential composition
| P [> P %% (untimed) timeout (*)
| <C> %% process name

Figure 4: Syntax of basic Csp processes in Csp-Prover.

6 Syntax

The process algebra Csp [Hoa85, Ros98] is defined relative to a given set of
communications. Its basic processes are built from primitive processes like SKIP
and STOP. Csp includes communication primitives like sending and receiving val-
ues over a communication channel, distinguishes between internal and external
choice between two processes, offers a variety of parallel operators, sequential
composition of processes, and various other features like renaming and hiding.
Figure 4 shows that the Csp dialect implemented by Csp-Prover covers all these
features. This syntax definition involves certain Isabelle notations: given a type
’a as set of communications, a:’a is a single communication, c:(’v⇒’a) de-
notes a channel name, v:’v is a passed value, b:bool stands for a boolean
value, X:’a set is a subset of ’a, r:(’a * ’a) set denotes a binary relation
over communications, and C:’n is a process name for recursive behaviors. De-
rived operators are marked by (∗).

The set of processes is encoded to a recursive type (’n,’a) proc by the keyword
primrec as shown in Figure 5, where ’n and ’a are types of process-names
and communications, respectively. This means that structural induction over
processes is is available in Csp-Prover by the command induct tac. Operators
involving bound variables such as (? x : X -> P) are introduced as syntactic
sugar:
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datatype
(’n,’a) proc

= STOP

| SKIP
| Prefix "’a" "(’n,’a) proc" (" -> ")
| prefix choice "’a set " "’a ⇒ (’n,’a) proc" ("? : -> ")
| Ext choice "(’n,’a) proc" "(’n,’a) proc" ("( [+] )")
| Int choice "(’n,’a) proc" "(’n,’a) proc" ("( |~| )")
| R int choice "’a set " "’a ⇒ (’n,’a) proc" ("! : .. ")
| · · ·
| Name "’n" ("< >")

Figure 5: The process type defined in Csp-Prover.

syntax
"@prefix choice" ::

"pttrn ⇒ ’a set ⇒ (’n,’a) proc ⇒ (’n,’a) proc" ("? : -> ")

"@R int choice" ::

"pttrn ⇒ ’a set ⇒ (’n,’a) proc ⇒ (’n,’a) proc" ("! : .. ")

translations
"? x : X -> P == ? :X -> (λ x. P)"

"! x : X .. P == ! :X .. (λ x. P)"

Derived operators such as sending and receiving values are also given as syntactic
sugar by syntax and translations as follows:

• Sending a value: (c ! v -> P) sends a value c to a channel c, and there-
after behaves like P. It is a syntactic sugar of ((c v)-> P).

• Receiving values: (c ? x : X -> P(x)) receives a value v from a channel
c and thereafter behaves like P(v) if v ∈ X. If X is the universe, (: X)
can be omitted. They are defined as follows:

c ? x : X -> P(x) = ? y : {(c x) | x ∈ X} -> P(c−1(y))
c ? x -> P(x) = c ? x : UNIV -> P(x)

• Non-deterministic Sending a value: (c !! x : X -> P(x)) non-deterministically
sends a value v to a channel c such as v ∈ X, and thereafter behaves like
P(v). If X is the universe, (: X) can be omitted. They are defined as
follows:

c !! x : X -> P(x) = ! y : {(c x) | x ∈ X} -> P(c−1(y))
c !! x -> P(x) = c !! x : UNIV -> P(x)

• Internal Prefix choice: (! x : X -> P(x)) requires that, for some a ∈
X, an event a can be executed and thereafter it behaves like P(a). It is
defined as follows:
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! x : X -> P(x) = ! x : X .. x -> P(x)

• Replicated Internal choice with type-conversion: (f !! x : X .. P(x))
requires that it behaves like P(v) for some v ∈ X, where f is used as a
type converter translating the type of v to the event type. If X is the
universe, (:+X) can be omitted. They are defined as follows:

f !! x : X .. P(x) = ! y : {(f x) | x ∈ X} .. P(f−1(y))
f !! x -> P(x) = f !! x : UNIV .. P(x)

