(*-------------------------------------------*
| CSP-Prover |
| December 2004 |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory Hiding = CSP_semantics:
(* The following simplification rules are deleted in this theory file *)
(* because they unexpectly rewrite (notick | t = []t) *)
(* *)
(* disj_not1: (~ P | Q) = (P --> Q) *)
declare disj_not1 [simp del]
(* The following simplification is sometimes unexpected. *)
(* *)
(* not_None_eq: (x ~= None) = (EX y. x = Some y) *)
declare not_None_eq [simp del]
(*********************************************************
DomT
*********************************************************)
(*** Hiding_domT ***)
lemma Hiding_domT :
"{t. EX s. t = s --tr X & s :t [[P]]T ev } : domT"
apply (simp add: domT_def HC_T1_def)
apply (rule conjI)
apply (rule_tac x="[]t" in exI, simp)
(* prefix closed *)
apply (simp add: prefix_closed_def)
apply (intro allI impI)
apply (elim conjE exE)
apply (simp add: not_None hide_tr_prefix)
apply (elim conjE exE)
apply (rule_tac x="ta" in exI)
apply (simp)
apply (rule memT_prefix_closed)
by (simp_all)
(*** Hiding_memT ***)
lemma Hiding_memT:
"(t :t [[P -- X]]T ev) =
(EX s. t = s --tr X & s :t [[P]]T ev)"
apply (simp add: evalT_def)
by (simp add: memT_def Abs_domT_inverse Hiding_domT[simplified memT_def])
(*********************************************************
DomF
*********************************************************)
(*** Hiding_domF ***)
lemma Hiding_domF :
"{f. EX s Y. f = (s --tr X, Y) & (s,(Ev`X) Un Y) :f [[P]]F ev} : domF"
apply (simp add: domF_def HC_F2_def)
apply (intro allI impI)
apply (elim conjE exE, simp)
apply (rename_tac t Y Z s)
apply (rule_tac x="s" in exI)
apply (simp)
by (rule memF_F2, simp, force)
lemma Hiding_memF:
"(f :f [[P -- X]]F ev) =
(EX s Y. f = (s --tr X, Y) & (s,(Ev`X) Un Y) :f [[P]]F ev)"
apply (simp only: evalF_def)
by (simp add: memF_def Abs_domF_inverse Hiding_domF[simplified memF_def])
lemmas Hiding_mem = Hiding_memT Hiding_memF
(*********************************************************
domSF
*********************************************************)
(*** T2 ***)
lemma Hiding_T2 :
"([[P]]T ev, [[P]]F ev) : domSF
==> HC_T2 ([[P -- X]]T ev, [[P -- X]]F ev)"
apply (simp add: HC_T2_def Hiding_mem)
apply (intro allI impI)
apply (elim conjE exE)
apply (rule_tac x="sa" in exI)
apply (simp add: domSF_def HC_T2_def)
apply (elim conjE)
apply (drule_tac x="sa" in spec)
by (force)
(*** F3 ***)
lemma Hiding_F3 :
"([[P]]T ev, [[P]]F ev) : domSF
==> HC_F3 ([[P -- X]]T ev, [[P -- X]]F ev)"
apply (simp add: HC_F3_def Hiding_mem)
apply (intro allI impI)
apply (elim conjE exE)
apply (rename_tac t Y Z s)
apply (rule_tac x="s" in exI, simp)
apply (simp add: domSF_def HC_F3_def)
apply (elim conjE)
apply (drule_tac x="s" in spec)
apply (drule_tac x="Ev ` X Un Y" in spec)
apply (drule_tac x="Z - Ev ` X" in spec)
apply (simp)
apply (drule mp)
apply (intro allI impI)
apply (drule_tac x="a" in spec)
apply (simp)
apply (insert event_tick_or_Ev)
apply (drule_tac x="a" in spec)
apply (erule disjE)
(* Tick *)
apply (drule_tac x="s @t [Tick]t" in spec)
apply (simp add: not_None)
(* Ev *)
apply (elim conjE exE)
apply (drule_tac x="s @t [Ev aa]t" in spec)
apply (simp add: not_None)
apply (subgoal_tac "aa ~: X", simp_all)
apply (force)
apply (subgoal_tac "Ev ` X Un Y Un (Z - Ev ` X) = Ev ` X Un (Y Un Z)", simp)
by (auto)
