Up to index of Isabelle/HOL/HOL-Complex/CSP-Prover
theory Seq_compo_cpo = CSP_proc + Domain_SF_prod_cpo: (*-------------------------------------------*
| CSP-Prover |
| February 2005 |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory Seq_compo_cpo = CSP_proc + Domain_SF_prod_cpo:
(* The following simplification rules are deleted in this theory file *)
(* because they unexpectly rewrite UnionT and InterT. *)
(* disj_not1: (~ P | Q) = (P --> Q) *)
declare disj_not1 [simp del]
(* The following simplification is sometimes unexpected. *)
(* *)
(* not_None_eq: (x ~= None) = (EX y. x = Some y) *)
declare not_None_eq [simp del]
(* The following simplification rules are deleted in this theory file *)
(* because they unexpectly rewrite UnionT and InterT. *)
(* Union (B ` A) = (UN x:A. B x) *)
(* Inter (B ` A) = (INT x:A. B x) *)
(* disj_not1: (~ P | Q) = (P --> Q) *)
declare Union_image_eq [simp del]
declare Inter_image_eq [simp del]
(*****************************************************************
1. [[P ;; Q]]T : continuous
2. [[P ;; Q]]F : continuous
3.
4.
*****************************************************************)
(*** Seq_compo_evalT_continuous ***)
lemma Seq_compo_evalT_continuous:
"[| continuous [[P]]T ; continuous [[Q]]T |]
==> continuous [[P ;; Q]]T"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (drule_tac x="X" in spec, simp)
apply (drule_tac x="X" in spec, simp)
apply (elim conjE exE)
apply (subgoal_tac "xa = x")
apply (rule_tac x="x" in exI, simp)
apply (subgoal_tac "X ~= {}")
apply (simp add: isLUB_UnionT)
apply (rule eq_iffI)
(* <= *)
apply (rule)
apply (simp add: memT_UnionT)
apply (simp only: Seq_compo_mem)
apply (simp add: memT_UnionT)
apply (elim bexE exE conjE disjE)
apply (rule_tac x="xb" in bexI)
apply (fast)
apply (simp)
apply (simp add: directed_def)
apply (drule_tac x="xb" in spec)
apply (drule_tac x="xc" in spec)
apply (simp, elim conjE exE)
apply (rule_tac x="z" in bexI)
apply (rule disjI2)
apply (rule_tac x="s" in exI)
apply (rule_tac x="ta" in exI)
apply (simp)
apply (rule conjI)
apply (rule memT_subsetT, simp)
apply (simp add: evalT_mono)
apply (rotate_tac -4)
apply (rule memT_subsetT, simp)
apply (simp add: evalT_mono)
apply (simp)
(* => *)
apply (rule)
apply (simp add: memT_UnionT)
apply (simp only: Seq_compo_mem)
apply (simp add: memT_UnionT)
apply (fast)
apply (simp add: directed_def)
by (simp add: LUB_unique)
(*** Seq_compo_evalF_continuous ***)
lemma Seq_compo_evalF_continuous:
"[| continuous [[P]]F ; continuous [[Q]]F ;
continuous [[P]]T |]
==> continuous [[P ;; Q]]F"
apply (simp add: continuous_iff)
apply (intro allI impI)
apply (drule_tac x="X" in spec, simp)
apply (drule_tac x="X" in spec, simp)
apply (drule_tac x="X" in spec, simp)
apply (elim conjE exE)
apply (subgoal_tac "xa = x")
apply (subgoal_tac "xb = x")
apply (rule_tac x="x" in exI, simp)
apply (subgoal_tac "X ~= {}")
apply (simp add: isLUB_UnionF)
apply (simp add: isLUB_UnionT)
apply (rule eq_iffI)
(* <= *)
apply (rule)
apply (simp add: memF_UnionF)
apply (simp add: Seq_compo_mem)
apply (simp add: memF_UnionF)
apply (simp add: memT_UnionT)
apply (elim conjE bexE disjE)
(* 1 *)
apply (fast)
(* 2 *)
apply (elim conjE bexE exE)
apply (simp add: directed_def)
apply (drule_tac x="xc" in spec)
apply (drule_tac x="xd" in spec)
apply (simp, elim conjE exE)
apply (rule_tac x="z" in bexI)
apply (rule disjI2)
apply (rule_tac x="sa" in exI)
apply (rule_tac x="t" in exI)
apply (simp)
apply (rule conjI)
apply (rule memT_subsetT, simp)
apply (simp add: evalT_mono)
apply (rotate_tac -4)
apply (rule memF_subsetF, simp)
apply (simp add: evalF_mono)
apply (simp)
(* => *)
apply (rule)
apply (simp add: memF_UnionF)
apply (simp add: Seq_compo_mem)
apply (simp add: memF_UnionF)
apply (simp add: memT_UnionT)
apply (fast)
apply (simp add: directed_def)
by (simp_all add: LUB_unique)
(****************** to add them again ******************)
declare Union_image_eq [simp]
declare Inter_image_eq [simp]
declare disj_not1 [simp]
declare not_None_eq [simp]
end
lemma Seq_compo_evalT_continuous:
[| continuous [[P]]T; continuous [[Q]]T |] ==> continuous [[P ;; Q]]T
lemma Seq_compo_evalF_continuous:
[| continuous [[P]]F; continuous [[Q]]F; continuous [[P]]T |] ==> continuous [[P ;; Q]]F