(*-------------------------------------------*
| CSP-Prover |
| November 2004 |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory Trace_par = Prefix:
(* The following simplification rules are deleted in this theory file *)
(* because they unexpectly rewrite (notick | t = []t) *)
(* *)
(* disj_not1: (~ P | Q) = (P --> Q) *)
declare disj_not1 [simp del]
(* The following simplification is sometimes unexpected. *)
(* *)
(* not_None_eq: (x ~= None) = (EX y. x = Some y) *)
declare not_None_eq [simp del]
(*****************************************************************
1. s |[X]|list t : lists --> list set
2. s |[X]|tr t : traces --> trace set
3.
4.
*****************************************************************)
consts
parx :: "'a set => (nat * 'a trace * 'a trace * 'a trace) set"
inductive "parx X"
intros
parx_nil_nil:
"(0, []t, []t, []t) : parx X"
parx_Tick_Tick:
"(0, [Tick]t, [Tick]t, [Tick]t) : parx X"
parx_Ev_nil:
"[| (n, u, s, []t) : parx X ; a ~: X |]
==> (Suc n, [Ev a]t @t u, [Ev a]t @t s, []t) : parx X"
parx_nil_Ev:
"[| (n, u, []t, t) : parx X ; a ~: X |]
==> (Suc n, [Ev a]t @t u, []t, [Ev a]t @t t) : parx X"
parx_Ev_sync:
"[| (n, u, s, t) : parx X ; a : X |]
==> (Suc n, [Ev a]t @t u, [Ev a]t @t s, [Ev a]t @t t) : parx X"
parx_Ev_left:
"[| (n, u, s, t) : parx X ; a ~: X |]
==> (Suc n, [Ev a]t @t u, [Ev a]t @t s, t) : parx X"
parx_Ev_right:
"[| (n, u, s, t) : parx X ; a ~: X |]
==> (Suc n, [Ev a]t @t u, s, [Ev a]t @t t) : parx X"
consts
par_tr :: "'a trace => 'a set => 'a trace => 'a trace set"
("(_ |[_]|tr _)" [76,0,77] 76)
defs
par_tr_def : "s |[X]|tr t == {u. EX n. (n, u, s, t) : parx X}"
lemma par_tr_defE: "[| u : s |[X]|tr t ; EX n. (n, u, s, t) : parx X ==> R |] ==> R"
by (simp add: par_tr_def)
(*************************************************************
parx imples "not None"
*************************************************************)
lemma parx_not_None_imp:
"ALL X n u s t. (n, u, s, t) : parx X --> (u ~= None & s ~= None & t ~= None)"
apply (rule allI)
apply (rule allI)
apply (induct_tac n)
apply (intro allI impI)
apply (erule parx.elims)
apply (simp_all)
(* step case *)
apply (intro allI impI)
apply (erule parx.elims)
by (simp_all)
(*** rule ***)
lemma parx_not_None:
"(n, u, s, t) : parx X ==> (u ~= None & s ~= None & t ~= None)"
by (simp add: parx_not_None_imp)
(*** par_tr ***)
lemma par_tr_not_None_imp:
"ALL X u s t. u : s |[X]|tr t --> (u ~= None & s ~= None & t ~= None)"
apply (simp add: par_tr_def)
apply (intro allI impI)
apply (erule exE)
by (simp add: parx_not_None)
(*** rule ***)
lemma par_tr_not_None:
"u : s |[X]|tr t ==> (u ~= None & s ~= None & t ~= None)"
by (simp add: par_tr_not_None_imp)
(*** None False ***)
lemma par_tr_None_False1[simp]:
"None : s |[X]|tr t = False"
apply (case_tac "~ None : s |[X]|tr t", simp)
apply (insert par_tr_not_None[of "None" s X t])
by (simp)
lemma par_tr_None_False2[simp]:
"u : None |[X]|tr t = False"
apply (case_tac "~ u : None |[X]|tr t", simp)
apply (insert par_tr_not_None[of u "None" X t])
by (simp)
lemma par_tr_None_False3[simp]:
"u : s |[X]|tr None = False"
apply (case_tac "~ u : s |[X]|tr None", simp)
apply (insert par_tr_not_None[of u s X "None"])
by (simp)
(*************************************************************
par_tr intros and elims
*************************************************************)
(*-------------------*
| intros |
*-------------------*)
lemma par_tr_nil_nil:
"[]t : []t |[X]|tr []t"
apply (simp add: par_tr_def)
apply (rule_tac x="0" in exI)
by (simp add: parx.intros)
lemma par_tr_Tick_Tick:
"[Tick]t : [Tick]t |[X]|tr [Tick]t"
apply (simp add: par_tr_def)
apply (rule_tac x="0" in exI)
by (simp add: parx.intros)
lemma par_tr_Ev_nil:
"[| u : s |[X]|tr []t ; a ~: X |]
==> [Ev a]t @t u : ([Ev a]t @t s) |[X]|tr []t"
apply (simp add: par_tr_def)
apply (erule exE)
apply (rule_tac x="Suc n" in exI)
by (simp add: parx.intros)
lemma par_tr_nil_Ev:
"[| u : []t |[X]|tr t ; a ~: X |]
==> [Ev a]t @t u : []t |[X]|tr ([Ev a]t @t t)"
apply (simp add: par_tr_def)
apply (erule exE)
apply (rule_tac x="Suc n" in exI)
by (simp add: parx.intros)
lemma par_tr_Ev_sync:
"[| u : s |[X]|tr t ; a : X |]
==> [Ev a]t @t u : ([Ev a]t @t s) |[X]|tr ([Ev a]t @t t)"
apply (simp add: par_tr_def)
apply (erule exE)
apply (rule_tac x="Suc n" in exI)
by (simp add: parx.intros)
lemma par_tr_Ev_left:
"[| u : s |[X]|tr t ; a ~: X |]
==> [Ev a]t @t u : ([Ev a]t @t s) |[X]|tr t"
apply (simp add: par_tr_def)
apply (erule exE)
apply (rule_tac x="Suc n" in exI)
by (simp add: parx.intros)
lemma par_tr_Ev_right:
"[| u : s |[X]|tr t ; a ~: X |]
==> [Ev a]t @t u : s |[X]|tr ([Ev a]t @t t)"
apply (simp add: par_tr_def)
apply (erule exE)
apply (rule_tac x="Suc n" in exI)
by (simp add: parx.intros)
(*** intro rule ***)
lemmas par_tr_intros =
par_tr_nil_nil
par_tr_Tick_Tick
par_tr_Ev_nil
par_tr_nil_Ev
par_tr_Ev_sync
par_tr_Ev_left
par_tr_Ev_right
(*-------------------*
| elims |
*-------------------*)
lemma par_tr_elims_lm:
"[| u : s |[X]|tr t ;
u ~= None ;
s ~= None ;
t ~= None ;
(u = []t & s = []t & t = []t) --> P ;
(u = [Tick]t & s = [Tick]t & t = [Tick]t) --> P ;
ALL a s' u'.