(* T3_F4 *)
lemma Hiding_T3_F4 :
"([[P]]T ev, [[P]]F ev) : domSF
==> HC_T3_F4 ([[P -- X]]T ev, [[P -- X]]F ev)"
apply (simp add: HC_T3_F4_def Hiding_mem)
apply (intro allI impI)
apply (elim conjE exE)
apply (insert hide_tr_decompo_lm)
apply (drule_tac x="X" in spec)
apply (drule_tac x="sa" in spec)
apply (drule_tac x="s" in spec)
apply (drule_tac x="[Tick]t" in spec)
apply (simp add: not_None)
apply (elim conjE exE)
apply (rotate_tac -1)
apply (drule sym)
apply (subgoal_tac "(EX t''. t' = t'' @t [Tick]t & sett t'' <= Ev ` X)")
apply (elim conjE exE)
apply (case_tac "(s' @t t'') = None", simp add: appt_ass_rev del: appt_ass)
apply (case_tac "t'' = None", simp)
(* F4 *)
apply (rule conjI)
apply (rule_tac x="s' @t t''" in exI)
apply (simp)
apply (subgoal_tac "t'' --tr X = []t", simp)
apply (simp add: domSF_def HC_F4_def)
apply (elim conjE)
apply (drule_tac x="s' @t t''" in spec)
apply (subgoal_tac "notick t''")
apply (simp)
apply (simp add: notick_def)
apply (force)
apply (rule hide_tr_nilt_sett_if)
apply (simp)
apply (simp)
(* T3 *)
apply (rule allI)
apply (rule_tac x="sa" in exI, simp)
apply (simp add: domSF_def HC_T3_def)
apply (elim conjE)
apply (drule_tac x="s' @t t''" in spec, simp)
apply (case_tac "~ notick t''", simp, simp)
apply (rule hide_tr_Tick_sett_only_if)
apply (case_tac "t' = None")
by (simp_all)
(*** Hiding_domSF ***)
lemma Hiding_domSF :
"([[P]]T ev, [[P]]F ev) : domSF
==> ([[P -- X]]T ev, [[P -- X]]F ev) : domSF"
apply (simp (no_asm) add: domSF_iff)
apply (simp add: Hiding_T2)
apply (simp add: Hiding_F3)
apply (simp add: Hiding_T3_F4)
done
(*********************************************************
mono
*********************************************************)
(*** T ***)
lemma Hiding_evalT_mono:
"[[P1]]T ev1 <= [[P2]]T ev2 ==> [[P1 -- X]]T ev1 <= [[P2 -- X]]T ev2"
apply (simp add: subsetT_iff)
apply (intro allI impI)
apply (simp add: Hiding_memT)
apply (elim conjE exE)
apply (rule_tac x="s" in exI)
by (simp_all)
(*** F ***)
lemma Hiding_evalF_mono:
"[[P1]]F ev1 <= [[P2]]F ev2 ==> [[P1 -- X]]F ev1 <= [[P2 -- X]]F ev2"
apply (simp add: subsetF_iff)
apply (intro allI impI)
apply (simp add: Hiding_memF)
apply (elim conjE exE)
apply (rule_tac x="sa" in exI)
by (simp_all)
(****************** to add it again ******************)
declare disj_not1 [simp]
declare not_None_eq [simp]
end
lemma Hiding_domT:
{s --tr X |s. s :t [[P]]T ev} ∈ domT
lemma Hiding_memT:
(t :t [[P -- X]]T ev) = (∃s. t = s --tr X ∧ s :t [[P]]T ev)
lemma Hiding_domF:
{(s --tr X, Y) |s Y. (s, Ev ` X ∪ Y) :f [[P]]F ev} ∈ domF
lemma Hiding_memF:
(f :f [[P -- X]]F ev) = (∃s Y. f = (s --tr X, Y) ∧ (s, Ev ` X ∪ Y) :f [[P]]F ev)
lemmas Hiding_mem:
(t :t [[P -- X]]T ev) = (∃s. t = s --tr X ∧ s :t [[P]]T ev)
(f :f [[P -- X]]F ev) = (∃s Y. f = (s --tr X, Y) ∧ (s, Ev ` X ∪ Y) :f [[P]]F ev)
lemma Hiding_T2:
([[P]]T ev, [[P]]F ev) ∈ domSF ==> HC_T2 ([[P -- X]]T ev, [[P -- X]]F ev)
lemma Hiding_F3:
([[P]]T ev, [[P]]F ev) ∈ domSF ==> HC_F3 ([[P -- X]]T ev, [[P -- X]]F ev)
lemma Hiding_T3_F4:
([[P]]T ev, [[P]]F ev) ∈ domSF ==> HC_T3_F4 ([[P -- X]]T ev, [[P -- X]]F ev)
lemma Hiding_domSF:
([[P]]T ev, [[P]]F ev) ∈ domSF ==> ([[P -- X]]T ev, [[P -- X]]F ev) ∈ domSF
lemma Hiding_evalT_mono:
[[P1]]T ev1 ≤ [[P2]]T ev2 ==> [[P1 -- X]]T ev1 ≤ [[P2 -- X]]T ev2
lemma Hiding_evalF_mono:
[[P1]]F ev1 ≤ [[P2]]F ev2 ==> [[P1 -- X]]F ev1 ≤ [[P2 -- X]]F ev2