(*-------------------------------------------*
| CSP-Prover |
| December 2004 |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory Domain_T = Prefix:
(*****************************************************************
1.
2.
3.
4.
*****************************************************************)
(* The following simplification rules are deleted in this theory file *)
(* because they unexpectly rewrite UnionT and InterT. *)
(* Union (B ` A) = (UN x:A. B x) *)
(* Inter (B ` A) = (INT x:A. B x) *)
declare Union_image_eq [simp del]
declare Inter_image_eq [simp del]
(* The following simplification is sometimes unexpected. *)
(* *)
(* not_None_eq: (x ~= None) = (EX y. x = Some y) *)
declare not_None_eq [simp del]
(***********************************************************
type def (Trace Part)
***********************************************************)
consts
HC_T1 :: "'a trace set => bool"
defs
HC_T1_def : "HC_T1 T == (T ~= {} & prefix_closed T & None ~: T)"
typedef 'a domT = "{T::('a trace set). HC_T1(T)}"
apply (rule_tac x ="{[]t}" in exI)
by (simp add: HC_T1_def prefix_closed_def)
declare Rep_domT [simp]
(***********************************************************
operators on domT
***********************************************************)
consts
memT :: "'a trace => 'a domT => bool" ("(_/ :t _)" [50, 51] 50)
CollectT :: "('a trace => bool) => 'a domT"("CollectT")
UnionT :: "'a domT set => 'a domT" ("UnionT _" [90] 90)
InterT :: "'a domT set => 'a domT" ("InterT _" [90] 90)
empT :: "'a domT" ("{}t")
UNIVT :: "'a domT" ("UNIVt")
defs
memT_def : "x :t T == x : (Rep_domT T)"
CollectT_def : "CollectT P == Abs_domT (Collect P)"
UnionT_def : "UnionT Ts == Abs_domT (Union (Rep_domT ` Ts))"
InterT_def : "InterT Ts == Abs_domT (Inter (Rep_domT ` Ts))"
empT_def : "{}t == Abs_domT {}"
UNIVT_def : "UNIVt == Abs_domT UNIV"
syntax
"_nonmemT" :: "'a trace => 'a domT => bool" ("(_/ ~:t _)" [50, 51] 50)
"_UnT" :: "'a domT => 'a domT => 'a domT" ("_ UnT _" [65,66] 65)
"_IntT" :: "'a domT => 'a domT => 'a domT" ("_ IntT _" [70,71] 70)
"@CollT" :: "pttrn => bool => 'a domT" ("(1{_./ _}t)")
"@FinsetT" :: "args => 'a domT" ("{(_)}t")
translations
"x ~:t T" == "~ x :t T"
"T UnT S" == "UnionT {T,S}"
"T IntT S" == "InterT {T,S}"
"{x. P}t" == "Abs_domT {x. P}"
"{X}t" == "Abs_domT {X}"
(*********************************************************
The relation (<=) is defined over domT
*********************************************************)
instance domT :: (type) ord
by (intro_classes)
defs (overloaded)
subsetT_def : "T <= S == (Rep_domT T) <= (Rep_domT S)"
psubsetT_def : "T < S == (Rep_domT T) < (Rep_domT S)"
(*********************************************************
The relation (<=) is a partial order
*********************************************************)
instance domT :: (type) order
apply (intro_classes)
apply (unfold subsetT_def psubsetT_def)
apply (simp)
apply (erule order_trans, simp)
apply (drule order_antisym, simp)
apply (simp add: Rep_domT_inject)
apply (simp only: order_less_le Rep_domT_inject)
done
(***********************************************************
lemmas
***********************************************************)
(*******************************
basic
*******************************)
lemma domT_is_non_empty: "T:domT ==> T ~= {}"