(u = [Ev a]t @t u' & s = [Ev a]t @t s' & t = []t &
u' : s' |[X]|tr []t & a ~: X)
--> P;
ALL a t' u'.
(u = [Ev a]t @t u' & s = []t & t = [Ev a]t @t t' &
u' : []t |[X]|tr t' & a ~: X)
--> P;
ALL a s' t' u'.
(u = [Ev a]t @t u' & s = [Ev a]t @t s' & t = [Ev a]t @t t' &
u' : s' |[X]|tr t' & a : X)
--> P;
ALL a s' u'.
(u = [Ev a]t @t u' & s = [Ev a]t @t s' &
u' : s' |[X]|tr t & a ~: X)
--> P;
ALL a t' u'.
(u = [Ev a]t @t u' & t = [Ev a]t @t t' &
u' : s |[X]|tr t' & a ~: X)
--> P |]
==> P"
apply (simp add: par_tr_def)
apply (erule exE)
apply (erule parx.elims)
apply (simp)
apply (simp)
apply (simp)
apply (drule mp)
apply (rule_tac x="na" in exI, simp, simp)
apply (simp)
apply (drule mp)
apply (rule_tac x="na" in exI, simp, simp)
apply (simp)
apply (drule mp)
apply (rule_tac x="na" in exI, simp, simp)
apply (simp)
apply (drule mp)
apply (rule_tac x="na" in exI, simp, simp)
apply (simp)
apply (rotate_tac 4)
apply (drule mp)
apply (rule_tac x="na" in exI, simp, simp)
done
(*** elim rule ***)
lemma par_tr_elims:
"[| u : s |[X]|tr t ;
[| u = []t; s = []t; t = []t |] ==> P ;
[| u = [Tick]t; s = [Tick]t; t = [Tick]t |] ==> P ;
!!a s' u'.
[| u = [Ev a]t @t u'; s = [Ev a]t @t s'; t = []t ;
u' : s' |[X]|tr []t; a ~: X |]
==> P;
!!a t' u'.
[| u = [Ev a]t @t u' ; s = []t ; t = [Ev a]t @t t' ;
u' : []t |[X]|tr t'; a ~: X |]
==> P;
!!a s' t' u'.
[| u = [Ev a]t @t u' ; s = [Ev a]t @t s' ; t = [Ev a]t @t t' ;
u' : s' |[X]|tr t'; a : X |]
==> P;
!!a s' u'.
[| u = [Ev a]t @t u' ; s = [Ev a]t @t s' ;
u' : s' |[X]|tr t; a ~: X |]
==> P;
!!a t' u'.
[| u = [Ev a]t @t u' ; t = [Ev a]t @t t' ;
u' : s |[X]|tr t'; a ~: X |]
==> P |]
==> P"
apply (insert par_tr_not_None_imp)
apply (drule_tac x="X" in spec)
apply (drule_tac x="u" in spec)
apply (drule_tac x="s" in spec)
apply (drule_tac x="t" in spec)
apply (rule par_tr_elims_lm[of u s X t])
by (simp_all)
(*************************************************************
par_tr decomposition
*************************************************************)
(*-------------------*
| par nil |
*-------------------*)
(*** par_tr ***)
lemma par_tr_nil_only_if:
"[]t : s |[X]|tr t ==> s = []t & t = []t"
apply (erule par_tr_elims)
by (simp_all)
(*** iff ***)
lemma par_tr_nil1[simp]:
"([]t : s |[X]|tr t) = (s = []t & t = []t)"
apply (rule iffI)
apply (simp add: par_tr_nil_only_if)
by (simp add: par_tr_intros)
lemma par_tr_nil2[simp]:
"(u : []t |[X]|tr []t) = (u = []t)"
apply (rule iffI)
apply (erule par_tr_elims)
by (simp_all)
(*-------------------*
| par Tick |
*-------------------*)
(*** only if ***)
lemma par_tr_Tick_only_if:
"[Tick]t : s |[X]|tr t ==> s = [Tick]t & t = [Tick]t"
apply (erule par_tr_elims)
by (simp_all)
(*** iff ***)
lemma par_tr_Tick1[simp]:
"[Tick]t : s |[X]|tr t = (s = [Tick]t & t = [Tick]t)"
apply (rule iffI)
apply (simp add: par_tr_Tick_only_if)
by (simp add: par_tr_intros)
lemma par_tr_Tick2[simp]:
"(u : [Tick]t |[X]|tr [Tick]t) = (u = [Tick]t)"
apply (rule iffI)
apply (erule par_tr_elims)
by (simp_all)
(*-----------------*
| par Ev |
*-----------------*)
(*** only if ***)
lemma par_tr_Ev_only_if:
"[Ev a]t : s |[X]|tr t
==> ((a : X & s = [Ev a]t & t = [Ev a]t) |
(a ~: X & s = [Ev a]t & t = []t) |
(a ~: X & s = []t & t = [Ev a]t ))"
apply (erule par_tr_elims)
by (simp_all)
(*** if ***)
lemma par_tr_Ev_if:
"((a : X & s = [Ev a]t & t = [Ev a]t) |
(a ~: X & s = [Ev a]t & t = []t) |
(a ~: X & s = []t & t = [Ev a]t ))
==> [Ev a]t : s |[X]|tr t"
apply (erule disjE)
apply (insert par_tr_Ev_sync[of "[]t" "[]t" X "[]t" a], simp)
apply (erule disjE)
apply (insert par_tr_Ev_left[of "[]t" "[]t" X "[]t" a], simp)
