Up to index of Isabelle/HOL/HOL-Complex/CSP-Prover
theory Proc_name = CSP_semantics:(*-------------------------------------------* | CSP-Prover | | December 2004 | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory Proc_name = CSP_semantics: (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* disj_not1: (~ P | Q) = (P --> Q) *) declare disj_not1 [simp del] (* The following simplification is sometimes unexpected. *) (* *) (* not_None_eq: (x ~= None) = (EX y. x = Some y) *) declare not_None_eq [simp del] (********************************************************* DomSF *********************************************************) (*** Proc_name_memSF ***) lemma Proc_name_evalSF: "[[<C>]]SF ev = (ev C)" apply (simp add: evalSF_def) apply (simp add: pairSF_def) apply (simp add: evalT_def evalF_def) apply (simp add: fstSF_def sndSF_def) apply (simp add: Rep_domSF_inverse) done (********************************************************* mono *********************************************************) (*** T ***) lemma Proc_name_evalT_mono: "ev1 <= ev2 ==> [[<C>]]T ev1 <= [[<C>]]T ev2" apply (simp add: subsetSF_prod_decompo) apply (simp add: evalT_def) apply (simp add: order_prod_def) done (*** F ***) lemma Proc_name_evalF_mono: "ev1 <= ev2 ==> [[<C>]]F ev1 <= [[<C>]]F ev2" apply (simp add: subsetSF_prod_decompo) apply (simp add: evalF_def) apply (simp add: order_prod_def) done (****************** to add them again ******************) declare disj_not1 [simp] declare not_None_eq [simp] end
lemma Proc_name_evalSF:
[[<C>]]SF ev = ev C
lemma Proc_name_evalT_mono:
ev1 ≤ ev2 ==> [[<C>]]T ev1 ≤ [[<C>]]T ev2
lemma Proc_name_evalF_mono:
ev1 ≤ ev2 ==> [[<C>]]F ev1 ≤ [[<C>]]F ev2