The other derived operators for timeout or parallelism are also given as follows:

• Timeout: (P [> Q) behaves like P for a short time before it opts to behave
like Q. It is defined as follows:

P [> Q = (P |~| STOP) [+] Q

• Synchronous Parallel: (P || Q) is a parallel composition, where every
event must synchronize between P and Q. It is defined as follows:

P || Q = (P |[UNIV]| Q)

• Interleaving: (P ||| Q) is a parallel composition, where P and Q have no
communication. It is defined as follows:

P ||| Q = (P |[{}]| Q)

In Csp, recursive processes are either defined by process equations or by so-
called µ-recursion. Here, Csp-Prover currently offers only the former mecha-
nism, and LET df IN P is defined as follows:

type (’n,’a) procDef = "’n ⇒ (’n,’a) proc"

datatype
(’n,’a) procRec

= Letin "(’n,’a) procDef" "(’n,’a) proc" ("LET IN ")

Intuitively, LET df IN P behaves like the body process P, where each process
name C in P behaves like a process df(C). The most convenient way to define the
function is to use Isabelle’s keyword primrec for defining recursive functions.
For example, a process Inc which iteratively sends an increasing natural number
n to a channel c is defined as follows:

primrec df (Loop n) = c ! n -> <Loop (n+1)>

defs "Inc def: Inc == LET df IN <Loop 0>"

Such a parametrised process expressions can – on the semantical side of Csp –
give rise to infinite systems of equations.

Example 6.1 The recursive process Sys in Inc nat used in Section 5 is defined
as follows:
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datatype Event = Num nat | Read nat

datatype SysName = UI | VAR nat

consts
SysDef :: "(SysName, Event) procDef"

primrec
SysDef (UI) = Read ? m -> Num ! m -> <UI>"

SysDef (VAR n) = Read ! n -> <VAR (Suc n)>"

consts
Sys :: "(SysName, Event) procRec"

defs Sys def:

"Sys == LET SysDef

IN (<UI> |[range Read]| <VAR 0>) -- (range Read)"

�

It is often required to replace each process-name C in a process �P with f(C). It
is expressed as Rewrite P By f, where P and f have types (’n,’a) proc and
’n => (’m,’a) proc, respectively. Therefore, Rewrite P By f is a process,
whose type is (’m,’a) proc, obtained by replacing each process <C> with a
process f(C).

7 Domain

Csp has a special event Tick which represents a successful termination. So,
the (extended) set of events (communications) consists of user-defined events,
whose type is ’a, and Tick as follows:

datatype ’a event = Ev ’a | Tick

In the stable failures model, the behavior of each process is expressed by the
order of events that it can perform and a set of refusal events at each state.
The order of events is represented by a sequence (i.e. trace) of events defined
as follows:

typedef ’a trace = "s::(’a event) list. Tick : set(butlast s)"

where the function butlast removes the last element of s and the function set
transforms a list to a set of elements contained in the list. Therefore, Tick does
not occur in every trace except the last of the trace.

A failure is a pair (t ,X ) of a trace t and a set X of refusal events. Intuitively,
a failure (t ,X ) represents that events included in X cannot be performed after
performing t . The type of failures is easily defined as follows:

type ’a failure = "’a trace * ’a event set"
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Finally, the set of failures components is given as a type ’a dom SF in Csp-
Prover. The type ’a dom SF and the (infinite) product (’i,’a) dom SF prod
are defined from the set ’a dom T of traces and the set ’a dom F of failures as
follows:

typedef ’a dom T = "{T::(’a trace set). CT1(T)}”
typedef ’a dom F = "{F::(’a failure set). CF1(F)}”
types ’a dom TF = "’a dom T * ’a dom F”
typedef ’a dom SF = "{SF::(’a dom TF). CT2(SF) & CF2(SF) & CF3(SF)}"
types (’i,’a) dom SF prod = "’i => ’a dom SF"

where the type ’i represents the indexing set of the product space, which is
used for infinite systems of equations, and the conditions CT1, CF1, · · ·, CF3 are
defined as follows:

