(*-------------------------------------------*
| CSP-Prover |
| November 2004 |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory Trace_ren = Prefix:
(* The following simplification rules are deleted in this theory file *)
(* because they unexpectly rewrite (notick | t = []t) *)
(* *)
(* disj_not1: (~ P | Q) = (P --> Q) *)
declare disj_not1 [simp del]
(* The following simplification is sometimes unexpected. *)
(* *)
(* not_None_eq: (x ~= None) = (EX y. x = Some y) *)
declare not_None_eq [simp del]
(*****************************************************************
1.
2.
3.
4.
*****************************************************************)
(*************************************************************
functions used for defining [[ ]]
*************************************************************)
consts
renx :: "('a * 'b) set => (nat * 'a trace * 'b trace) set"
inductive "renx r"
intros
renx_nil:
"(0, []t, []t) : renx r"
renx_Tick:
"(0, [Tick]t, [Tick]t) : renx r"
renx_Ev:
"[| (n, s, t) : renx r ; (a, b) : r ; s ~= None |]
==> (Suc n, [Ev a]t @t s, [Ev b]t @t t) : renx r"
consts
ren_tr :: "'a trace => ('a * 'b) set => 'b trace => bool"
("(_ [[_]]tr _)" [1000,0,1000] 1000)
defs
ren_tr_def : "s [[r]]tr t == (EX n. (n, s, t) : renx r)"
consts
ren_inv :: "('a * 'b) set => 'b event set => 'a event set"
("([[_]]inv _)" [0,1000] 1000)
defs
ren_inv_def:
"[[r]]inv X ==
{ea. EX eb : X. ea = Tick & eb = Tick |
(EX a b. (a,b):r & ea = Ev a & eb = Ev b)}"
(*************************************************************
renx None
*************************************************************)
lemma renx_not_None_lm:
"ALL r n s t. (n, s, t) : renx r
--> (s ~= None & t ~= None)"
apply (rule allI)
apply (rule allI)
apply (induct_tac n)
apply (intro allI impI)
apply (erule renx.elims)
apply (simp_all)
(* step case *)
apply (intro allI impI)
apply (erule renx.elims)
by (simp_all)
(*** rule ***)
lemma renx_not_None:
"(n, s, t) : renx r ==> (s ~= None & t ~= None)"
by (simp add: renx_not_None_lm)
(*************************************************************
ren_tr intros and elims
*************************************************************)
(*-------------------*
| intros |
*-------------------*)
lemma ren_tr_nil[simp]:
"[]t [[r]]tr []t"
apply (simp add: ren_tr_def)
apply (rule_tac x="0" in exI)
by (simp add: renx.intros)
lemma ren_tr_Tick[simp]:
"[Tick]t [[r]]tr [Tick]t"
apply (simp add: ren_tr_def)
apply (rule_tac x="0" in exI)
by (simp add: renx.intros)
lemma ren_tr_Ev:
"[| s [[r]]tr t ; (a, b) : r ; s ~= None |]
==> ([Ev a]t @t s) [[r]]tr ([Ev b]t @t t)"
apply (simp add: ren_tr_def)
apply (erule exE)
apply (rule_tac x="Suc n" in exI)
by (simp add: renx.intros)
(*** intro rule ***)
lemmas ren_tr_intros = ren_tr_Ev
(*-------------------*
| elims |
*-------------------*)
lemma ren_tr_elims_lm:
"[| s [[r]]tr t ;
(s = []t & t = []t) --> P ;
(s = [Tick]t & t = [Tick]t) --> P ;
ALL a b s' t'.
(s' [[r]]tr t' & s = [Ev a]t @t s' & t = [Ev b]t @t t' &
(a, b) : r & s' ~= None)
--> P |]
==> P"
apply (simp add: ren_tr_def)
apply (erule exE)
apply (erule renx.elims)
apply (simp_all)
apply (drule mp)
apply (rule_tac x="b" in exI)
apply (rule_tac x="ta" in exI)
apply (simp)
apply (rule_tac x="na" in exI)
by (simp_all)
(*** elim rule ***)
lemma ren_tr_elims:
"[| s [[r]]tr t ;
[| s = []t; t = []t |] ==> P ;
[| s = [Tick]t; t = [Tick]t |] ==> P ;
!!a b s' t'.