apply (insert par_tr_Ev_right[of "[]t" "[]t" X "[]t" a], simp)
done
lemma par_tr_Ev:
"[Ev a]t : s |[X]|tr t
= ((a : X & s = [Ev a]t & t = [Ev a]t) |
(a ~: X & s = [Ev a]t & t = []t) |
(a ~: X & s = []t & t = [Ev a]t ))"
apply (rule iffI)
apply (simp add: par_tr_Ev_only_if)
apply (simp add: par_tr_Ev_if)
done
(*--------------------------------------------*
| par one |
*--------------------------------------------*)
lemma par_tr_one:
"[e]t : s |[X]|tr t
= ((e = Tick & s = [Tick]t & t = [Tick]t) |
(EX a. e = Ev a &
((a : X & s = [Ev a]t & t = [Ev a]t) |
(a ~: X & s = [Ev a]t & t = []t) |
(a ~: X & s = []t & t = [Ev a]t ))))"
apply (insert event_tick_or_Ev)
apply (drule_tac x="e" in spec)
apply (erule disjE)
apply (simp)
apply (erule exE)
apply (simp add: par_tr_Ev)
done
(*--------------------------------------------*
| par head |
*--------------------------------------------*)
(*** only if ***)
lemma par_tr_head_only_if:
"[Ev a]t @t u : s |[X]|tr t
==> (a : X & (EX s' t'. u : s' |[X]|tr t'
& s = [Ev a]t @t s' & t = [Ev a]t @t t')) |
(a ~: X & (EX s'. u : s' |[X]|tr t & s = [Ev a]t @t s')) |
(a ~: X & (EX t'. u : s |[X]|tr t' & t = [Ev a]t @t t'))"
apply (erule par_tr_elims)
by (simp_all add: par_tr_not_None)
(*** if ***)
lemma par_tr_head_if:
"(a : X & (EX s' t'. u : s' |[X]|tr t'
& s = [Ev a]t @t s' & t = [Ev a]t @t t')) |
(a ~: X & (EX s'. u : s' |[X]|tr t & s = [Ev a]t @t s')) |
(a ~: X & (EX t'. u : s |[X]|tr t' & t = [Ev a]t @t t'))
==> [Ev a]t @t u : s |[X]|tr t"
(*** sync ***)
apply (erule disjE)
apply (elim conjE exE)
apply (simp add: par_tr_intros)
(*** left ***)
apply (erule disjE)
apply (elim conjE exE)
apply (simp add: par_tr_intros)
(*** right ***)
apply (elim conjE exE)
apply (simp add: par_tr_intros)
done
(*** iff ***)
lemma par_tr_head:
"[Ev a]t @t u : s |[X]|tr t
= ((a : X & (EX s' t'. u : s' |[X]|tr t'
& s = [Ev a]t @t s' & t = [Ev a]t @t t')) |
(a ~: X & (EX s'. u : s' |[X]|tr t & s = [Ev a]t @t s')) |
(a ~: X & (EX t'. u : s |[X]|tr t' & t = [Ev a]t @t t')))"
apply (rule iffI)
apply (simp add: par_tr_head_only_if)
apply (simp add: par_tr_head_if)
done
(*--------------------------------------------*
| par last |
*--------------------------------------------*)
(*** only if ***)
lemma par_tr_last_only_if_lm:
"ALL X u s t e.
(u @t [e]t : s |[X]|tr t & notick u)
--> (((e : Ev ` X | e = Tick) &
(EX s' t'. u : s' |[X]|tr t' & s = s' @t [e]t & t = t' @t [e]t
& notick s' & notick t')) |
(e ~: Ev ` X & e ~= Tick &
(EX s'. u : s' |[X]|tr t & s = s' @t [e]t & notick s')) |
(e ~: Ev ` X & e ~= Tick &
(EX t'. u : s |[X]|tr t' & t = t' @t [e]t & notick t')))"
apply (rule allI)
apply (rule allI)
apply (induct_tac u rule: induct_trace)
(* base *)
(* None *)
apply (simp)
(* []t *)
apply (intro allI impI)
apply (simp add: par_tr_one)
apply (erule disjE, simp)
apply (erule exE, force)
(* [Tick]t *)
apply (simp)
(* [Ev a]t @t ua *)
apply (intro allI impI)
apply (elim conjE)
apply (simp add: par_tr_head)
(* head sync *)
apply (erule disjE)
apply (elim conjE exE)
apply (drule_tac x="s'" in spec)
apply (drule_tac x="t'" in spec)
apply (drule_tac x="e" in spec)
apply (simp)
(* last sync *)
apply (erule disjE, simp)
apply (elim conjE exE)
apply (rule disjI1)
apply (rule_tac x="[Ev a]t @t s'a" in exI)
apply (rule_tac x="[Ev a]t @t t'a" in exI)
apply (simp)
apply (rule_tac x="s'a" in exI)
apply (rule_tac x="t'a" in exI)
apply (simp)
(* last left *)
apply (erule disjE, simp)
apply (elim conjE exE)
apply (rule disjI1)
apply (rule_tac x="[Ev a]t @t s'a" in exI, simp)
apply (rule_tac x="s'a" in exI)
apply (rule_tac x="t'" in exI)
apply (simp)
(* last right *)
apply (simp)