by (simp add: domT_def HC_T1_def)
lemma domT_is_prefix_closed:
"T:domT ==> prefix_closed T"
by (simp add: domT_def HC_T1_def)
lemma domT_is_prefix_closed_unfold:
"[| T:domT ; t : T ; prefix s t |] ==> s : T"
apply (simp add: domT_def HC_T1_def)
apply (rule prefix_closed_iff)
by (simp_all)
(*** {[]t} in domT ***)
lemma nilt_set_in[simp]: "{[]t} : domT"
by (simp add: domT_def HC_T1_def prefix_closed_def)
(*** {[]t, [a]t} in domT ***)
lemma one_t_set_in[simp]: "{[]t, [a]t} : domT"
apply (simp add: domT_def HC_T1_def)
apply (simp add: prefix_closed_def)
apply (intro allI impI)
apply (erule exE)
apply (erule conjE)
apply (erule disjE)
by (simp_all)
(* []t is contained in all domT *)
lemma nilt_in_all_dom: "T : domT ==> []t : T"
apply (simp add: domT_def HC_T1_def)
apply (erule conjE)
apply (subgoal_tac "EX t. t : T")
apply (erule exE)
apply (rule prefix_closed_iff)
by (auto)
(* all the traces in domT is defined *)
lemma domT_not_None: "[| t : T ; T : domT |] ==> t ~= None"
apply (erule contrapos_pn)
by (simp add: domT_def HC_T1_def)
lemma None_notin_Rep_domT[simp]: "None ~: Rep_domT T"
apply (subgoal_tac "Rep_domT T : domT")
apply (simp add: domT_def HC_T1_def)
by (simp)
(*******************************
check in domT
*******************************)
(*** Union ***)
lemma domT_Union_in_domT:
"Ts ~= {} ==> (Union (Rep_domT ` Ts)) : domT"
apply (simp add: domT_def HC_T1_def)
apply (simp add: prefix_closed_def)
apply (rule conjI)
apply (subgoal_tac "EX T. T : Ts")
apply (erule exE)
apply (rule_tac x="T" in bexI)
apply (simp add: domT_is_non_empty)
apply (simp)
apply (force)
apply (intro allI impI)
apply (elim conjE exE bexE)
apply (rule_tac x="x" in bexI)
apply (rule prefix_closed_iff, simp_all)
apply (rule domT_is_prefix_closed)
apply (simp)
done
(*** Un ***)
lemma domT_Un_in_domT:
"(Rep_domT T Un Rep_domT S) : domT"
apply (insert domT_Union_in_domT[of "{T,S}"])
by (simp)
(*** Inter ***)
lemma domT_Inter_in_domT:
"Ts ~= {} ==> (Inter (Rep_domT ` Ts)) : domT"
apply (simp add: domT_def HC_T1_def)
apply (rule conjI)
apply (subgoal_tac "[]t : Inter (Rep_domT ` Ts)", force)
apply (simp add: Inter_def)
apply (simp add: nilt_in_all_dom)
apply (simp add: prefix_closed_def)
apply (intro allI impI ballI)
apply (elim conjE exE)
apply (drule_tac x="x" in bspec, simp)
apply (rule prefix_closed_iff, simp_all)
apply (simp add: domT_is_prefix_closed)
done
(*** Int ***)
lemma domT_Int_in_domT:
"(Rep_domT T Int Rep_domT S) : domT"
apply (insert domT_Inter_in_domT[of "{T,S}"])
by (simp)
lemmas in_domT = domT_Union_in_domT domT_Un_in_domT
domT_Inter_in_domT domT_Int_in_domT
(*******************************
domT type --> set type
*******************************)
(*** UnionT ***)
lemma domT_UnionT_Rep:
"Ts ~= {} ==> Rep_domT (UnionT Ts) = Union (Rep_domT ` Ts)"
by (simp add: UnionT_def Abs_domT_inverse in_domT)
(*** UnT ***)
lemma domT_UnT_Rep:
"Rep_domT (T UnT S) = (Rep_domT T) Un (Rep_domT S)"
by (simp add: domT_UnionT_Rep)
(*** InterT ***)
lemma domT_InterT_Rep:
"Ts ~= {} ==> Rep_domT (InterT Ts) = Inter (Rep_domT ` Ts)"
by (simp add: InterT_def Abs_domT_inverse in_domT)
(*** IntT ***)
lemma domT_IntT_Rep:
"Rep_domT (T IntT S) = (Rep_domT T) Int (Rep_domT S)"
by (simp add: domT_InterT_Rep)
(*********************************************************