[| s' [[r]]tr t' ; s = [Ev a]t @t s' ; t = [Ev b]t @t t' ;
(a, b) : r ; s' ~= None |]
==> P |]
==> P"
apply (rule ren_tr_elims_lm[of s r t])
by (auto)
(*************************************************************
ren_tr None
*************************************************************)
(*** ren_tr ***)
lemma ren_tr_not_None_lm:
"ALL r s t. s [[r]]tr t --> (s ~= None & t ~= None)"
apply (simp add: ren_tr_def)
apply (intro allI impI)
apply (erule exE)
by (simp add: renx_not_None)
(*** rule ***)
lemma ren_tr_not_None:
"s [[r]]tr t ==> (s ~= None & t ~= None)"
by (simp add: ren_tr_not_None_lm)
(*** None False ***)
lemma ren_tr_None_False1[simp]:
"~ None [[r]]tr t"
apply (insert ren_tr_not_None[of "None" r t])
by (auto)
lemma ren_tr_None_False2[simp]:
"~ s [[r]]tr None"
apply (insert ren_tr_not_None[of s r "None"])
by (auto)
(*************************************************************
ren_tr decomposition
*************************************************************)
(*-------------------*
| ren nil |
*-------------------*)
lemma ren_tr_nil1[simp]: "([]t [[r]]tr s) = (s = []t)"
apply (rule iffI)
by (erule ren_tr_elims, simp_all)
lemma ren_tr_nil2[simp]: "(s [[r]]tr []t) = (s = []t)"
apply (rule iffI)
by (erule ren_tr_elims, simp_all)
(*-------------------*
| ren Tick |
*-------------------*)
lemma ren_tr_Tick1[simp]: "([Tick]t [[r]]tr s) = (s = [Tick]t)"
apply (rule iffI)
by (erule ren_tr_elims, simp_all)
lemma ren_tr_Tick2[simp]: "(s [[r]]tr [Tick]t) = (s = [Tick]t)"
apply (rule iffI)
by (erule ren_tr_elims, simp_all)
(*-------------------*
| ren Ev |
*-------------------*)
(*** left ***)
(* only if *)
lemma ren_tr_Ev_decompo_left_only_if:
"([Ev a]t @t s) [[r]]tr u
==> (EX b t. u = [Ev b]t @t t & (a, b) : r & s [[r]]tr t)"
apply (case_tac "u = None", simp)
apply (insert trace_nil_or_Tick_or_Ev)
apply (drule_tac x="u" in spec, simp)
apply (erule disjE, simp) (* []t --> contradict *)
apply (erule disjE, simp) (* [Tick]t --> contradict *)
apply (erule ren_tr_elims)
by (simp_all)
(* if *)
lemma ren_tr_Ev_decompo_left_if:
"[| (a, b) : r ; s [[r]]tr t |]
==> ([Ev a]t @t s) [[r]]tr ([Ev b]t @t t)"
apply (rule ren_tr_intros)
apply (simp_all)
apply (case_tac "s = None", simp)
by (simp)
(* iff *)
lemma ren_tr_Ev_decompo_left:
"([Ev a]t @t s) [[r]]tr u
= (EX b t. u = [Ev b]t @t t & (a, b) : r & s [[r]]tr t)"
apply (rule iffI)
apply (simp add: ren_tr_Ev_decompo_left_only_if)
apply (elim exE)
apply (simp add: ren_tr_Ev_decompo_left_if)
done
(*** right ***)
(* only if *)
lemma ren_tr_Ev_decompo_right_only_if:
"u [[r]]tr ([Ev b]t @t t)
==> (EX a s. u = [Ev a]t @t s & (a, b) : r & s [[r]]tr t)"
apply (case_tac "u = None", simp)
apply (insert trace_nil_or_Tick_or_Ev)
apply (drule_tac x="u" in spec, simp)
apply (erule disjE, simp) (* []t --> contradict *)
apply (erule disjE, simp) (* [Tick]t --> contradict *)
apply (erule ren_tr_elims)
apply (simp_all)
by (case_tac "t' ~= None", simp, simp)
(* if *)