apply (elim conjE exE)
apply (rule disjI2)
apply (rule_tac x="[Ev a]t @t t'a" in exI, simp)
apply (rule_tac x="s'" in exI)
apply (rule_tac x="t'a" in exI)
apply (simp)
(* head left *)
apply (erule disjE)
apply (elim conjE exE)
apply (drule_tac x="s'" in spec)
apply (drule_tac x="t" in spec)
apply (drule_tac x="e" in spec)
apply (simp)
(* last sync *)
apply (erule disjE, simp)
apply (elim conjE exE)
apply (rule disjI1)
apply (rule_tac x="[Ev a]t @t s'a" in exI)
apply (rule_tac x="t'" in exI)
apply (simp)
apply (rule disjI1)
apply (rule_tac x="s'a" in exI, simp)
(* last left *)
apply (erule disjE, simp)
apply (elim conjE exE)
apply (rule disjI1)
apply (rule_tac x="[Ev a]t @t s'a" in exI, simp)
apply (rule disjI1)
apply (rule_tac x="s'a" in exI, simp)
(* last right *)
apply (simp)
apply (elim conjE exE)
apply (rule disjI2)
apply (rule_tac x="t'" in exI, simp)
apply (rule disjI1)
apply (rule_tac x="s'" in exI, simp)
(* head right *)
apply (elim conjE exE)
apply (drule_tac x="sa" in spec)
apply (drule_tac x="t'" in spec)
apply (drule_tac x="e" in spec)
apply (simp)
(* last sync *)
apply (erule disjE, simp)
apply (elim conjE exE)
apply (rule disjI1)
apply (rule_tac x="s'" in exI)
apply (rule_tac x="[Ev a]t @t t'a" in exI)
apply (simp)
apply (rule disjI2)
apply (rule_tac x="t'a" in exI, simp)
(* last left *)
apply (erule disjE, simp)
apply (elim conjE exE)
apply (rule disjI1)
apply (rule_tac x="s'" in exI, simp)
apply (rule disjI2)
apply (rule_tac x="t'" in exI, simp)
(* last right *)
apply (simp)
apply (elim conjE exE)
apply (rule disjI2)
apply (rule_tac x="[Ev a]t @t t'a" in exI, simp)
apply (rule disjI2)
apply (rule_tac x="t'a" in exI, simp)
done
(*** rule ***)
lemma par_tr_last_only_if:
"u @t [e]t : s |[X]|tr t
==> (((e : Ev ` X | e = Tick) &
(EX s' t'. u : s' |[X]|tr t' & s = s' @t [e]t & t = t' @t [e]t
& notick s' & notick t')) |
(e ~: Ev ` X & e ~= Tick &
(EX s'. u : s' |[X]|tr t & s = s' @t [e]t & notick s')) |
(e ~: Ev ` X & e ~= Tick &
(EX t'. u : s |[X]|tr t' & t = t' @t [e]t & notick t')))"
apply (case_tac "u @t [e]t = None", simp)
apply (simp add: decompo_appt_not_None)
by (simp add: par_tr_last_only_if_lm)
(*** if ***)
lemma par_tr_last_if_lm:
"ALL X u s t e.
(((e : Ev ` X | e = Tick) &
(EX s' t'. u : s' |[X]|tr t' & s = s' @t [e]t & t = t' @t [e]t
& notick s' & notick t')) |
(e ~: Ev ` X & e ~= Tick &
(EX s'. u : s' |[X]|tr t & s = s' @t [e]t & notick s')) |
(e ~: Ev ` X & e ~= Tick &
(EX t'. u : s |[X]|tr t' & t = t' @t [e]t & notick t')))
--> u @t [e]t : s |[X]|tr t"
apply (rule allI)
apply (rule allI)
apply (induct_tac u rule: induct_trace)
(* base *)
(* None *)
apply (simp)
(* []t *)
apply (intro allI impI)
apply (simp add: par_tr_one)
apply (erule disjE)
apply (elim conjE)
apply (erule disjE, force, force)
apply (erule disjE)
apply (simp add: not_tick_to_Ev)
apply (elim conjE exE)
apply (simp, force)
apply (simp add: not_tick_to_Ev)
apply (elim conjE exE)
apply (simp, force)
(* [Tick]t *)
apply (simp)
(* [Ev a]t @t ua *)
apply (intro allI impI)
(* last sync *)
apply (erule disjE)
apply (elim conjE exE)
apply (erule par_tr_elims)
apply (simp_all add: par_tr_intros)
(* last left *)
apply (erule disjE)
apply (elim conjE exE)
apply (erule par_tr_elims)
apply (simp_all add: par_tr_intros)
(* last right *)
apply (elim conjE exE)
apply (erule par_tr_elims)
apply (simp_all add: par_tr_intros)
done
(*** rule ***)
lemma par_tr_last_if:
"[|((e : Ev ` X | e = Tick) &
(EX s' t'. u : s' |[X]|tr t' & s = s' @t [e]t & t = t' @t [e]t
& notick s' & notick t')) |
(e ~: Ev ` X & e ~= Tick &
(EX s'. u : s' |[X]|tr t & s = s' @t [e]t & notick s')) |
(e ~: Ev ` X & e ~= Tick &
