Up to index of Isabelle/HOL/HOL-Complex/CSP-Prover
theory Rep_int_choice = CSP_semantics: (*-------------------------------------------*
| CSP-Prover |
| December 2004 |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory Rep_int_choice = CSP_semantics:
(* The following simplification rules are deleted in this theory file *)
(* because they unexpectly rewrite UnionT and InterT. *)
(* disj_not1: (~ P | Q) = (P --> Q) *)
declare disj_not1 [simp del]
(* The following simplification is sometimes unexpected. *)
(* *)
(* not_None_eq: (x ~= None) = (EX y. x = Some y) *)
declare not_None_eq [simp del]
(*********************************************************
Dom_T
*********************************************************)
(*** Rep_int_choice_domT ***)
lemma Rep_int_choice_domT:
"{t. t = []t | (EX a. t :t [[Pf a]]T ev & a : X) } : domT"
apply (simp add: domT_def HC_T1_def)
apply (rule conjI)
apply (rule_tac x="[]t" in exI, simp)
apply (simp add: prefix_closed_def)
apply (intro allI impI)
apply (elim conjE exE)
apply (erule disjE, simp) (* []t *)
apply (elim conjE exE)
apply (rule disjI2)
apply (rule_tac x="a" in exI, simp)
apply (rule memT_prefix_closed)
by (simp_all)
(*** Rep_int_choice_memT ***)
lemma Rep_int_choice_memT:
"(t :t [[! :X .. Pf]]T ev) =
(t = []t | (EX a. t :t [[Pf a]]T ev & a : X))"
apply (simp add: evalT_def)
by (simp add: memT_def Abs_domT_inverse Rep_int_choice_domT[simplified memT_def])
(*********************************************************
Dom_F
*********************************************************)
(*** Rep_int_choice_domF ***)
lemma Rep_int_choice_domF:
"{f. EX a. f :f [[Pf a]]F ev & a : X } : domF"
apply (simp add: domF_def HC_F2_def)
apply (intro allI impI)
apply (elim conjE exE)
apply (rule_tac x="a" in exI, simp)
apply (rule memF_F2, simp_all)
done
(*** Rep_int_choice_memT ***)
lemma Rep_int_choice_memF:
"(f :f [[! :X .. Pf]]F ev) =
(EX a. f :f [[Pf a]]F ev & a : X)"
apply (simp add: evalF_def)
by (simp add: memF_def Abs_domF_inverse Rep_int_choice_domF[simplified memF_def])
lemmas Rep_int_choice_mem = Rep_int_choice_memT Rep_int_choice_memF
(*******************************
domSF
*******************************)
(* T2 *)
lemma Rep_int_choice_T2 :
"ALL a. ([[Pf a]]T ev, [[Pf a]]F ev) : domSF
==> HC_T2 ([[! :X .. Pf]]T ev, [[! :X .. Pf]]F ev)"
apply (simp add: HC_T2_def Rep_int_choice_mem)
apply (intro allI impI)
apply (elim conjE exE)
apply (rule disjI2)
apply (drule_tac x="a" in spec)
apply (rule_tac x="a" in exI)
apply (simp add: domSF_def HC_T2_def)
by (auto)
(* F3 *)
lemma Rep_int_choice_F3 :
"ALL a. ([[Pf a]]T ev, [[Pf a]]F ev) : domSF
==> HC_F3 ([[! :X .. Pf]]T ev, [[! :X .. Pf]]F ev)"
apply (simp add: HC_F3_def Rep_int_choice_mem)
apply (intro allI impI)
apply (elim conjE exE)
apply (drule_tac x="a" in spec)
apply (rule_tac x="a" in exI, simp)
apply (simp add: domSF_def HC_F3_def)
apply (elim conjE)
apply (drule_tac x="s" in spec)
apply (drule_tac x="Xa" in spec)
apply (drule_tac x="Y" in spec)
apply (simp)
apply (drule mp)
apply (intro allI impI)