lemma ren_tr_Ev_decompo_right_if:
"[| (a, b) : r ; s [[r]]tr t |]
==> ([Ev a]t @t s) [[r]]tr ([Ev b]t @t t)"
apply (rule ren_tr_intros)
apply (simp_all)
apply (case_tac "s ~= None", simp)
by (simp)
(* iff *)
lemma ren_tr_Ev_decompo_right:
"u [[r]]tr ([Ev b]t @t t)
= (EX a s. u = [Ev a]t @t s & (a, b) : r & s [[r]]tr t)"
apply (rule iffI)
apply (simp add: ren_tr_Ev_decompo_right_only_if)
apply (elim exE)
apply (simp add: ren_tr_Ev_decompo_right_if)
done
lemmas ren_tr_Ev_decompo = ren_tr_Ev_decompo_left ren_tr_Ev_decompo_right
(*-------------------*
| ren one |
*-------------------*)
lemma ren_tr_one[simp]:
"(a, b) : r ==> [Ev a]t [[r]]tr [Ev b]t"
apply (insert ren_tr_Ev[of "[]t" r "[]t" a b])
by (simp)
(*** left ***)
lemma ren_tr_one_decompo_left_only_if:
"[Ev a]t [[r]]tr t ==> (EX b. t = [Ev b]t & (a, b) : r)"
apply (insert ren_tr_Ev_decompo_left[of a "[]t" r t])
by (simp)
lemma ren_tr_one_decompo_left:
"[Ev a]t [[r]]tr t = (EX b. t = [Ev b]t & (a, b) : r)"
apply (rule iffI)
apply (simp add: ren_tr_one_decompo_left_only_if)
by (auto)
(*** right ***)
lemma ren_tr_one_decompo_right_only_if:
"s [[r]]tr [Ev b]t ==> (EX a. s = [Ev a]t & (a, b) : r)"
apply (insert ren_tr_Ev_decompo_right[of s r b "[]t"])
by (simp)
lemma ren_tr_one_decompo_right:
"s [[r]]tr [Ev b]t = (EX a. s = [Ev a]t & (a, b) : r)"
apply (rule iffI)
apply (simp add: ren_tr_one_decompo_right_only_if)
by (auto)
lemmas ren_tr_one_decompo = ren_tr_one_decompo_left ren_tr_one_decompo_right
(*************************************************************
ren_tr notick
*************************************************************)
(*** left ***)
lemma ren_tr_notick_left_lm: "ALL r s t. (s [[r]]tr t & notick s) --> notick t"
apply (rule allI)
apply (rule allI)
apply (induct_tac s rule: induct_trace)
apply (simp_all)
apply (intro allI impI)
apply (simp add: ren_tr_Ev_decompo)
apply (elim conjE exE)
by (simp)
(*** rule ***)
lemma ren_tr_notick_left: "[| s [[r]]tr t ; notick s |] ==> notick t"
apply (insert ren_tr_notick_left_lm)
apply (drule_tac x="r" in spec)
apply (drule_tac x="s" in spec)
apply (drule_tac x="t" in spec)
by (simp)
(*** right ***)
lemma ren_tr_notick_right_lm: "ALL r s t. (s [[r]]tr t & notick t) --> notick s"
apply (rule allI)
apply (rule allI)
apply (induct_tac s rule: induct_trace)
apply (simp_all)
apply (simp add: disj_not1)
apply (intro allI impI)
apply (simp add: ren_tr_Ev_decompo)
apply (elim conjE exE)
apply (drule mp)
apply (rule_tac x="ta" in exI)
by (simp_all)
(*** rule ***)
lemma ren_tr_notick_right: "[| s [[r]]tr t ; notick t |] ==> notick s"
apply (insert ren_tr_notick_right_lm)
apply (drule_tac x="r" in spec)
apply (drule_tac x="s" in spec)
apply (drule_tac x="t" in spec)
by (simp)
(*************************************************************
ren_tr appending
*************************************************************)
(*** notick not None ***)
lemma ren_tr_appt_notick_not_None:
"ALL r s1 s2 t1 t2.
