
CONTENTS 1

Introduction to Csp-Prover2004
(draft)

Yoshinao Isobe, Markus Roggenbach

Contents

1 Introduction 2

2 Installing Isabelle2004 2

3 Setting up Csp-Prover 2

4 Starting Csp-Prover 4

5 Small demonstrations 4

6 Syntax 6

7 Domain 10

8 Semantics 11

9 Verification 12

9.1 Fixed point induction . 12

9.2 Expanding . 14

9.3 Decomposition . 16

9.4 Internal choice and bind . 17

2

1 Introduction

Csp-Prover is an interactive theorem prover dedicated to refinement proofs
within the process algebra Csp. It aims specifically at proofs on infinite state
systems, which may also involve infinite non-determinism.

...

2 Installing Isabelle2004

Csp-Prover is encoded in Isabelle2004/HOL-Complex. Isabelle can be installed
from the Isabelle Web page:

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/index.html

For example, download the following files for Linux/x86 from the web page:

Isabelle2004.tar.gz
ProofGeneral-3.5.tar.gz
polyml_base.tar.gz
polyml_x86-linux.tar.gz
HOL_x86-linux.tar.gz
HOL-Complex_x86-linux.tar.gz

Then, uncompress and unpack them into the /usr/local directory (or your ap-
propriate directory) as follows:

tar -C /usr/local -xzf Isabelle2004.tar.gz
tar -C /usr/local -xzf ProofGeneral.tar.gz
tar -C /usr/local -xzf polyml_base.tar.gz
tar -C /usr/local -xzf polyml_x86-linux.tar.gz
tar -C /usr/local -xzf HOL_x86-linux.tar.gz
tar -C /usr/local -xzf HOL-Complex_x86-linux.tar.gz

Finally, Isabelle/Isar/HOL is started by

/usr/local/Isabelle/bin/isabelle -I HOL

and Proof General is started by

/usr/local/Isabelle/bin/Isabelle

In the rest of this document, we assume that /usr/local/Isabelle/bin is an
executable path.

3 Setting up Csp-Prover

It is assumed that Csp-Prover2004-2.tar.gz has been downloaded from

3

DM-Seq

Csp-Prover2004-2 src Csp-Prover

Examples

doc

DM

Figure 1: The directory tree of Csp-Prover2004-2

http://www...

and has been unpacked to the directory (or your appropriate directory):

~/tool/Csp-Prover2004-2

The directory Csp-Prover2004-2 has the tree shown in Figure 1. Each directory
is used as follows:

• Csp-Prover contains the theory files for Csp-Prover

• Examples contains small examples for testing Csp-Prover.

• DM contains the theory files for an example called Dining Mathematicians.

• DM-Seq is another version of Dining Mathematicians. A sequential behav-
ior Seq equivalent to Sys is given between Spc and Sys.

• doc contains documents for Csp-Prover.

We recommend you to make a heap file: Csp-Prover, although you can directly
load Csp_Prover.thy, and then prove it, and then use it. If you make the heap
file once, you do not prove them again before using them. The heap file is made
as follows:

1. Go to the directory Csp-Prover by

cd ~/tool/Csp-Prover2004-2/src/Csp-Prover

2. Make a heap file Csp-Prover by

isatool usedir -b HOL-Complex Csp-Prover

The heap file will be made in your isabelle directory. If you did not specify
the directory, it is probably

~/isabelle/heaps/polyml-*** (which depends on your OS)

It may take time to make the heap file. For example, 7 minutes by Pentium
M (1.5GHz).

In addition, if you like to comfortably read theory files of Csp-Prover by
browsers (e.g. Netscape, mozilla, · · ·), you can make html files for them as
follows:

4

1. Go to the directory src by

cd ~/tool/Csp-Prover2004-2/src

2. Make html-files by

isatool usedir -i true HOL-Complex Csp-Prover

3. Browse theory files and theory dependency-graphs by

mozilla ~/isabelle/browser_info/HOL/HOL-Complex/
Csp-Prover/index.html

isatool browser ~/isabelle/browser_info/HOL/HOL-Complex/
Csp-Prover/session.graph

where Java is needed for displaying graphs. The dependency-graph created
by isatool for Csp-Prover is shown in Figure 2.