apply (drule_tac x="aa" in spec, simp)
apply (drule_tac x="a" in spec, simp)
by (simp)
(* T3_F4 *)
lemma Rep_int_choice_T3_F4 :
"ALL a. ([[Pf a]]T ev, [[Pf a]]F ev) : domSF
==> HC_T3_F4 ([[! :X .. Pf]]T ev, [[! :X .. Pf]]F ev)"
apply (simp add: HC_T3_F4_def Rep_int_choice_mem)
apply (intro allI impI)
apply (elim conjE exE)
apply (drule_tac x="a" in spec)
apply (simp add: domSF_iff HC_T3_F4_def)
apply (elim conjE exE)
apply (drule_tac x="s" in spec)
by (auto)
(*** Rep_int_choice_domSF ***)
lemma Rep_int_choice_domSF :
"ALL a. ([[Pf a]]T ev, [[Pf a]]F ev) : domSF
==> ([[! :X .. Pf]]T ev, [[! :X .. Pf]]F ev) : domSF"
apply (simp (no_asm) add: domSF_iff)
apply (simp add: Rep_int_choice_T2)
apply (simp add: Rep_int_choice_F3)
apply (simp add: Rep_int_choice_T3_F4)
done
(*********************************************************
mono
*********************************************************)
(*** T ***)
lemma Rep_int_choice_evalT_mono:
"ALL a:X. [[Pf a]]T ev1 <= [[Qf a]]T ev2
==> [[! :X .. Pf]]T ev1 <= [[! :X .. Qf]]T ev2"
apply (simp add: subsetT_iff)
apply (intro allI impI)
apply (simp add: Rep_int_choice_memT)
apply (erule disjE, simp)
apply (elim conjE exE)
apply (drule_tac x="a" in bspec, simp)
apply (drule_tac x="t" in spec, simp)
apply (rule disjI2)
apply (rule_tac x="a" in exI)
by (simp)
(*** F ***)
lemma Rep_int_choice_evalF_mono:
"ALL a:X. [[Pf a]]F ev1 <= [[Qf a]]F ev2
==> [[! :X .. Pf]]F ev1 <= [[! :X .. Qf]]F ev2"
apply (simp add: subsetF_iff)
apply (intro allI impI)
apply (simp add: Rep_int_choice_memF)
apply (elim conjE exE)
apply (drule_tac x="a" in bspec, simp)
apply (drule_tac x="s" in spec)
apply (drule_tac x="Xa" in spec)
apply (simp)
apply (rule_tac x="a" in exI)
by (simp)
(****************** to add them again ******************)
declare disj_not1 [simp]
declare not_None_eq [simp]
end
lemma Rep_int_choice_domT:
{t. t = []t ∨ (∃a. t :t [[Pf a]]T ev ∧ a ∈ X)} ∈ domT
lemma Rep_int_choice_memT:
(t :t [[! :X .. Pf]]T ev) = (t = []t ∨ (∃a. t :t [[Pf a]]T ev ∧ a ∈ X))
lemma Rep_int_choice_domF:
{f. ∃a. f :f [[Pf a]]F ev ∧ a ∈ X} ∈ domF
lemma Rep_int_choice_memF:
(f :f [[! :X .. Pf]]F ev) = (∃a. f :f [[Pf a]]F ev ∧ a ∈ X)
lemmas Rep_int_choice_mem:
(t :t [[! :X .. Pf]]T ev) = (t = []t ∨ (∃a. t :t [[Pf a]]T ev ∧ a ∈ X))
(f :f [[! :X .. Pf]]F ev) = (∃a. f :f [[Pf a]]F ev ∧ a ∈ X)
lemma Rep_int_choice_T2:
∀a. ([[Pf a]]T ev, [[Pf a]]F ev) ∈ domSF ==> HC_T2 ([[! :X .. Pf]]T ev, [[! :X .. Pf]]F ev)
lemma Rep_int_choice_F3:
∀a. ([[Pf a]]T ev, [[Pf a]]F ev) ∈ domSF ==> HC_F3 ([[! :X .. Pf]]T ev, [[! :X .. Pf]]F ev)
lemma Rep_int_choice_T3_F4:
∀a. ([[Pf a]]T ev, [[Pf a]]F ev) ∈ domSF ==> HC_T3_F4 ([[! :X .. Pf]]T ev, [[! :X .. Pf]]F ev)
lemma Rep_int_choice_domSF:
∀a. ([[Pf a]]T ev, [[Pf a]]F ev) ∈ domSF ==> ([[! :X .. Pf]]T ev, [[! :X .. Pf]]F ev) ∈ domSF
lemma Rep_int_choice_evalT_mono:
∀a∈X. [[Pf a]]T ev1 ≤ [[Qf a]]T ev2 ==> [[! :X .. Pf]]T ev1 ≤ [[! :X .. Qf]]T ev2
lemma Rep_int_choice_evalF_mono:
∀a∈X. [[Pf a]]F ev1 ≤ [[Qf a]]F ev2 ==> [[! :X .. Pf]]F ev1 ≤ [[! :X .. Qf]]F ev2