(EX t'. u : s |[X]|tr t' & t = t' @t [e]t & notick t')) |]
==> u @t [e]t : s |[X]|tr t"
by (simp add: par_tr_last_if_lm)
(*** iff ***)
lemma par_tr_last:
"u @t [e]t : s |[X]|tr t
= (((e : Ev ` X | e = Tick) &
(EX s' t'. u : s' |[X]|tr t' & s = s' @t [e]t & t = t' @t [e]t
& notick s' & notick t')) |
(e ~: Ev ` X & e ~= Tick &
(EX s'. u : s' |[X]|tr t & s = s' @t [e]t & notick s')) |
(e ~: Ev ` X & e ~= Tick &
(EX t'. u : s |[X]|tr t' & t = t' @t [e]t & notick t')))"
apply (rule iffI)
apply (simp add: par_tr_last_only_if)
apply (simp add: par_tr_last_if)
done
(*************************************************************
symmetricity
*************************************************************)
lemma par_tr_sym_only_if_lm:
"ALL u s t. u : (s |[X]|tr t) --> u : (t |[X]|tr s)"
apply (rule allI)
apply (induct_tac u rule: induct_trace)
apply (simp_all)
apply (intro allI impI)
apply (erule par_tr_elims)
(* []t *)
apply (simp)
(* [Tick]t *)
apply (simp)
(* Ev_nil *)
apply (drule_tac x="s'" in spec)
apply (drule_tac x="[]t" in spec)
apply (simp add: par_tr_intros)
(* nil_Ev *)
apply (drule_tac x="[]t" in spec)
apply (drule_tac x="t'" in spec)
apply (simp add: par_tr_intros)
(* sync *)
apply (drule_tac x="s'" in spec)
apply (drule_tac x="t'" in spec)
apply (simp add: par_tr_intros)
(* left *)
apply (drule_tac x="s'" in spec)
apply (drule_tac x="t" in spec)
apply (simp add: par_tr_intros)
(* right *)
apply (drule_tac x="sa" in spec)
apply (drule_tac x="t'" in spec)
apply (simp add: par_tr_intros)
done
lemma par_tr_sym_only_if:
"u : (s |[X]|tr t) ==> u : (t |[X]|tr s)"
apply (insert par_tr_sym_only_if_lm[of X])
apply (drule_tac x="u" in spec)
apply (drule_tac x="s" in spec)
apply (drule_tac x="t" in spec)
apply (simp)
done
lemma par_tr_sym: "s |[X]|tr t = t |[X]|tr s"
apply (auto)
apply (rule par_tr_sym_only_if, simp_all)
apply (rule par_tr_sym_only_if, simp_all)
done
(*************************************************************
prefix_closed
*************************************************************)
lemma par_tr_prefix_lm:
"ALL X v u s t. prefix v u & u : s |[X]|tr t
--> (EX s' t'. v : s' |[X]|tr t' &
prefix s' s & prefix t' t)"
apply (rule allI)
apply (rule allI)
apply (induct_tac v rule: induct_trace)
apply (simp_all add: disj_not1)
apply (intro allI impI)
apply (case_tac "u = None", simp)
apply (simp add: prefix_def)
apply (elim conjE exE)
apply (simp)
apply (intro allI impI)
apply (case_tac "u = None", simp)
apply (elim conjE exE)
apply (simp add: par_tr_head)
(* sync *)
apply (erule disjE)
apply (elim conjE exE)
apply (drule_tac x="u'" in spec)
apply (drule_tac x="s'" in spec)
apply (drule_tac x="t'" in spec)
apply (force)
(* left *)
apply (erule disjE)
apply (elim conjE exE)
apply (drule_tac x="u'" in spec)
apply (drule_tac x="s'" in spec)
apply (drule_tac x="t" in spec)
apply (force)
(* right *)
apply (elim conjE exE)
apply (drule_tac x="u'" in spec)
apply (drule_tac x="sa" in spec)
apply (drule_tac x="t'" in spec)
apply (force)
done
(*** rule ***)
lemma par_tr_prefix:
"[| prefix v u ; u : s |[X]|tr t |]
==> (EX s' t'. v : s' |[X]|tr t' & prefix s' s & prefix t' t)"
apply (insert par_tr_prefix_lm)
apply (drule_tac x="X" in spec)
apply (drule_tac x="v" in spec)
apply (drule_tac x="u" in spec)
apply (drule_tac x="s" in spec)
apply (drule_tac x="t" in spec)
by (simp)
lemma par_tr_prefixE:
"[| prefix v u ; u : s |[X]|tr t ;
!! s' t'. [| v : s' |[X]|tr t' ; prefix s' s ; prefix t' t |] ==> R
|] ==> R"
apply (insert par_tr_prefix[of v u s X t])
by (auto)
(*************************************************************
parallel lemmas etc.