4 Starting Csp-Prover

You can start Csp-Prover in a shell window by

isabelle -I Csp-Prover

or start it in Proof General by

Isabelle -l Csp-Prover

We recommend you to use Proof General, which is a superior interface for
Isabelle, if possible. Proof General sometimes conflicts your .emacs and fails.
To avoid this, you may use an option “-u” as follows:

Isabelle -u false -l Csp-Prover

This option disallows Proof General to use your .emacs.

In Proof General, you can also select a logic (e.g. Csp-Prover, HOL, HOL-Complex,
· · ·) used in Isabelle from the menu bar. Click the button [Isabelle/Isar] → [Log-
ics] → [Csp-Prover].

In addition, you can also activate X-symbols in Proof General from the menu
bar. Click the button [Proof General] → [option] → [X-Symbol].

5 Small demonstrations

Try to prove small examples, for getting the outline how Csp-Prover works. If
you use a shell window and an editor window, then the proof is proceeding as
follows:

5

Csp_syntax Infra

Trace

Prefix

CMS

Norm_seq

RS

Domain_T Domain_F RS_pair

Domain_SF

RS_prod

Domain_SF_prod

Trace_par Trace_hide Trace_ren Trace_seq

Csp_semantics

Csp_SKIP Csp_STOP

Csp_DIV

Csp_Prefix

Csp_Ext_choice

Csp_Int_choice

Csp_ParallelCsp_Hide Csp_IF Csp_Rename Csp_Sequence

Csp_proc

Csp_relation_def

Csp_proof_step1 Csp_proof_step2 Csp_proof_commut Csp_proof_decompo

Csp_proof_dist1

Csp_proof_dist2 Csp_proof_Int

Csp_proof_SKIP

Csp_map_Prefix

Csp_map_Ext_choice

Csp_map_Int_choice

Csp_map_Parallel Csp_map_Rename Csp_map_Sequence

Csp_map_proc

Csp_proc_rec

Csp_proof_fpCsp_proof_STOP

Csp_law_basic

Csp_law_decompo

Csp_law_ref Csp_law_SKIP

Csp_law_dist Csp_law_fp

Csp_law_step

Csp_law_IF

Csp_laws

Csp_xsymbol

Csp_Prover

[Pure]

[HOL]

[HOL-Complex]

Figure 2: The dependency-graph for Csp-Prover

1. Start Csp-Prover in the shell window by

isabelle -I Csp-Prover

2. Open the following example in the editor window:

~/tool/Csp-Prover2004-2/src/Examples/Inc_nat.thy

3. Copy the commands from “Inc_nat.thy” and paste them to the isabelle
window line by line until the proof finishes.

6

If you can use Proof General, the proof is more elegant as follows:

1. Start Proof General with Csp-Prover by

Isabelle -l Csp-Prover

2. Open the following example in the Proof General window:

~/tool/Csp-Prover2004-2/src/Examples/Inc_nat.thy

3. Click the button “Next” in the menu bar until the proof finishes.

More conventional Csp-syntax can be displayed as shown in Figure 3 if you use
Proof General and activate X-symbols from the menu bar.

Similarly, try to prove another example:

~/tool/Csp-Prover2004-2/src/Examples/Test_Seq.thy

6 Syntax

The set of processes are given as a type “(’n,’a) proc”, where “’n” and “’a”
are types of process-names and events, respectively. Each process P whose type
is “(’n,’a) proc” is defined as follows:

P ::= SKIP %% successful termination
| STOP %% deadlock
| a -> P %% action prefix
| c ! a -> P %% sending a over channel c(*)
| c ? x : X -> P(x) %% receiving x ∈ X on channel c(*)
| c ? x -> P(x) %% receiving x on channel c(*)
| c !! x : X -> P(x) %% non-determinisric sending x ∈ X on channel c(*)
| c !! x -> P(x) %% non-determinisric sending x on channel c(*)
| ? x:X -> P(x) %% external prefix choice
| ! x:X -> P(x) %% internal prefix choice (*)
| P [+] P %% external choice
| P |~| P %% internal choice
| ! x:X .. P(x) %% internal choice over processes
| IF b THEN P ELSE P %% conditional
| P |[X]| P %% generalized parallel
| P ||| P %% interleaving (*)
| P || P %% synchronous Parallel (*)
| P -- X %% hiding
| P [[r]] %% relational renaming
| P ;; P %% sequential composition
| P [> P %% (untimed) timeout (*)
| <C> %% process name

7

Figure 3: A screen shot of a proof by Csp-Prover

where types of a, X , b, and C are as follows:

a : ’a
X : ’a set
b : bool
C : ’n

Alphabetized parallel, future work. Derived operators are marked
with (*)

To send or receive values on communication channels, the following short nota-
tions are useful:

• Sending a value: “a!v -> P” sends a value v to a channel a, and there-
after behaves like P . It is a syntactic sugar of “(a v) -> P”

8

• Receiving values: “a?x:X -> P(x)” receives a value x from a channel a
if x ∈ X . If X is the universe, “:X ” can be omitted. They are defined as
follows:

a?x:X -> P(x) = ? y:{(a x) | x ∈ X } -> P(a−1(y))
a?x -> P(x) = a?x:UNIV -> P(x)

• Non-deterministic Sending a value: “a!!x -> P(x)” non-deterministically
sends a value v to a channel a if v ∈ X , and thereafter behaves like P(v).
If X is the universe, “:X ” can be omitted. They are defined as follows:

a!!x:X -> P(x) = ! y:{(a x) | x ∈ X } -> P(a−1(y))
a!!x -> P(x) = a!!x:UNIV -> P(x)

Convenient short notations for internal binding are also given as follows:

• Internal Prefix choice: “! x:X -> P(x)” requires that an event e can be
executed and thereafter it behaves like P(e) for some e ∈ X . It is defined
as follows:

! x:X -> P(x) = ! x:X .. x -> P

• Internal value binding: “a!!x:X .. P(x)” requires that it behaves like
P(v) for some v ∈ X , where a is used as a function for translating the
type of v to the event type. If X is the universe, “:X ” can be omitted.
They are defined as follows:

a!!x:X .. P(x) = ! y:{(a x) | x ∈ X } .. P(a−1(y))
a!!x .. P(x) = a!!x:UNIV .. P(x)

Another short notations for timeout and parallelism are given as follows:

• Timeout: “P [> Q ′′ behaves like P for a short time before it opts to
behave like Q . It is defined as follows:

P [> Q = (P |~| STOP) [+] Q

• Synchronous Parallel: “P || Q” is a parallel composition, where every
event must synchronize between P and Q . It is defined as follows:

P || Q = P |[UNIV]| Q

• Alphabetized Parallel: “P |[X ,Y]| Q” is a parallel composition, where
P and Q are allowed to communicate by events in X and Y , respectively.
It is defined as follows:

P |[X ,Y]| Q = P |[X ∩ Y]| Q

9

• Interleaving: “P ||| Q” is a parallel composition, where P and Q have
no communication. It is defined as follows:

P ||| Q = P |[∅]| Q

Next, the set of recursive processes is given as a type “(’n,’a) procRec”. Each
recursive process R is defined as follows:

R ::= LET df IN P

where P is a process whose type is “(’n,’a) proc” and df has the type
“(’n,’a) procDef” defined as follows:

types (’n,’a) procDef = "’n => (’n,’a) proc"

Intuitively, the function df defines that a process name C behaves like a process
df (C).