(s1 [[r]]tr t1 & s2 [[r]]tr t2 & (s1 @t s2 ~= None | t1 @t t2 ~= None))
--> (s1 @t s2) [[r]]tr (t1 @t t2)"
apply (rule allI)
apply (rule allI)
apply (induct_tac s1 rule: induct_trace)
apply (simp_all)
apply (intro allI impI)
apply (elim conjE)
apply (erule ren_tr_elims)
apply (simp_all)
apply (intro allI impI)
apply (simp add: ren_tr_Ev_decompo)
apply (elim conjE exE, simp)
apply (drule_tac x="s2" in spec)
apply (drule_tac x="t" in spec)
apply (drule_tac x="t2" in spec)
apply (simp)
apply (rule_tac x="b" in exI)
apply (rule_tac x="t @t t2" in exI)
apply (simp)
done
(*** rule ***)
lemma ren_tr_appt:
"[| s1 [[r]]tr t1 ; s2 [[r]]tr t2 ; s1 @t s2 ~= None | t1 @t t2 ~= None |]
==> (s1 @t s2) [[r]]tr (t1 @t t2)"
apply (case_tac "s2 = None", simp)
by (simp add: ren_tr_appt_notick_not_None)
(*--------------------*
| [Ev a]t @t ... |
*--------------------*)
lemma ren_tr_appt_Ev:
"[| (a, b) : r ; s [[r]]tr t |]
==> ([Ev a]t @t s) [[r]]tr ([Ev b]t @t t)"
apply (insert ren_tr_appt[of "[Ev a]t" r "[Ev b]t" s t])
apply (case_tac "[Ev a]t @t s = None")
by (simp_all)
(*-------------------*
| decompo |
*-------------------*)
(*** left ***)
(* only if *)
lemma ren_tr_appt_decompo_left_only_if_lm:
"ALL r s1 s2 t. (s1 @t s2) [[r]]tr t
--> (EX t1 t2. t = t1 @t t2 & s1 [[r]]tr t1 & s2 [[r]]tr t2)"
apply (rule allI)
apply (rule allI)
apply (induct_tac s1 rule: induct_trace)
apply (simp_all)
(* [Tick]t *)
apply (intro allI impI)
apply (case_tac "[Tick]t @t s2 = None", simp, simp) (* contradict *)
(* [Ev a] @t ... *)
apply (intro allI impI)
apply (simp add: ren_tr_Ev_decompo_left)
apply (elim conjE exE)
apply (drule_tac x="s2" in spec)
apply (drule_tac x="ta" in spec)
apply (simp)
apply (elim conjE exE)
apply (rule_tac x="[Ev b]t @t t1" in exI)
apply (rule_tac x="t2" in exI)
apply (simp)
apply (rule_tac x="b" in exI)
apply (rule_tac x="t1" in exI)
by (simp)
(* rule *)
lemma ren_tr_appt_decompo_left_only_if:
"(s1 @t s2) [[r]]tr t
==> (EX t1 t2. t = t1 @t t2 & s1 [[r]]tr t1 & s2 [[r]]tr t2)"
by (simp add: ren_tr_appt_decompo_left_only_if_lm)
(* iff *)
lemma ren_tr_appt_decompo_left:
"t ~= None
==> (s1 @t s2) [[r]]tr t
= (EX t1 t2. t = t1 @t t2 & s1 [[r]]tr t1 & s2 [[r]]tr t2)"
apply (rule iffI)
apply (simp add: ren_tr_appt_decompo_left_only_if)
apply (elim conjE exE)
by (simp add: ren_tr_appt)
(*** right ***)
(* only if *)
lemma ren_tr_appt_decompo_right_only_if_lm:
"ALL r t1 t2 s. s [[r]]tr (t1 @t t2)
--> (EX s1 s2. s = s1 @t s2 & s1 [[r]]tr t1 & s2 [[r]]tr t2)"
