(*-------------------------------------------*
| CSP-Prover |
| December 2004 |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory STOP = CSP_semantics:
(*****************************************************************
1. ([[STOP]]T ev, [[STOP]]F ev) : domSF
2.
3.
4.
*****************************************************************)
(*********************************************************
domT and domF
*********************************************************)
(*** STOP_memT ***)
lemma STOP_memT: "(t :t [[STOP]]T ev) = (t = []t)"
by (simp add: evalT_def memT_def Abs_domT_inverse)
(*** STOP_domF ***)
lemma STOP_domF: "{f. EX X. f = ([]t, X)} : domF"
by (simp add: domF_def HC_F2_def)
(*** STOP_memF ***)
lemma STOP_memF : "(f :f [[STOP]]F ev) = (EX X. f = ([]t, X))"
apply (simp add: memF_def evalF_def)
by (simp add: STOP_domF Abs_domF_inverse)
lemmas STOP_mem = STOP_memT STOP_memF
(*******************************
domSF
*******************************)
(* T2 *)
lemma STOP_T2 : "HC_T2 ([[STOP]]T ev, [[STOP]]F ev)"
by (simp add: HC_T2_def STOP_mem)
(* F3 *)
lemma STOP_F3 : "HC_F3 ([[STOP]]T ev, [[STOP]]F ev)"
by (simp add: HC_F3_def STOP_mem)
(* T3_F4 *)
lemma STOP_T3_F4 : "HC_T3_F4 ([[STOP]]T ev, [[STOP]]F ev)"
by (simp add: HC_T3_F4_def STOP_mem)
(*** STOP_domSF ***)
lemma STOP_domSF : "([[STOP]]T ev, [[STOP]]F ev) : domSF"
apply (simp add: domSF_iff)
apply (simp add: STOP_T2)
apply (simp add: STOP_F3)
apply (simp add: STOP_T3_F4)
done
end
lemma STOP_memT:
(t :t [[STOP]]T ev) = (t = []t)
lemma STOP_domF:
{f. ∃X. f = ([]t, X)} ∈ domF
lemma STOP_memF:
(f :f [[STOP]]F ev) = (∃X. f = ([]t, X))
lemmas STOP_mem:
(t :t [[STOP]]T ev) = (t = []t)
(f :f [[STOP]]F ev) = (∃X. f = ([]t, X))
lemma STOP_T2:
HC_T2 ([[STOP]]T ev, [[STOP]]F ev)
lemma STOP_F3:
HC_F3 ([[STOP]]T ev, [[STOP]]F ev)
lemma STOP_T3_F4:
HC_T3_F4 ([[STOP]]T ev, [[STOP]]F ev)
lemma STOP_domSF:
([[STOP]]T ev, [[STOP]]F ev) ∈ domSF