CT1(T) = prefix closed T & T �= {}
CF1(F) = ∀s X Y. (s,X) ∈ F & Y ⊆ X → (s,Y) ∈ F

CT2(SF) = ∀s. s @t [�]t ∈ fst SF & notick s

→ (s,UNIV−{�}) ∈ snd SF & (s @t [�]t ,UNIV) ∈ snd SF

CF2(SF) = ∀s X Y. (s,X) ∈ snd SF & notick s & (∀a∈ Y. s @t [a]t /∈ fst SF)

→ (s,X ∪ Y) ∈ snd SF

CF3(SF) = ∀ s X. (s,X) ∈ snd SF → s ∈ fst SF.

The set of traces and the set of failures are extracted from a domain on F by
the following functions Tof and Fof, respectively.

consts
Tof :: "’a dom SF => ’a dom T" "Tof SF == fst (Rep dom SF SF)"

Fof :: "’a dom SF => ’a dom F" "Fof SF == snd (Rep dom SF SF)"

where Rep dom SF is a function which converts the type of ’a dom SF into ’a
dom TF.

8 Semantics

The semantics is given by translating process-expressions in the model F step by
step as shown in Fig.6. At first, each process “P::(’n,’a) proc” is translated
to a function “[[P]]TF::(’n,’a) dom SF prod⇒’a dom TF” which is recursively
defined on the structure of P by the keyword primrec. The recursive definition
of [[P]]TF exactly complies with the semantic clause of the model F , where the
functions STOPsf, SKIPsf, ->sf, EXTCHsf, and so on are used just for improving
readability, for example, ->sf, and EXTCHsf are defined as shown in Fig.7. (the
definition of all the operators are written soon.)
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consts
eval TF :: "(’n,’a) proc⇒(’n,’a) dom SF prod⇒’a dom TF" ("[[ ]]TF")
eval SF :: "(’n,’a) proc⇒(’n,’a) dom SF prod⇒’a dom SF" ("[[ ]]SF")

primrec
"[[STOP]]TF = (λe. STOPsf)"
"[[SKIP]]TF = (λe. SKIPsf)"
"[[a -> P]]TF = (λe. (a ->sf ([[P]]TF e)))"
"[[? :X -> Pf]]TF = (λe. EXTCHsf{a ->sf [[Pf a]]TF e |a. a∈X}∪{STOPsf})"
"[[P [+] Q]]TF = (λe. EXTCHsf{[[P]]TF e, [[Q]]TF e})"
"[[P |~| Q]]TF = (λe. INTCHsf{[[P]]TF e, [[Q]]TF e})"
"[[! :X .. Pf]]TF = (λe. INTCHsf{[[Pf a]]TF e |a. a∈X}∪{DIVsf}))"

.

.

.
(the other operators are written soon)

.

.

.
"[[<C>]]TF = (λe. e C)"

defs eval SF def : "[[P]]SF == (λe. Abs dom SF([[P]]TF e))”

consts
eval DF :: "(’n⇒(’m,’a) proc)⇒(’m,’a) dom SF prod ⇒(’n,’a) dom SF prod" ("[[ ]]DF")
eval RC :: "(’n,’a) procRec⇒’a dom SF" ("[[ ]]RC")

defs eval DF def : "[[df]]DF == (λe. (λC. ([[df C]]SF e)))"
primrec "[[LET df IN P]]RC = [[P]]SF (UFP [[df]]DF)"

Figure 6: The mapping from each process to a domain

consts
Prefixt :: "’a⇒’a trace set⇒’a trace set" (" ->t ")
Prefixf :: "’a⇒’a failure set⇒’a failure set" (" ->f ")
Prefixsf :: "’a⇒’a dom TF⇒’a dom TF" (" ->sf ")

defs
Prefixt def "a ->t T == insert []t {[Ev a]t @t s |s. s: T”}
Prefixf def "a ->f F == {([]t,X) |X. Ev a /∈ X} ∪