apply (rule allI)
apply (rule allI)
apply (induct_tac t1 rule: induct_trace)
apply (simp_all)
(* [Tick]t *)
apply (intro allI impI)
apply (case_tac "[Tick]t @t t2 = None", simp, simp) (* contradict *)
(* [Ev a] @t ... *)
apply (intro allI impI)
apply (simp add: ren_tr_Ev_decompo_right)
apply (elim conjE exE)
apply (drule_tac x="t2" in spec)
apply (drule_tac x="sb" in spec)
apply (simp)
apply (elim conjE exE)
apply (rule_tac x="[Ev aa]t @t s1" in exI)
apply (rule_tac x="s2" in exI)
apply (simp)
apply (rule_tac x="aa" in exI)
apply (rule_tac x="s1" in exI)
by (simp)
(* rule *)
lemma ren_tr_appt_decompo_right_only_if:
"s [[r]]tr (t1 @t t2)
==> (EX s1 s2. s = s1 @t s2 & s1 [[r]]tr t1 & s2 [[r]]tr t2)"
by (simp add: ren_tr_appt_decompo_right_only_if_lm)
(* iff *)
lemma ren_tr_appt_decompo_right:
"s ~= None
==> s [[r]]tr (t1 @t t2)
= (EX s1 s2. s = s1 @t s2 & s1 [[r]]tr t1 & s2 [[r]]tr t2)"
apply (rule iffI)
apply (simp add: ren_tr_appt_decompo_right_only_if)
apply (elim conjE exE)
by (simp add: ren_tr_appt)
lemmas ren_tr_appt_decompo
= ren_tr_appt_decompo_left ren_tr_appt_decompo_right
(*--------------------*
| [Ev a]t @t ... |
*--------------------*)
lemma ren_tr_head_decompo[simp]:
"([Ev a]t @t s) [[r]]tr ([Ev b]t @t t) = ((a, b) : r & s [[r]]tr t)"
apply (insert ren_tr_appt_decompo_right[of "[Ev a]t @t s" r "[Ev b]t" t])
apply (rule iffI)
apply (case_tac "s = None", simp, simp)
apply (simp add: ren_tr_one_decompo)
apply (elim conjE exE, simp)
by (simp add: ren_tr_appt_Ev)
(*--------------------*
| ... @t [e]t |
*--------------------*)
lemma ren_tr_last_decompo_Ev[simp]:
"(notick s | notick t)
==> (s @t [Ev a]t) [[r]]tr (t @t [Ev b]t) = (s [[r]]tr t & (a,b) : r)"
apply (insert ren_tr_appt_decompo_right[of "(s @t [Ev a]t)" r t "[Ev b]t"])
apply (case_tac "s @t [Ev a]t ~= None", simp)
apply (rule iffI)
(* => *)
apply (elim conjE exE)
apply (simp add: ren_tr_one_decompo)
apply (elim conjE exE)
apply (simp)
apply (case_tac "notick s1", simp, simp)
(* <= *)
apply (rule_tac x="s" in exI)
apply (rule_tac x="[Ev a]t" in exI)
apply (simp)
(* s @t [Ev a]t = None *)
by (auto simp add: ren_tr_notick_right not_None)
lemma ren_tr_last_decompo_Tick[simp]:
"(notick s | notick t)
==> (s @t [Tick]t) [[r]]tr (t @t [Tick]t) = (s [[r]]tr t)"
apply (insert ren_tr_appt_decompo_right[of "(s @t [Tick]t)" r t "[Tick]t"])
apply (case_tac "notick s")
by (auto simp add: ren_tr_notick_right not_None)
(*************************************************************