*************************************************************)
(*******************************
par_tr lenght
*******************************)
lemma par_tr_lengtht_lm:
"ALL X u s t. u : s |[X]|tr t
--> lengtht s <= lengtht u & lengtht t <= lengtht u"
apply (rule allI)
apply (rule allI)
apply (induct_tac u rule: induct_trace)
apply (simp_all)
apply (intro allI impI)
apply (simp add: par_tr_head)
(* sync *)
apply (erule disjE)
apply (elim conjE exE)
apply (drule_tac x="s'" in spec)
apply (drule_tac x="t'" in spec)
apply (simp add: par_tr_not_None)
(* left *)
apply (erule disjE)
apply (elim conjE exE)
apply (drule_tac x="s'" in spec)
apply (drule_tac x="t" in spec)
apply (simp add: par_tr_not_None)
apply (force)
(* right *)
apply (elim conjE exE)
apply (drule_tac x="sa" in spec)
apply (drule_tac x="t'" in spec)
apply (simp add: par_tr_not_None)
apply (force)
done
(*** rule ***)
lemma par_tr_lengtht:
"u : s |[X]|tr t ==> lengtht s <= lengtht u & lengtht t <= lengtht u"
by (simp add: par_tr_lengtht_lm)
(*** ruleE ***)
lemma par_tr_lengthtE:
"[| u : s |[X]|tr t ;
[| lengtht s <= lengtht u ; lengtht t <= lengtht u|] ==> R |] ==> R"
by (simp add: par_tr_lengtht)
(**************************************************
para
**************************************************)
lemma par_tr_nil_Ev_rev:
"u : []t |[X]|tr ([Ev a]t @t t)
==> a ~: X & (EX v. u = [Ev a]t @t v & v : []t |[X]|tr t)"
apply (erule par_tr_elims)
by (simp_all add: par_tr_intros par_tr_not_None)
lemma par_tr_Tick_Ev_rev:
"u : [Tick]t |[X]|tr ([Ev a]t @t t)
==> a ~: X & (EX v. u = [Ev a]t @t v & v : [Tick]t |[X]|tr t)"
apply (erule par_tr_elims)
by (simp_all add: par_tr_intros par_tr_not_None)
(**************************************************
notick
**************************************************)
lemma par_tr_notick_lm:
"ALL u s t. (notick u & u : s |[X]|tr t) --> notick s & notick t"
apply (rule allI)
apply (induct_tac u rule: rev_induct_trace)
apply (simp_all)
apply (intro allI impI)
apply (simp add: par_tr_last)
apply (elim conjE disjE exE)
apply (drule_tac x="s'" in spec)
apply (drule_tac x="t'" in spec)
apply (simp)
apply (drule_tac x="s'" in spec)
apply (drule_tac x="t'" in spec)
apply (simp)
apply (drule_tac x="s'" in spec)
apply (drule_tac x="t" in spec)
apply (simp)
apply (drule_tac x="sa" in spec)
apply (drule_tac x="t'" in spec)
apply (simp)
done
lemma par_tr_notick_left:
"[| notick u; u : s |[X]|tr t |] ==> notick s"
apply (insert par_tr_notick_lm[of X])
apply (drule_tac x="u" in spec)
apply (drule_tac x="s" in spec)
apply (drule_tac x="t" in spec)
by (simp)
lemma par_tr_notick_right:
"[| notick u; u : s |[X]|tr t |] ==> notick t"
apply (insert par_tr_notick_lm[of X])
apply (drule_tac x="u" in spec)
apply (drule_tac x="s" in spec)
apply (drule_tac x="t" in spec)
by (simp)
lemmas par_tr_notick = par_tr_notick_left par_tr_notick_right
(****************** to add it again ******************)
declare disj_not1 [simp]
declare not_None_eq [simp]
end
lemma par_tr_defE:
[| u ∈ s |[X]|tr t; ∃n. (n, u, s, t) ∈ parx X ==> R |] ==> R
lemma parx_not_None_imp:
∀X n u s t. (n, u, s, t) ∈ parx X --> u ≠ None ∧ s ≠ None ∧ t ≠ None
lemma parx_not_None:
(n, u, s, t) ∈ parx X ==> u ≠ None ∧ s ≠ None ∧ t ≠ None
lemma par_tr_not_None_imp:
∀X u s t. u ∈ s |[X]|tr t --> u ≠ None ∧ s ≠ None ∧ t ≠ None
lemma par_tr_not_None:
u ∈ s |[X]|tr t ==> u ≠ None ∧ s ≠ None ∧ t ≠ None
lemma par_tr_None_False1:
(None ∈ s |[X]|tr t) = False
lemma par_tr_None_False2:
(u ∈ None |[X]|tr t) = False
lemma par_tr_None_False3:
(u ∈ s |[X]|tr None) = False