memT
*********************************************************)
(* prefix closed *)
lemma memT_prefix_closed:
"[| t :t T ; prefix s t |] ==> s :t T"
apply (simp add: memT_def)
apply (rule domT_is_prefix_closed_unfold)
by (simp_all)
(* []t *)
lemma nilt_in_T[simp]: "[]t :t T"
by (simp add: memT_def nilt_in_all_dom)
(* not None *)
lemma memT_not_None: "t :t T ==> t ~= None"
apply (simp add: memT_def)
apply (rule domT_not_None[of t "Rep_domT T"])
by (simp_all)
lemmas not_None_T = domT_not_None memT_not_None
lemma None_not_memT[simp]: "None ~:t T"
by (simp add: memT_def)
(* UnionT *)
lemma memT_UnionT_only_if:
"[| Ts ~= {} ; t :t UnionT Ts |] ==> EX T:Ts. t :t T"
by (simp add: memT_def domT_UnionT_Rep)
lemma memT_UnionT_if:
"[| T:Ts ; t :t T |] ==> t :t UnionT Ts"
apply (subgoal_tac "Ts ~= {}")
apply (simp add: memT_def domT_UnionT_Rep)
apply (rule_tac x="T" in bexI)
by (auto)
lemma memT_UnionT:
"Ts ~= {} ==> t :t UnionT Ts = (EX T:Ts. t :t T)"
apply (rule iffI)
apply (simp add: memT_UnionT_only_if)
by (auto simp add: memT_UnionT_if)
(* UnT *)
lemma memT_UnT:
"t :t S UnT T = (t :t S | t :t T)"
by (simp add: memT_UnionT)
(* InterT *)
lemma memT_InterT_only_if:
"[| Ts ~= {} ; t :t InterT Ts |] ==> ALL T:Ts. t :t T"
by (simp add: memT_def domT_InterT_Rep)
lemma memT_InterT_if:
"[| Ts ~= {} ; ALL T:Ts. t :t T |] ==> t :t InterT Ts"
by (simp add: memT_def domT_InterT_Rep)
lemma memT_InterT:
"Ts ~= {} ==> t :t InterT Ts = (ALL T:Ts. t :t T)"
apply (rule iffI)
apply (rule memT_InterT_only_if, simp_all)
by (simp add: memT_InterT_if)
(* IntT *)
lemma memT_IntT:
"t :t S IntT T = (t :t S & t :t T)"
by (simp add: memT_InterT)
(* []t *)
lemma memT_nilt[simp]: "t :t {[]t}t = (t = []t)"
by (simp add: memT_def Abs_domT_inverse)
(* [e]t, []t *)
lemma memT_nilt_one[simp]: "t :t {[]t, [a]t}t = (t = []t | t = [a]t)"
by (simp add: memT_def Abs_domT_inverse)
(*********************************************************
subsetT
*********************************************************)
lemma subsetTI [intro!]: "(!! t. t :t S ==> t :t T) ==> S <= T"
by (auto simp add: subsetT_def memT_def)
lemma subsetTE [elim!]: "[| S <= T ; (!!t. t :t S ==> t :t T) ==> R |] ==> R"
by (auto simp add: subsetT_def memT_def)
lemma subsetT_iff: "((S::'a domT) <= T) = (ALL t. t :t S --> t :t T)"
by (auto)
(*** {[]t}t is bottom ***)
lemma BOT_is_bottom_domT[simp]: "{[]t}t <= T"
by (simp add: subsetT_iff)
lemma memT_subsetT: "[| t :t S ; S <= T |] ==> t :t T"
by (simp add: subsetT_iff)
(*********************************************************
UnT
*********************************************************)
lemma UnT_commut: "S UnT T = T UnT S"
by (simp add: eq_iff subsetT_iff memT_UnT)
lemma UnT_ass: "(S UnT T) UnT R = S UnT (T UnT R)"
by (simp add: eq_iff subsetT_iff memT_UnT)
lemma UnT_left_commut: "S UnT (T UnT R) = T UnT (S UnT R)"
by (simp add: eq_iff subsetT_iff memT_UnT)
lemmas UnT_rules = UnT_commut UnT_ass UnT_left_commut
lemma UnT_nilt_left[simp]: "{[]t}t UnT T = T"
apply (simp add: eq_iff)
by (auto simp add: memT_UnT)
lemma UnT_nilt_right[simp]: "T UnT {[]t}t = T"
apply (simp add: eq_iff)
by (auto simp add: memT_UnT)
(*********************************************************
IntT
*********************************************************)
lemma IntT_commut: "S IntT T = T IntT S"