{([Ev a]t @t s,X) |s X. (s,X) ∈ F}"
Prefixsf def "a ->sf TF == (Abs dom T (a ->t Rep dom T (fst TF)),

Abs dom F (a ->f Rep dom F (snd TF)))"
consts

Ext choicef :: "’a trace set set⇒’a failure set set ⇒’a failure set" ("EXTCHf ")
Ext choicesf :: "’a dom TF set⇒’a dom TF" ("EXTCHsf ")

defs
Ext choicef def
"EXTCHf Ts Fs == {([]t,X) |X. ([]t,X) : Inter Fs} ∪

{(s,X) |s X. s �= []t & (s,X)∈Union Fs} ∪
{([]t,X) |X. � /∈X & [�]t ∈ Union Ts}"

Ext choicesf def
"EXTCHsf TFs == (Abs dom T (Union (Rep dom T ‘ fst ‘ TFs)),

Abs dom F (EXTCHf (Rep dom T ‘ fst ‘ TFs) (Rep dom F ‘ snd ‘ TFs)))"

Figure 7: The meaning of Csp-operators

In Fig.6, [[P]]SF is the same as [[P]]TF except that the type is converted by Abs dom SF.
The translation [[ ]]SF over “(’n,’a) proc” is extended to [[ ]]DF over “’m⇒(’n,’a)
proc”. The meaning of “LET df IN P” is given by P, where the meaning of
process-names in P given by df. The meaning of df is defined by fixed points,
for example, a process name A defined as (df A = a -> A) is a process x such
that (x =F a -> x), where =F is the equality in the model F . In the current
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version of Csp-Prover, the unique fixed point UFP is used based on the Banach’s
fixed point theorem. The function UFP is a partial function, and it returns the
fixed point of a function f if f has a unique fixed point, else it returns (the
None) which represents “undefined”. This is a usual technique using the option
type to define a partial function in Isabelle.

9 Verification

You can verify the refinement relation <=F (whose X-symbol is �F) and the
equivalence relation =F, which are defined as follows, based on the stable failures
model in the current Csp-Prover 2004.

R1 <=F R2 = [[R2]]RC ⊆ [[R1]]RC
R1 =F R2 = [[R2]]RC = [[R1]]RC

Csp-Prover gives many Csp-rules for verifying the relations by rewriting Csp-
expressions. You can use these Csp-rules in Isabelle by loading the main theory
Csp_Prover, for example, as follows

theory T = Csp_Prover:

This means that your theory T will be proven by Csp-Prover.

In Csp-Prover, proofs mainly consist of three phases: (1) unfolding recursive
processes, (2) expanding processes to head-normal-forms (hnf), and (3) decom-
posing them. These are explained in the rest of this section.

9.1 Fixed point induction

It is hard to verify (LET df1 IN P1) <=F (LET df2 IN P2) only by rewriting
P1 and P2 because they are different processes names defined df1 and df2, re-
spectively. This problem is solved by applying fixed point induction. Therefore,
we can verify (LET df1 IN P1) <=F (LET df2 IN P2) by proving

CHECK (LET df1 IN P1) <=F (LET df2 IN P2) BY f12

where it is defined as follows:

CHECK (LET df1 IN P1) <=F (LET df2 IN P2) BY f12
=
( ∀ C. (nohide (df1 C))) ∧ (∀ C. (guard (df1 C))) ∧
( ∀ C. (nohide (df2 C))) ∧ (∀ C. (guard (df2 C))) ∧
(LET df2 IN (Rewrite P1 By f12) <=F LET df2 IN P2 ∧
( ∀ C. LET df2 IN (Rewrite (df1 C) By f12) C <=F LET df2 IN (f12 C))

where f12 is a function which takes a process-name in df1 and returns a process-
expression containing process-names defined by df2, such that for each process
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name C, f12(C) refines C. It is hard to automatically find such function f12
from df1 and df2. Therefore, such function will be given by users.