lemma par_tr_nil_nil:
[]t ∈ []t |[X]|tr []t
lemma par_tr_Tick_Tick:
[Tick]t ∈ [Tick]t |[X]|tr [Tick]t
lemma par_tr_Ev_nil:
[| u ∈ s |[X]|tr []t; a ∉ X |] ==> [Ev a]t @t u ∈ ([Ev a]t @t s) |[X]|tr []t
lemma par_tr_nil_Ev:
[| u ∈ []t |[X]|tr t; a ∉ X |] ==> [Ev a]t @t u ∈ []t |[X]|tr ([Ev a]t @t t)
lemma par_tr_Ev_sync:
[| u ∈ s |[X]|tr t; a ∈ X |] ==> [Ev a]t @t u ∈ ([Ev a]t @t s) |[X]|tr ([Ev a]t @t t)
lemma par_tr_Ev_left:
[| u ∈ s |[X]|tr t; a ∉ X |] ==> [Ev a]t @t u ∈ ([Ev a]t @t s) |[X]|tr t
lemma par_tr_Ev_right:
[| u ∈ s |[X]|tr t; a ∉ X |] ==> [Ev a]t @t u ∈ s |[X]|tr ([Ev a]t @t t)
lemmas par_tr_intros:
[]t ∈ []t |[X]|tr []t
[Tick]t ∈ [Tick]t |[X]|tr [Tick]t
[| u ∈ s |[X]|tr []t; a ∉ X |] ==> [Ev a]t @t u ∈ ([Ev a]t @t s) |[X]|tr []t
[| u ∈ []t |[X]|tr t; a ∉ X |] ==> [Ev a]t @t u ∈ []t |[X]|tr ([Ev a]t @t t)
[| u ∈ s |[X]|tr t; a ∈ X |] ==> [Ev a]t @t u ∈ ([Ev a]t @t s) |[X]|tr ([Ev a]t @t t)
[| u ∈ s |[X]|tr t; a ∉ X |] ==> [Ev a]t @t u ∈ ([Ev a]t @t s) |[X]|tr t
[| u ∈ s |[X]|tr t; a ∉ X |] ==> [Ev a]t @t u ∈ s |[X]|tr ([Ev a]t @t t)
lemma par_tr_elims_lm:
[| u ∈ s |[X]|tr t; u ≠ None; s ≠ None; t ≠ None; u = []t ∧ s = []t ∧ t = []t --> P; u = [Tick]t ∧ s = [Tick]t ∧ t = [Tick]t --> P; ∀a s' u'. u = [Ev a]t @t u' ∧ s = [Ev a]t @t s' ∧ t = []t ∧ u' ∈ s' |[X]|tr []t ∧ a ∉ X --> P; ∀a t' u'. u = [Ev a]t @t u' ∧ s = []t ∧ t = [Ev a]t @t t' ∧ u' ∈ []t |[X]|tr t' ∧ a ∉ X --> P; ∀a s' t' u'. u = [Ev a]t @t u' ∧ s = [Ev a]t @t s' ∧ t = [Ev a]t @t t' ∧ u' ∈ s' |[X]|tr t' ∧ a ∈ X --> P; ∀a s' u'. u = [Ev a]t @t u' ∧ s = [Ev a]t @t s' ∧ u' ∈ s' |[X]|tr t ∧ a ∉ X --> P; ∀a t' u'. u = [Ev a]t @t u' ∧ t = [Ev a]t @t t' ∧ u' ∈ s |[X]|tr t' ∧ a ∉ X --> P |] ==> P
lemma par_tr_elims:
[| u ∈ s |[X]|tr t; [| u = []t; s = []t; t = []t |] ==> P; [| u = [Tick]t; s = [Tick]t; t = [Tick]t |] ==> P; !!a s' u'. [| u = [Ev a]t @t u'; s = [Ev a]t @t s'; t = []t; u' ∈ s' |[X]|tr []t; a ∉ X |] ==> P; !!a t' u'. [| u = [Ev a]t @t u'; s = []t; t = [Ev a]t @t t'; u' ∈ []t |[X]|tr t'; a ∉ X |] ==> P; !!a s' t' u'. [| u = [Ev a]t @t u'; s = [Ev a]t @t s'; t = [Ev a]t @t t'; u' ∈ s' |[X]|tr t'; a ∈ X |] ==> P; !!a s' u'. [| u = [Ev a]t @t u'; s = [Ev a]t @t s'; u' ∈ s' |[X]|tr t; a ∉ X |] ==> P; !!a t' u'. [| u = [Ev a]t @t u'; t = [Ev a]t @t t'; u' ∈ s |[X]|tr t'; a ∉ X |] ==> P |] ==> P
lemma par_tr_nil_only_if:
[]t ∈ s |[X]|tr t ==> s = []t ∧ t = []t
lemma par_tr_nil1:
([]t ∈ s |[X]|tr t) = (s = []t ∧ t = []t)
lemma par_tr_nil2:
(u ∈ []t |[X]|tr []t) = (u = []t)
lemma par_tr_Tick_only_if:
[Tick]t ∈ s |[X]|tr t ==> s = [Tick]t ∧ t = [Tick]t
lemma par_tr_Tick1:
([Tick]t ∈ s |[X]|tr t) = (s = [Tick]t ∧ t = [Tick]t)
lemma par_tr_Tick2:
(u ∈ [Tick]t |[X]|tr [Tick]t) = (u = [Tick]t)
lemma par_tr_Ev_only_if:
[Ev a]t ∈ s |[X]|tr t ==> a ∈ X ∧ s = [Ev a]t ∧ t = [Ev a]t ∨ a ∉ X ∧ s = [Ev a]t ∧ t = []t ∨ a ∉ X ∧ s = []t ∧ t = [Ev a]t
lemma par_tr_Ev_if:
a ∈ X ∧ s = [Ev a]t ∧ t = [Ev a]t ∨ a ∉ X ∧ s = [Ev a]t ∧ t = []t ∨ a ∉ X ∧ s = []t ∧ t = [Ev a]t ==> [Ev a]t ∈ s |[X]|tr t
lemma par_tr_Ev:
([Ev a]t ∈ s |[X]|tr t) = (a ∈ X ∧ s = [Ev a]t ∧ t = [Ev a]t ∨ a ∉ X ∧ s = [Ev a]t ∧ t = []t ∨ a ∉ X ∧ s = []t ∧ t = [Ev a]t)
lemma par_tr_one:
([e]t ∈ s |[X]|tr t) = (e = Tick ∧ s = [Tick]t ∧ t = [Tick]t ∨ (∃a. e = Ev a ∧ (a ∈ X ∧ s = [Ev a]t ∧ t = [Ev a]t ∨ a ∉ X ∧ s = [Ev a]t ∧ t = []t ∨ a ∉ X ∧ s = []t ∧ t = [Ev a]t)))
lemma par_tr_head_only_if:
[Ev a]t @t u ∈ s |[X]|tr t ==> a ∈ X ∧ (∃s' t'. u ∈ s' |[X]|tr t' ∧ s = [Ev a]t @t s' ∧ t = [Ev a]t @t t') ∨ a ∉ X ∧ (∃s'. u ∈ s' |[X]|tr t ∧ s = [Ev a]t @t s') ∨ a ∉ X ∧ (∃t'. u ∈ s |[X]|tr t' ∧ t = [Ev a]t @t t')