Example 6.1 The recursive process Sys in Inc_nat used in Section 5 is defined
as follows:

datatype Event = Num nat | Read nat
datatype SysName = UI | VAR nat

consts
SysDef :: "(SysName, Event) procDef"

primrec
"SysDef (UI) = Read?m -> Num!!m -> <UI>"
"SysDef (VAR n) = Read!n -> <VAR (Suc n)>"

consts
Sys :: "(SysName, Event) procRec"

defs Sys_def:
"Sys == LET SysDef

IN (<UI> |[range Read]| <VAR 0>) -- (range Read)"

�

It is often required to replace each process-name C in a process P with f (C).
It is expressed as follows:

Rewrite P By f

where P and f have types “(’n,’a) proc” and “’n => (’m,’a) proc”, respec-
tively. Therefore, Rewrite P By f is a process, whose type is (’m,’a) proc,
obtained by replacing each process <C> with a process f (C).

10

7 Domain

Csp has a special event Tick which means a successful termination. So, the
(extended) set of events consists of user-defined events, whose type is ’a, and
Tick as follows:

datatype ’a event = Ev ’a | Tick

In the stable failures model, the behavior of each process is expressed by the
order of events that it can perform and a set of refusal events at each state.
The order of events is represented by a sequence (i.e. trace) of events defined
as follows:

typedef ’a trace
= "{s::(’a event) list. Tick ~: set(butlast s)}"

where the function butlast removes the last element of s and the function set
transforms a list to a set of elements contained in the list. Therefore, Tick does
not occur in every trace except the last of the trace.

A failure is a pair (t ,X) of a trace and a set of refusal events. Intuitively, a
failure (t ,X) represents that events included in X cannot be performed after
performing t . The type of failures is easily defined as follows:

types ’a failure = "’a trace * ’a event set"

Finally, the set of domains on the stable failures model F is given as a type
“’a dom_SF” in Csp-Prover. The type “’a dom_SF” is defined from the set
“’a dom_T” of traces and the set “’a dom_F” of failures as follows:

typedef ’a dom_T = "{T::(’a trace set). CT1(T)}"

typedef ’a dom_F = "{F::(’a failure set). CF1(F)}"

typedef ’a dom_SF = "{SF::(’a dom_T * ’a dom_F).
CT2(SF) & CF2(SF) & CF3(SF)}"

where the conditions are defined as follows:

CT1(T) = T �= ∅ ∧ prefix_closed(T)
CF1(F) = ∀ s X Y . ((s ,X) ∈ F ∧ Y ⊆ X) −→ (s ,Y) ∈ F

CT2(T ,F) = ∀ s . s@[Tick] ∈ T ∧ notick s
−→ (s , UNIV-{Tick}) ∈ F ∧ (s@[Tick], UNIV) ∈ F

CF2(T ,F) = ∀ s X Y . (s ,X) ∈ F ∧ notick s
∧ (∀ a. a ∈ Y −→ s@[a] /∈ T) −→ (s ,X ∪ Y) ∈ F

CF3(T ,F) = ∀ s X . (s ,X) ∈ F −→ s ∈ T

The set of traces and the set of failures are extracted from a domain on F by
the following functions Tof and Fof, respectively.

11

consts
Tof :: "’a dom_SF => ’a dom_T" "Tof SF == fst (Rep_dom_SF SF)"
Fof :: "’a dom_SF => ’a dom_F" "Fof SF == snd (Rep_dom_SF SF)"

where Rep_dom_SF is a function which converts the type of “’a dom_SF” into
(’a dom_T * ’a dom_F).

8 Semantics

The meaning of each process P , whose type is “(’n,’a) proc”, is given by
translating P to a domain, where it is needed to evaluate each process-name to
a domain by a function whose type is “’n => (’n,’a) proc”. In Csp-Prover
2004, a translation [[]]SF is a function which takes a process and an evaluation
function (for process-names), and then return a pair of a set of traces and a set
of failures. In other words, the type of the translation is defined as follows:

(’n,’a) proc => (’n => ’a dom_SF) => ’a dom_SF

The exact definition of [[]]SF is somewhat complex because it contains many
type-conversions by Rep_dom_* and Abs_dom_*. Here, we show the essence for
defining [[]]SF.