It is important to note that the definition of “CHECK ...” contains only process-
names defined by df2 because each process-name C defined by df1 is replaced
with f12(C). It allows us to verify the refinement between recursive processes
containing different process-names.

For example, the function Spc_to_Sys (an instance of f12 above) which relates
SpcDef to SysDef is defined as follows

primrec
"Spc_to_Sys (Cspc n)

= (<UI> |[range Read]| <VAR n>) -- (range Read)"

in the example Example/Inc_nat (also see Section 5 and Example 6.1). Then,
when a goal is given as follows:

Spc <=F Sys

and the following command is applied:

apply (rule csp_fp_induct[of _ _ "Spc_to_Sys"])

then the following subgoal is returned:

CHECK Spc <=F Sys BY Spc_to_Sys

This means that we can prove “CHECK Spc <=F Sys BY Spc_to_Sys” instead
of “Spc <=F Sys”. The expression “CHECK ...” can be unfolded by a command
apply (unfold CHECKref_def), however the rule for unfolding it is added to
introduction rules which are automatically applied. Thus, just apply the fol-
lowing command,

apply (rule)

then 6 sub-goals will be displayed in according to the definition of "CHECK ..."
as follows:

goal (lemma (check_ex1), 6 subgoals):
1. !!C. nohide (LetD Spc C)
2. !!C. guard (LetD Spc C)
3. !!C. nohide (LetD Sys C)
4. !!C. guard (LetD Sys C)
5.

LET LetD Sys IN (Rewrite (InP Spc) By Spc_to_Sys) <=F
LET LetD Sys IN InP Sys

6. !!C.
LET LetD Sys IN (Rewrite ((LetD Spc) C) By Spc_to_Sys) <=F
LET LetD Sys IN Spc_to_Sys C
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where LetD R and LetP R are defined as follows:

LetD (LET df IN P) = df
LetP (LET df IN P) = P

This strategy (by csp_fp_induct) is also available for verification based on
equivalence relation =F.

9.2 Expanding

To verify (LET df1 IN P1) <=F (LET df2 IN P2), it is useful to transform P1
and P2 to head-normal-forms (hnf) such as ? x:X -> P1’ and ? x:Y -> P2’.
To do that, rewriting laws called step laws (e.g. see P.32 (1.14) in [Ros98]).
are given in Csp. Csp-Prover gives tactics based on step laws for getting hnfs.
The most powerful tactic is “csp_hnf_tac”. This tactic applies step laws Csp-
expressions which are unguarded (by Prefix or Prefix choice), unbounded (by In-
ternal bind), and unconditional because of avoiding excessive expanding, which
makes expressions to be unreadable. User defined tactics are applied in Isar-
mode as follows:

apply (tactic {* csp_hnf_tac 1 *})

where 1 represents that this tactic is applied to the first subgoal.

The tactic csp_hnf_tac contains the following small tactics, and they can be
individually applied for reducing proof cost.

• csp_unwind_tac is a tactic for unfolding process-names, if every defini-
tions of process-names are guarded and have no hiding.

For example, assume that a sub-goal is given as follows:

Spc <=F
LET SysDef IN (<UI> |[range Read]| <VAR 0>) -- range Read

where Spc and SysDef are defined in Inc_nat (also see Example 6.1).
Now, apply the tactic as follows:

apply (tactic {* csp_unwind_tac 1 *})

Then, the sub-goad will be rewritten to the following new sub-goal:

Spc <=F
LET SysDef
IN (? x:range Read -> Num (inv Read x) -> <UI>

|[range Read]| Read 0 -> <VAR (Suc 0)>)
-- range Read

As shown this result, the unguarded process-names UI and VAR are re-
placed with their process-expressions defined by SysDef, where short no-
tations for ?? and !! are automatically unfolded. It is important that
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the process-names in the new sub-goal are not unfolded because they are
guarded. This technique works for avoiding infinite rewriting.

Note: before applying this tactic, it should be proven that every definitions
of process-names are guarded and have no hiding. They are easily proven,
for example, by

lemma guardSysDef[simp]: "!!C. guard (SysDef C)"
by (induct_tac C, simp_all)

but they are not automatically proven by (auto).