ren_tr lengtht
*************************************************************)
(*** ren same length ***)
lemma ren_tr_lengtht:
"ALL r s t. s [[r]]tr t --> lengtht s = lengtht t"
apply (rule allI)
apply (rule allI)
apply (induct_tac s rule: induct_trace)
apply (simp_all)
apply (intro allI impI)
apply (erule ren_tr_elims)
apply (simp_all)
apply (drule_tac x="t'" in spec)
by (simp add: ren_tr_not_None)
(*************************************************************
ren_tr prefix
*************************************************************)
lemma ren_tr_prefix_lm:
"ALL r u v s. prefix v u & s [[r]]tr u
--> (EX t. prefix t s & t [[r]]tr v)"
apply (rule allI)
apply (rule allI)
apply (induct_tac u rule: induct_trace)
apply (simp_all)
(* [Ev a]t @t ... *)
apply (intro allI impI)
apply (elim conjE)
apply (erule disjE, simp)
apply (simp add: ren_tr_Ev_decompo)
apply (elim conjE exE, simp)
apply (drule_tac x="v'" in spec)
apply (drule_tac x="sb" in spec, simp)
apply (elim conjE exE)
apply (rule_tac x="[Ev aa]t @t t" in exI, simp)
apply (rule disjI2)
apply (rule_tac x="t" in exI, simp)
done
(*** rule ***)
lemma ren_tr_prefix:
"[| prefix v u ; s [[r]]tr u |] ==> (EX t. prefix t s & t [[r]]tr v)"
apply (insert ren_tr_prefix_lm)
apply (drule_tac x="r" in spec)
apply (drule_tac x="u" in spec)
apply (drule_tac x="v" in spec)
apply (drule_tac x="s" in spec)
by (simp)
(*** erule ***)
lemma ren_tr_prefixE:
"[| prefix v u ; s [[r]]tr u ;
!! t. [| prefix t s ; t [[r]]tr v |] ==> R
|] ==> R"
apply (insert ren_tr_prefix[of v u s r])
by (auto)
(*************************************************************
inverse R
*************************************************************)
lemma ren_inv_sub_Evset[simp]: "[[r]]inv Evset <= Evset"
by (auto simp add: ren_inv_def Evset_def)
lemma ren_inv_sub:
"X <= Y ==> [[r]]inv X <= [[r]]inv Y"
by (auto simp add: ren_inv_def)
lemma ren_inv_Un[simp]:
"[[r]]inv(X Un Y) = [[r]]inv X Un [[r]]inv Y"
by (auto simp add: ren_inv_def)
(*** [[r]]inv preserves "no Tick" ***)
lemma ren_inv_no_Tick[simp]: "([[r]]inv X <= Evset) = (X <= Evset)"
by (auto simp add: ren_inv_def Evset_def)
(****************** to add it again ******************)
declare disj_not1 [simp]
declare not_None_eq [simp]
end
lemma renx_not_None_lm:
∀r n s t. (n, s, t) ∈ renx r --> s ≠ None ∧ t ≠ None
lemma renx_not_None:
(n, s, t) ∈ renx r ==> s ≠ None ∧ t ≠ None
lemma ren_tr_nil:
[]t [[r]]tr []t
lemma ren_tr_Tick:
[Tick]t [[r]]tr [Tick]t