by (simp add: eq_iff subsetT_iff memT_IntT)
lemma IntT_ass: "(S IntT T) IntT R = S IntT (T IntT R)"
by (simp add: eq_iff subsetT_iff memT_IntT)
lemma IntT_left_commut: "S IntT (T IntT R) = T IntT (S IntT R)"
by (simp add: eq_iff subsetT_iff memT_IntT)
lemmas IntT_rules = IntT_commut IntT_ass IntT_left_commut
(****************** to add them again ******************)
declare Union_image_eq [simp]
declare Inter_image_eq [simp]
declare not_None_eq [simp]
end
lemma domT_is_non_empty:
T ∈ domT ==> T ≠ {}
lemma domT_is_prefix_closed:
T ∈ domT ==> prefix_closed T
lemma domT_is_prefix_closed_unfold:
[| T ∈ domT; t ∈ T; prefix s t |] ==> s ∈ T
lemma nilt_set_in:
{[]t} ∈ domT
lemma one_t_set_in:
{[]t, [a]t} ∈ domT
lemma nilt_in_all_dom:
T ∈ domT ==> []t ∈ T
lemma domT_not_None:
[| t ∈ T; T ∈ domT |] ==> t ≠ None
lemma None_notin_Rep_domT:
None ∉ Rep_domT T
lemma domT_Union_in_domT:
Ts ≠ {} ==> Union (Rep_domT ` Ts) ∈ domT
lemma domT_Un_in_domT:
Rep_domT T ∪ Rep_domT S ∈ domT
lemma domT_Inter_in_domT:
Ts ≠ {} ==> Inter (Rep_domT ` Ts) ∈ domT
lemma domT_Int_in_domT:
Rep_domT T ∩ Rep_domT S ∈ domT
lemmas in_domT:
Ts ≠ {} ==> Union (Rep_domT ` Ts) ∈ domT
Rep_domT T ∪ Rep_domT S ∈ domT
Ts ≠ {} ==> Inter (Rep_domT ` Ts) ∈ domT
Rep_domT T ∩ Rep_domT S ∈ domT
lemma domT_UnionT_Rep:
Ts ≠ {} ==> Rep_domT (UnionT Ts) = Union (Rep_domT ` Ts)
lemma domT_UnT_Rep:
Rep_domT (T UnT S) = Rep_domT T ∪ Rep_domT S
lemma domT_InterT_Rep:
Ts ≠ {} ==> Rep_domT (InterT Ts) = Inter (Rep_domT ` Ts)
lemma domT_IntT_Rep:
Rep_domT (T IntT S) = Rep_domT T ∩ Rep_domT S
lemma memT_prefix_closed:
[| t :t T; prefix s t |] ==> s :t T
lemma nilt_in_T:
[]t :t T
lemma memT_not_None:
t :t T ==> t ≠ None
lemmas not_None_T:
[| t ∈ T; T ∈ domT |] ==> t ≠ None
t :t T ==> t ≠ None
lemma None_not_memT:
None ~:t T
lemma memT_UnionT_only_if:
[| Ts ≠ {}; t :t UnionT Ts |] ==> ∃T∈Ts. t :t T
lemma memT_UnionT_if:
[| T ∈ Ts; t :t T |] ==> t :t UnionT Ts
lemma memT_UnionT:
Ts ≠ {} ==> (t :t UnionT Ts) = (∃T∈Ts. t :t T)
lemma memT_UnT:
(t :t S UnT T) = (t :t S ∨ t :t T)
lemma memT_InterT_only_if:
[| Ts ≠ {}; t :t InterT Ts |] ==> ∀T∈Ts. t :t T
lemma memT_InterT_if:
[| Ts ≠ {}; ∀T∈Ts. t :t T |] ==> t :t InterT Ts
lemma memT_InterT:
Ts ≠ {} ==> (t :t InterT Ts) = (∀T∈Ts. t :t T)
lemma memT_IntT:
(t :t S IntT T) = (t :t S ∧ t :t T)
lemma memT_nilt:
(t :t {[]t}t) = (t = []t)
lemma memT_nilt_one:
(t :t {[]t, [a]t}t) = (t = []t ∨ t = [a]t)
lemma subsetTI:
(!!t. t :t S ==> t :t T) ==> S ≤ T
lemma subsetTE:
[| S ≤ T; (!!t. t :t S ==> t :t T) ==> R |] ==> R
lemma subsetT_iff:
(S ≤ T) = (∀t. t :t S --> t :t T)
lemma BOT_is_bottom_domT:
{[]t}t ≤ T
lemma memT_subsetT:
[| t :t S; S ≤ T |] ==> t :t T
lemma UnT_commut:
S UnT T = T UnT S
lemma UnT_ass:
S UnT T UnT R = S UnT (T UnT R)
lemma UnT_left_commut:
S UnT (T UnT R) = T UnT (S UnT R)
lemmas UnT_rules:
S UnT T = T UnT S
S UnT T UnT R = S UnT (T UnT R)
S UnT (T UnT R) = T UnT (S UnT R)
lemma UnT_nilt_left:
{[]t}t UnT T = T
lemma UnT_nilt_right:
T UnT {[]t}t = T
lemma IntT_commut:
S IntT T = T IntT S
lemma IntT_ass:
S IntT T IntT R = S IntT (T IntT R)
lemma IntT_left_commut:
S IntT (T IntT R) = T IntT (S IntT R)
lemmas IntT_rules:
S IntT T = T IntT S
S IntT T IntT R = S IntT (T IntT R)
S IntT (T IntT R) = T IntT (S IntT R)