[[SKIP]]SF = λ E . ({[], [Tick]},
{([],X) | Tick /∈ X } ∪ {([Tick],X) | True})

[[STOP]]SF = λ E . ({[]}, {([],X) | True})
[[a -> P]]SF = λ E . (a ->t Tof([[P]]SF(E)), a ->f Fof([[P]]SF(E)))

· · · to be written here soon · · ·

[[<C>]]SF = λ E . E(C)

where

a ->t T = {[]} ∪ {[Ev a]@s | s ∈ T}
a ->f F = {([],X) | Ev a /∈ X } ∪ {([Ev a]@s ,X) | (s ,X) ∈ F}

The evaluation for processes is extended for process-definitions (systems of equa-
tions) as follows:

consts
eval_procDef ::

"(’n => (’m,’a) proc) => (’m => (’m,’a) dom_SF)
=> (’n => (’n,’a) dom_SF)" ("[[_]]DF")

defs
eval_procDef_def : "[[f]]DF == (λ ev. (λ C. [[f C]]SF ev))"

where % is the function abstruction symbol (i.e. ASCII symbol for λ).

12

Finally, recursive processes are evaluated as follows:

consts
FPdom_SF ::"((’n => (’n,’a) dom_SF) => (’n => (’n,’a) dom_SF))

=> (’n => (’n,’a) dom_SF)"

eval_procRec ::"(’n,’a) procRec => ’a dom_SF" ("[[_]]RC")

defs
FPdom_SF_def :

"FPdom_SF f == if (∃ x. x isUFP f)
then (UFP f) else BOTTOM"

primrec
"[[LET df IN P]]RC = [[P]]SF (FPdom_SF [[df]]DF)"

where FPdom_SF is a function which evaluate a fixed point of a function f if f
has a unique fixed point.

9 Verification

You can verify the refinement relation <=F (whose X-symbol is �F) and the
equivalence relation =F, which are defined as follows, based on the stable failures
model in the current Csp-Prover 2004.

R1 <=F R2 = [[R2]]RC ⊆ [[R1]]RC
R1 =F R2 = [[R2]]RC = [[R1]]RC

Csp-Prover gives many Csp-rules for verifying the relations by rewriting Csp-
expressions. You can use these Csp-rules in Isabelle by loading the main theory
Csp_Prover, for example, as follows

theory T = Csp_Prover:

This means that your theory T will be proven by Csp-Prover.

In Csp-Prover, proofs mainly consist of three phases: (1) unfolding recursive
processes, (2) expanding processes to head-normal-forms (hnf), and (3) decom-
posing them. These are explained in the rest of this section.

9.1 Fixed point induction

It is hard to verify (LET df1 IN P1) <=F (LET df2 IN P2) only by rewriting
P1 and P2 because they are different processes names defined df1 and df2, re-
spectively. This problem is solved by applying fixed point induction. Therefore,
we can verify (LET df1 IN P1) <=F (LET df2 IN P2) by proving

9.1 Fixed point induction 13

CHECK (LET df1 IN P1) <=F (LET df2 IN P2) BY f12

where it is defined as follows:

CHECK (LET df1 IN P1) <=F (LET df2 IN P2) BY f12
=
(∀ C. (nohide (df1 C))) ∧ (∀ C. (guard (df1 C))) ∧
(∀ C. (nohide (df2 C))) ∧ (∀ C. (guard (df2 C))) ∧
(LET df2 IN (Rewrite P1 By f12) <=F LET df2 IN P2 ∧
(∀ C. LET df2 IN (Rewrite (df1 C) By f12) C <=F LET df2 IN (f12 C))

where f12 is a function which takes a process-name in df1 and returns a process-
expression containing process-names defined by df2, such that for each process
name C, f12(C) refines C. It is hard to automatically find such function f12
from df1 and df2. Therefore, such function will be given by users.

It is important to note that the definition of “CHECK ...” contains only process-
names defined by df2 because each process-name C defined by df1 is replaced
with f12(C). It allows us to verify the refinement between recursive processes
containing different process-names.

