Up to index of Isabelle/HOL/HOL-Complex/CSP-Prover
theory Ext_choice_cpo = CSP_proc + Domain_SF_prod_cpo:(*-------------------------------------------* | CSP-Prover | | February 2005 | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory Ext_choice_cpo = CSP_proc + Domain_SF_prod_cpo: (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* disj_not1: (~ P | Q) = (P --> Q) *) declare disj_not1 [simp del] (* The following simplification is sometimes unexpected. *) (* *) (* not_None_eq: (x ~= None) = (EX y. x = Some y) *) declare not_None_eq [simp del] (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* Union (B ` A) = (UN x:A. B x) *) (* Inter (B ` A) = (INT x:A. B x) *) (* disj_not1: (~ P | Q) = (P --> Q) *) declare Union_image_eq [simp del] declare Inter_image_eq [simp del] (***************************************************************** 1. [[P [+] Q]]T : continuous 2. [[P [+] Q]]F : continuous 3. 4. *****************************************************************) (*** Ext_choice_evalT_continuous ***) lemma Ext_choice_evalT_continuous: "[| continuous [[P]]T ; continuous [[Q]]T |] ==> continuous [[P [+] Q]]T" apply (simp add: continuous_iff) apply (intro allI impI) apply (drule_tac x="X" in spec, simp) apply (drule_tac x="X" in spec, simp) apply (elim conjE exE) apply (subgoal_tac "xa = x") apply (rule_tac x="x" in exI, simp) apply (subgoal_tac "X ~= {}") apply (simp add: isLUB_UnionT) apply (rule eq_iffI) (* <= *) apply (rule) apply (simp add: memT_UnionT) apply (simp only: Ext_choice_mem) apply (simp add: memT_UnionT) apply (elim bexE disjE) apply (rule_tac x="xb" in bexI, simp_all) apply (rule_tac x="xb" in bexI, simp_all) (* => *) apply (rule) apply (simp add: memT_UnionT) apply (simp only: Ext_choice_mem) apply (simp add: memT_UnionT) apply (elim bexE disjE) apply (rule disjI1) apply (rule_tac x="xb" in bexI, simp_all) apply (rule disjI2) apply (rule_tac x="xb" in bexI, simp_all) apply (simp add: directed_def) by (rule LUB_unique, simp_all) (*** Ext_choice_evalF_continuous ***) lemma Ext_choice_evalF_continuous: "[| continuous [[P]]F ; continuous [[Q]]F ; continuous [[P]]T ; continuous [[Q]]T |] ==> continuous [[P [+] Q]]F" apply (simp add: continuous_iff) apply (intro allI impI) apply (drule_tac x="X" in spec, simp) apply (drule_tac x="X" in spec, simp) apply (drule_tac x="X" in spec, simp) apply (drule_tac x="X" in spec, simp) apply (elim conjE exE) apply (subgoal_tac "xa = x") apply (subgoal_tac "xb = x") apply (subgoal_tac "xc = x") apply (rule_tac x="x" in exI, simp) apply (subgoal_tac "X ~= {}") apply (simp add: isLUB_UnionF) apply (simp add: isLUB_UnionT) apply (rule eq_iffI) (* <= *) apply (rule) apply (simp add: memF_UnionF) apply (simp add: Ext_choice_mem) apply (simp add: memT_UnT) apply (simp add: memF_UnionF memF_IntF) apply (simp add: memT_UnionT) apply (elim conjE bexE disjE) (* 1 *) apply (simp add: directed_def) apply (drule_tac x="xd" in spec) apply (drule_tac x="xe" in spec) apply (simp, elim conjE exE) apply (rule_tac x="z" in bexI) apply (rule disjI1) apply (rule conjI) apply (rule memF_subsetF, simp) apply (simp add: evalF_mono) apply (rotate_tac -4) apply (rule memF_subsetF, simp) apply (simp add: evalF_mono) apply (simp) (* 2-5 *) apply (fast)+ (* => *) apply (rule) apply (simp add: memF_UnionF) apply (simp add: Ext_choice_mem) apply (simp add: memT_UnT) apply (simp add: memF_UnionF memF_IntF) apply (simp add: memT_UnionT) apply (fast) apply (simp add: directed_def) by (rule LUB_unique, simp_all)+ (****************** to add them again ******************) declare Union_image_eq [simp] declare Inter_image_eq [simp] declare disj_not1 [simp] declare not_None_eq [simp] end
lemma Ext_choice_evalT_continuous:
[| continuous [[P]]T; continuous [[Q]]T |] ==> continuous [[P [+] Q]]T
lemma Ext_choice_evalF_continuous:
[| continuous [[P]]F; continuous [[Q]]F; continuous [[P]]T; continuous [[Q]]T |] ==> continuous [[P [+] Q]]F