• csp_step_tac is a tactic for transforming processes of the form STOP,
a -> P, P [+] Q, P |[X]| Q, P -- X, P [[r]], or P ;; Q, to processes
(hnfs) of the form ? x:A -> P’, used as follows:

apply (tactic {* csp_step_tac 1 *})

csp_light_step_tac is a tactic for transforming processes of the form
STOP, or a -> P, to processes (hnfs) of the form ? x:A -> P’. Since the
proof cost of csp_step_tac is often high, csp_light_step_tac is some-
times used instead of csp_step_tac.

• csp_dist_tac is a tactic for distributing unguarded operators over inter-
nal choices and internal binds.

• csp_simp_tac is a tactic for simplify processes by mainly evaluating con-
ditions. Simplification rules can be manually added or deleted as follows:

apply (tactic {* csp_simp_tac 1 *})
apply (tactic {* csp_simp_add_tac "name1" 1 *})
apply (tactic {* csp_simp_del_tac "name2" 1 *})
apply (tactic {* csp_simp_add_del_tac "name1" "name2" 1 *})

where name1 and name2 are theory-names added to and deleted from sim-
plification rules, respectively. Do not forget to convert the theory-names
to strings by double-quotations.

• csp_rule_tac is a tactic for applying an introduction rule to sub-expressions
as follows:

apply (tactic {* csp_rule_tac "name" 1 *})

where name is a name of introduction rule.

• csp_asm_tac is a tactic for applying assumptions.

9.3 Decomposition

It is possible to decompose process-expressions to sub-expressions and verify the
sub-expressions because of their congruency and monotonicity.
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• csp_rm_head is a rule for removing the same head of head-normal forms
like

LET df IN ? x:X -> P =F LET df IN ? x:Y -> Q

Since this is added to (automatically applied) introduction rules, it can
be easily applied as follows:

apply (rule)

Then, the above sub-goal is decomposed to 2 subgoal:

1. X = Y
2. !!a. a : Y ==> LET df IN P =F LET df IN Q

The first goal may be solved by Isabelle set-theory and a tactic like
csp_hnf_tac can be applied to the second goal again, to transforms them
to hnfs.

• csp_decompo is more powerful rule than csp_rm_head, and it decomposes
expressions if their outermost operators are the same. For example, the
goal

LET df IN P1 [+] P2 =F LET df IN Q1 [+] Q2

is decomposed the two sub-goals

1. LET df IN P1 =F LET df IN Q1
2. LET df IN P2 =F LET df IN Q2

by the proof command

apply (rule csp_decompo)

However, this rule is unsafe because unexpected decomposition can be
done. For example, do not apply this rule to the goal

LET df IN a -> SKIP [+] b -> SKIP
=F LET df IN b -> SKIP [+] a -> SKIP

• csp_free_decompo is a rule for decomposing expressions if they are not
the forms of a -> P, ? x:X -> P, ! x:X .. P, and IF b THEN P ELSE Q,
thus only unguarded expressions (by events or conditions) can be decom-
posed. This rule can be used for avoiding excessive decompositions, which
are often caused by csp_decompo.

• csp_decompo_subset is a rule for removing internal binds. Thus, the goal

LET df IN ! x:X .. P(x) <=F LET df IN ! x:Y .. Q(x)

is rewritten to the following sub-gaols

1. Y <= X
2. !!a. a:Y ==> LET df IN P(a) <=F LET df IN Q(a)

by the proof command
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apply (rule csp_decompo_subset)

This rule also works for the expressions whose operators are internal and
external prefix choices as follows:

LET df IN ! x:X -> P(x) <=F LET df IN ? x:Y -> Q(x)

This goal is rewritten to the following sub-gaols by this rule:

1. Y ~={}
2. Y <= X
3. !!a. a:Y ==> LET df IN P(a) <=F LET df IN Q(a)

9.4 Internal choice and bind

Sorry. This document has not been completed yet.
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