For example, the function Spc_to_Sys (an instance of f12 above) which relates
SpcDef to SysDef is defined as follows

primrec
"Spc_to_Sys (Cspc n)

= (<UI> |[range Read]| <VAR n>) -- (range Read)"

in the example Example/Inc_nat (also see Section 5 and Example 6.1). Then,
when a goal is given as follows:

Spc <=F Sys

and the following command is applied:

apply (rule csp_fp_induct[of _ _ "Spc_to_Sys"])

then the following subgoal is returned:

CHECK Spc <=F Sys BY Spc_to_Sys

This means that we can prove “CHECK Spc <=F Sys BY Spc_to_Sys” instead
of “Spc <=F Sys”. The expression “CHECK ...” can be unfolded by a command
apply (unfold CHECKref_def), however the rule for unfolding it is added to
introduction rules which are automatically applied. Thus, just apply the fol-
lowing command,

apply (rule)

then 6 sub-goals will be displayed in according to the definition of "CHECK ..."
as follows:

goal (lemma (check_ex1), 6 subgoals):

9.2 Expanding 14

1. !!C. nohide (LetD Spc C)
2. !!C. guard (LetD Spc C)
3. !!C. nohide (LetD Sys C)
4. !!C. guard (LetD Sys C)
5.

LET LetD Sys IN (Rewrite (InP Spc) By Spc_to_Sys) <=F
LET LetD Sys IN InP Sys

6. !!C.
LET LetD Sys IN (Rewrite ((LetD Spc) C) By Spc_to_Sys) <=F
LET LetD Sys IN Spc_to_Sys C

where LetD R and LetP R are defined as follows:

LetD (LET df IN P) = df
LetP (LET df IN P) = P

This strategy (by csp_fp_induct) is also available for verification based on
equivalence relation =F.

9.2 Expanding

To verify (LET df1 IN P1) <=F (LET df2 IN P2), it is useful to transform P1
and P2 to head-normal-forms (hnf) such as ? x:X -> P1’ and ? x:Y -> P2’.
To do that, rewriting laws called step laws (e.g. see P.32 (1.14) in [Ros98]).
are given in Csp. Csp-Prover gives tactics based on step laws for getting hnfs.
The most powerful tactic is “csp_hnf_tac”. This tactic applies step laws Csp-
expressions which are unguarded (by Prefix or Prefix choice), unbounded (by In-
ternal bind), and unconditional because of avoiding excessive expanding, which
makes expressions to be unreadable. User defined tactics are applied in Isar-
mode as follows:

apply (tactic {* csp_hnf_tac 1 *})

where 1 represents that this tactic is applied to the first subgoal.

The tactic csp_hnf_tac contains the following small tactics, and they can be
individually applied for reducing proof cost.

• csp_unwind_tac is a tactic for unfolding process-names, if every defini-
tions of process-names are guarded and have no hiding.

For example, assume that a sub-goal is given as follows:

Spc <=F
LET SysDef IN (<UI> |[range Read]| <VAR 0>) -- range Read

where Spc and SysDef are defined in Inc_nat (also see Example 6.1).
Now, apply the tactic as follows:

9.2 Expanding 15

apply (tactic {* csp_unwind_tac 1 *})

Then, the sub-goad will be rewritten to the following new sub-goal:

Spc <=F
LET SysDef
IN (? x:range Read -> Num (inv Read x) -> <UI>

|[range Read]| Read 0 -> <VAR (Suc 0)>)
-- range Read

As shown this result, the unguarded process-names UI and VAR are re-
placed with their process-expressions defined by SysDef, where short no-
tations for ?? and !! are automatically unfolded. It is important that
the process-names in the new sub-goal are not unfolded because they are
guarded. This technique works for avoiding infinite rewriting.

Note: before applying this tactic, it should be proven that every definitions
of process-names are guarded and have no hiding. They are easily proven,
for example, by

lemma guardSysDef[simp]: "!!C. guard (SysDef C)"
by (induct_tac C, simp_all)

but they are not automatically proven by (auto).