lemma ren_tr_Ev:
[| s [[r]]tr t; (a, b) ∈ r; s ≠ None |] ==> ([Ev a]t @t s) [[r]]tr ([Ev b]t @t t)
lemmas ren_tr_intros:
[| s [[r]]tr t; (a, b) ∈ r; s ≠ None |] ==> ([Ev a]t @t s) [[r]]tr ([Ev b]t @t t)
lemma ren_tr_elims_lm:
[| s [[r]]tr t; s = []t ∧ t = []t --> P; s = [Tick]t ∧ t = [Tick]t --> P; ∀a b s' t'. s' [[r]]tr t' ∧ s = [Ev a]t @t s' ∧ t = [Ev b]t @t t' ∧ (a, b) ∈ r ∧ s' ≠ None --> P |] ==> P
lemma ren_tr_elims:
[| s [[r]]tr t; [| s = []t; t = []t |] ==> P; [| s = [Tick]t; t = [Tick]t |] ==> P; !!a b s' t'. [| s' [[r]]tr t'; s = [Ev a]t @t s'; t = [Ev b]t @t t'; (a, b) ∈ r; s' ≠ None |] ==> P |] ==> P
lemma ren_tr_not_None_lm:
∀r s t. s [[r]]tr t --> s ≠ None ∧ t ≠ None
lemma ren_tr_not_None:
s [[r]]tr t ==> s ≠ None ∧ t ≠ None
lemma ren_tr_None_False1:
¬ None [[r]]tr t
lemma ren_tr_None_False2:
¬ s [[r]]tr None
lemma ren_tr_nil1:
[]t [[r]]tr s = (s = []t)
lemma ren_tr_nil2:
s [[r]]tr []t = (s = []t)
lemma ren_tr_Tick1:
[Tick]t [[r]]tr s = (s = [Tick]t)
lemma ren_tr_Tick2:
s [[r]]tr [Tick]t = (s = [Tick]t)
lemma ren_tr_Ev_decompo_left_only_if:
([Ev a]t @t s) [[r]]tr u ==> ∃b t. u = [Ev b]t @t t ∧ (a, b) ∈ r ∧ s [[r]]tr t
lemma ren_tr_Ev_decompo_left_if:
[| (a, b) ∈ r; s [[r]]tr t |] ==> ([Ev a]t @t s) [[r]]tr ([Ev b]t @t t)
lemma ren_tr_Ev_decompo_left:
([Ev a]t @t s) [[r]]tr u = (∃b t. u = [Ev b]t @t t ∧ (a, b) ∈ r ∧ s [[r]]tr t)
lemma ren_tr_Ev_decompo_right_only_if:
u [[r]]tr ([Ev b]t @t t) ==> ∃a s. u = [Ev a]t @t s ∧ (a, b) ∈ r ∧ s [[r]]tr t
lemma ren_tr_Ev_decompo_right_if:
[| (a, b) ∈ r; s [[r]]tr t |] ==> ([Ev a]t @t s) [[r]]tr ([Ev b]t @t t)
lemma ren_tr_Ev_decompo_right:
u [[r]]tr ([Ev b]t @t t) = (∃a s. u = [Ev a]t @t s ∧ (a, b) ∈ r ∧ s [[r]]tr t)
lemmas ren_tr_Ev_decompo:
([Ev a]t @t s) [[r]]tr u = (∃b t. u = [Ev b]t @t t ∧ (a, b) ∈ r ∧ s [[r]]tr t)
u [[r]]tr ([Ev b]t @t t) = (∃a s. u = [Ev a]t @t s ∧ (a, b) ∈ r ∧ s [[r]]tr t)
lemma ren_tr_one:
(a, b) ∈ r ==> [Ev a]t [[r]]tr [Ev b]t
lemma ren_tr_one_decompo_left_only_if:
[Ev a]t [[r]]tr t ==> ∃b. t = [Ev b]t ∧ (a, b) ∈ r
lemma ren_tr_one_decompo_left:
[Ev a]t [[r]]tr t = (∃b. t = [Ev b]t ∧ (a, b) ∈ r)
lemma ren_tr_one_decompo_right_only_if:
s [[r]]tr [Ev b]t ==> ∃a. s = [Ev a]t ∧ (a, b) ∈ r
lemma ren_tr_one_decompo_right:
s [[r]]tr [Ev b]t = (∃a. s = [Ev a]t ∧ (a, b) ∈ r)
lemmas ren_tr_one_decompo:
[Ev a]t [[r]]tr t = (∃b. t = [Ev b]t ∧ (a, b) ∈ r)
s [[r]]tr [Ev b]t = (∃a. s = [Ev a]t ∧ (a, b) ∈ r)
lemma ren_tr_notick_left_lm:
∀r s t. s [[r]]tr t ∧ notick s --> notick t
lemma ren_tr_notick_left:
[| s [[r]]tr t; notick s |] ==> notick t
lemma ren_tr_notick_right_lm:
∀r s t. s [[r]]tr t ∧ notick t --> notick s
lemma ren_tr_notick_right:
[| s [[r]]tr t; notick t |] ==> notick s
lemma ren_tr_appt_notick_not_None:
∀r s1 s2 t1 t2. s1 [[r]]tr t1 ∧ s2 [[r]]tr t2 ∧ (s1 @t s2 ≠ None ∨ t1 @t t2 ≠ None) --> (s1 @t s2) [[r]]tr (t1 @t t2)
lemma ren_tr_appt:
[| s1 [[r]]tr t1; s2 [[r]]tr t2; s1 @t s2 ≠ None ∨ t1 @t t2 ≠ None |] ==> (s1 @t s2) [[r]]tr (t1 @t t2)
lemma ren_tr_appt_Ev:
[| (a, b) ∈ r; s [[r]]tr t |] ==> ([Ev a]t @t s) [[r]]tr ([Ev b]t @t t)
lemma ren_tr_appt_decompo_left_only_if_lm:
∀r s1 s2 t. (s1 @t s2) [[r]]tr t --> (∃t1 t2. t = t1 @t t2 ∧ s1 [[r]]tr t1 ∧ s2 [[r]]tr t2)
lemma ren_tr_appt_decompo_left_only_if:
(s1 @t s2) [[r]]tr t ==> ∃t1 t2. t = t1 @t t2 ∧ s1 [[r]]tr t1 ∧ s2 [[r]]tr t2
lemma ren_tr_appt_decompo_left:
t ≠ None ==> (s1 @t s2) [[r]]tr t = (∃t1 t2. t = t1 @t t2 ∧ s1 [[r]]tr t1 ∧ s2 [[r]]tr t2)
lemma ren_tr_appt_decompo_right_only_if_lm:
∀r t1 t2 s. s [[r]]tr (t1 @t t2) --> (∃s1 s2. s = s1 @t s2 ∧ s1 [[r]]tr t1 ∧ s2 [[r]]tr t2)
lemma ren_tr_appt_decompo_right_only_if:
s [[r]]tr (t1 @t t2) ==> ∃s1 s2. s = s1 @t s2 ∧ s1 [[r]]tr t1 ∧ s2 [[r]]tr t2
lemma ren_tr_appt_decompo_right:
s ≠ None ==> s [[r]]tr (t1 @t t2) = (∃s1 s2. s = s1 @t s2 ∧ s1 [[r]]tr t1 ∧ s2 [[r]]tr t2)
lemmas ren_tr_appt_decompo:
t ≠ None ==> (s1 @t s2) [[r]]tr t = (∃t1 t2. t = t1 @t t2 ∧ s1 [[r]]tr t1 ∧ s2 [[r]]tr t2)
s ≠ None ==> s [[r]]tr (t1 @t t2) = (∃s1 s2. s = s1 @t s2 ∧ s1 [[r]]tr t1 ∧ s2 [[r]]tr t2)
lemma ren_tr_head_decompo:
([Ev a]t @t s) [[r]]tr ([Ev b]t @t t) = ((a, b) ∈ r ∧ s [[r]]tr t)
lemma ren_tr_last_decompo_Ev:
notick s ∨ notick t ==> (s @t [Ev a]t) [[r]]tr (t @t [Ev b]t) = (s [[r]]tr t ∧ (a, b) ∈ r)
lemma ren_tr_last_decompo_Tick:
notick s ∨ notick t ==> (s @t [Tick]t) [[r]]tr (t @t [Tick]t) = s [[r]]tr t
lemma ren_tr_lengtht:
∀r s t. s [[r]]tr t --> lengtht s = lengtht t
lemma ren_tr_prefix_lm:
∀r u v s. prefix v u ∧ s [[r]]tr u --> (∃t. prefix t s ∧ t [[r]]tr v)
lemma ren_tr_prefix:
[| prefix v u; s [[r]]tr u |] ==> ∃t. prefix t s ∧ t [[r]]tr v
lemma ren_tr_prefixE:
[| prefix v u; s [[r]]tr u; !!t. [| prefix t s; t [[r]]tr v |] ==> R |] ==> R
lemma ren_inv_sub_Evset:
[[r]]inv Evset ⊆ Evset
lemma ren_inv_sub:
X ⊆ Y ==> [[r]]inv X ⊆ [[r]]inv Y
lemma ren_inv_Un:
[[r]]inv (X ∪ Y) = [[r]]inv X ∪ [[r]]inv Y
lemma ren_inv_no_Tick:
([[r]]inv X ⊆ Evset) = (X ⊆ Evset)