lemma par_tr_head_if:
a ∈ X ∧ (∃s' t'. u ∈ s' |[X]|tr t' ∧ s = [Ev a]t @t s' ∧ t = [Ev a]t @t t') ∨ a ∉ X ∧ (∃s'. u ∈ s' |[X]|tr t ∧ s = [Ev a]t @t s') ∨ a ∉ X ∧ (∃t'. u ∈ s |[X]|tr t' ∧ t = [Ev a]t @t t') ==> [Ev a]t @t u ∈ s |[X]|tr t
lemma par_tr_head:
([Ev a]t @t u ∈ s |[X]|tr t) = (a ∈ X ∧ (∃s' t'. u ∈ s' |[X]|tr t' ∧ s = [Ev a]t @t s' ∧ t = [Ev a]t @t t') ∨ a ∉ X ∧ (∃s'. u ∈ s' |[X]|tr t ∧ s = [Ev a]t @t s') ∨ a ∉ X ∧ (∃t'. u ∈ s |[X]|tr t' ∧ t = [Ev a]t @t t'))
lemma par_tr_last_only_if_lm:
∀X u s t e. u @t [e]t ∈ s |[X]|tr t ∧ notick u --> (e ∈ Ev ` X ∨ e = Tick) ∧ (∃s' t'. u ∈ s' |[X]|tr t' ∧ s = s' @t [e]t ∧ t = t' @t [e]t ∧ notick s' ∧ notick t') ∨ e ∉ Ev ` X ∧ e ≠ Tick ∧ (∃s'. u ∈ s' |[X]|tr t ∧ s = s' @t [e]t ∧ notick s') ∨ e ∉ Ev ` X ∧ e ≠ Tick ∧ (∃t'. u ∈ s |[X]|tr t' ∧ t = t' @t [e]t ∧ notick t')
lemma par_tr_last_only_if:
u @t [e]t ∈ s |[X]|tr t ==> (e ∈ Ev ` X ∨ e = Tick) ∧ (∃s' t'. u ∈ s' |[X]|tr t' ∧ s = s' @t [e]t ∧ t = t' @t [e]t ∧ notick s' ∧ notick t') ∨ e ∉ Ev ` X ∧ e ≠ Tick ∧ (∃s'. u ∈ s' |[X]|tr t ∧ s = s' @t [e]t ∧ notick s') ∨ e ∉ Ev ` X ∧ e ≠ Tick ∧ (∃t'. u ∈ s |[X]|tr t' ∧ t = t' @t [e]t ∧ notick t')
lemma par_tr_last_if_lm:
∀X u s t e. (e ∈ Ev ` X ∨ e = Tick) ∧ (∃s' t'. u ∈ s' |[X]|tr t' ∧ s = s' @t [e]t ∧ t = t' @t [e]t ∧ notick s' ∧ notick t') ∨ e ∉ Ev ` X ∧ e ≠ Tick ∧ (∃s'. u ∈ s' |[X]|tr t ∧ s = s' @t [e]t ∧ notick s') ∨ e ∉ Ev ` X ∧ e ≠ Tick ∧ (∃t'. u ∈ s |[X]|tr t' ∧ t = t' @t [e]t ∧ notick t') --> u @t [e]t ∈ s |[X]|tr t
lemma par_tr_last_if:
(e ∈ Ev ` X ∨ e = Tick) ∧ (∃s' t'. u ∈ s' |[X]|tr t' ∧ s = s' @t [e]t ∧ t = t' @t [e]t ∧ notick s' ∧ notick t') ∨ e ∉ Ev ` X ∧ e ≠ Tick ∧ (∃s'. u ∈ s' |[X]|tr t ∧ s = s' @t [e]t ∧ notick s') ∨ e ∉ Ev ` X ∧ e ≠ Tick ∧ (∃t'. u ∈ s |[X]|tr t' ∧ t = t' @t [e]t ∧ notick t') ==> u @t [e]t ∈ s |[X]|tr t
lemma par_tr_last:
(u @t [e]t ∈ s |[X]|tr t) = ((e ∈ Ev ` X ∨ e = Tick) ∧ (∃s' t'. u ∈ s' |[X]|tr t' ∧ s = s' @t [e]t ∧ t = t' @t [e]t ∧ notick s' ∧ notick t') ∨ e ∉ Ev ` X ∧ e ≠ Tick ∧ (∃s'. u ∈ s' |[X]|tr t ∧ s = s' @t [e]t ∧ notick s') ∨ e ∉ Ev ` X ∧ e ≠ Tick ∧ (∃t'. u ∈ s |[X]|tr t' ∧ t = t' @t [e]t ∧ notick t'))
lemma par_tr_sym_only_if_lm:
∀u s t. u ∈ s |[X]|tr t --> u ∈ t |[X]|tr s
lemma par_tr_sym_only_if:
u ∈ s |[X]|tr t ==> u ∈ t |[X]|tr s
lemma par_tr_sym:
s |[X]|tr t = t |[X]|tr s
lemma par_tr_prefix_lm:
∀X v u s t. prefix v u ∧ u ∈ s |[X]|tr t --> (∃s' t'. v ∈ s' |[X]|tr t' ∧ prefix s' s ∧ prefix t' t)
lemma par_tr_prefix:
[| prefix v u; u ∈ s |[X]|tr t |] ==> ∃s' t'. v ∈ s' |[X]|tr t' ∧ prefix s' s ∧ prefix t' t
lemma par_tr_prefixE:
[| prefix v u; u ∈ s |[X]|tr t; !!s' t'. [| v ∈ s' |[X]|tr t'; prefix s' s; prefix t' t |] ==> R |] ==> R
lemma par_tr_lengtht_lm:
∀X u s t. u ∈ s |[X]|tr t --> lengtht s ≤ lengtht u ∧ lengtht t ≤ lengtht u
lemma par_tr_lengtht:
u ∈ s |[X]|tr t ==> lengtht s ≤ lengtht u ∧ lengtht t ≤ lengtht u
lemma par_tr_lengthtE:
[| u ∈ s |[X]|tr t; [| lengtht s ≤ lengtht u; lengtht t ≤ lengtht u |] ==> R |] ==> R
lemma par_tr_nil_Ev_rev:
u ∈ []t |[X]|tr ([Ev a]t @t t) ==> a ∉ X ∧ (∃v. u = [Ev a]t @t v ∧ v ∈ []t |[X]|tr t)
lemma par_tr_Tick_Ev_rev:
u ∈ [Tick]t |[X]|tr ([Ev a]t @t t) ==> a ∉ X ∧ (∃v. u = [Ev a]t @t v ∧ v ∈ [Tick]t |[X]|tr t)
lemma par_tr_notick_lm:
∀u s t. notick u ∧ u ∈ s |[X]|tr t --> notick s ∧ notick t
lemma par_tr_notick_left:
[| notick u; u ∈ s |[X]|tr t |] ==> notick s
lemma par_tr_notick_right:
[| notick u; u ∈ s |[X]|tr t |] ==> notick t
lemmas par_tr_notick:
[| notick u; u ∈ s |[X]|tr t |] ==> notick s
[| notick u; u ∈ s |[X]|tr t |] ==> notick t