• csp_step_tac is a tactic for transforming processes of the form STOP,
a -> P, P [+] Q, P |[X]| Q, P -- X, P [[r]], or P ;; Q, to processes
(hnfs) of the form ? x:A -> P’, used as follows:

apply (tactic {* csp_step_tac 1 *})

csp_light_step_tac is a tactic for transforming processes of the form
STOP, or a -> P, to processes (hnfs) of the form ? x:A -> P’. Since the
proof cost of csp_step_tac is often high, csp_light_step_tac is some-
times used instead of csp_step_tac.

• csp_dist_tac is a tactic for distributing unguarded operators over inter-
nal choices and internal binds.

• csp_simp_tac is a tactic for simplify processes by mainly evaluating con-
ditions. Simplification rules can be manually added or deleted as follows:

apply (tactic {* csp_simp_tac 1 *})
apply (tactic {* csp_simp_add_tac "name1" 1 *})
apply (tactic {* csp_simp_del_tac "name2" 1 *})
apply (tactic {* csp_simp_add_del_tac "name1" "name2" 1 *})

where name1 and name2 are theory-names added to and deleted from sim-
plification rules, respectively. Do not forget to convert the theory-names
to strings by double-quotations.

• csp_rule_tac is a tactic for applying an introduction rule to sub-expressions
as follows:

9.3 Decomposition 16

apply (tactic {* csp_rule_tac "name" 1 *})

where name is a name of introduction rule.

• csp_asm_tac is a tactic for applying assumptions.

9.3 Decomposition

It is possible to decompose process-expressions to sub-expressions and verify the
sub-expressions because of their congruency and monotonicity.

• csp_rm_head is a rule for removing the same head of head-normal forms
like

LET df IN ? x:X -> P =F LET df IN ? x:Y -> Q

Since this is added to (automatically applied) introduction rules, it can
be easily applied as follows:

apply (rule)

Then, the above sub-goal is decomposed to 2 subgoal:

1. X = Y
2. !!a. a : Y ==> LET df IN P =F LET df IN Q

The first goal may be solved by Isabelle set-theory and a tactic like
csp_hnf_tac can be applied to the second goal again, to transforms them
to hnfs.

• csp_decompo is more powerful rule than csp_rm_head, and it decomposes
expresstions if their outermost operators are the same. For exapmle, the
goal

LET df IN P1 [+] P2 =F LET df IN Q1 [+] Q2

is decomposed the two sub-goals

1. LET df IN P1 =F LET df IN Q1
2. LET df IN P2 =F LET df IN Q2

by the proof command

apply (rule csp_decompo)

However, this rule is unsafe because unexpected decomposition can be
done. For example, do not apply this rule to the goal

LET df IN a -> SKIP [+] b -> SKIP
=F LET df IN b -> SKIP [+] a -> SKIP

• csp_free_decompo is a rule for decomposing expressions if they are not
the forms of a -> P, ? x:X -> P, ! x:X .. P, and IF b THEN P ELSE Q,

9.4 Internal choice and bind 17

thus only unguared expressions (by events or condistions) can be decom-
posed. This rule can be used for avoiding excessive decompositions, which
are often caused by csp_decompo.

• csp_decompo_subset is a rule for removing internal binds. Thus, the goal

LET df IN ! x:X .. P(x) <=F LET df IN ! x:Y .. Q(x)

is rewitten to the following sub-gaols

1. Y <= X
2. !!a. a:Y ==> LET df IN P(a) <=F LET df IN Q(a)

by the proof command

apply (rule csp_decompo_subset)

This rule also works for the expressions whose operators are internal and
external prefix choices as follows:

LET df IN ! x:X -> P(x) <=F LET df IN ? x:Y -> Q(x)

This goal is rewitten to the following sub-gaols by this rule:

1. Y ~={}
2. Y <= X
3. !!a. a:Y ==> LET df IN P(a) <=F LET df IN Q(a)

9.4 Internal choice and bind

References

[Ros98] A.W. Roscoe. The theory and practice of concurrency. Prentice Hall,
1998.

