(*-------------------------------------------* | CSP-Prover | | December 2004 | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory DIV = CSP_semantics: (***************************************************************** 1. ([[DIV]]T ev, [[DIV]]F ev) : domSF 2. 3. 4. *****************************************************************) (********************************************************* domT and domF *********************************************************) (*** DIV_memT ***) lemma DIV_memT: "(t :t [[DIV]]T ev) = (t = []t)" by (simp add: evalT_def memT_def Abs_domT_inverse) (*** DIV_memF ***) lemma DIV_memF : "(f ~:f [[DIV]]F ev)" apply (simp add: memF_def evalF_def) by (simp add: Abs_domF_inverse empF_def) lemmas DIV_mem = DIV_memT DIV_memF (******************************* DIVsf in domSF *******************************) (* T2 *) lemma DIV_T2 : "HC_T2 ([[DIV]]T ev, [[DIV]]F ev)" by (simp add: HC_T2_def DIV_mem) (* F3 *) lemma DIV_F3 : "HC_F3 ([[DIV]]T ev, [[DIV]]F ev)" by (simp add: HC_F3_def DIV_mem) (* T3_F4 *) lemma DIV_T3_F4 : "HC_T3_F4 ([[DIV]]T ev, [[DIV]]F ev)" by (simp add: HC_T3_F4_def DIV_mem) (*** DIV_domSF ***) lemma DIV_domSF : "([[DIV]]T ev, [[DIV]]F ev) : domSF" apply (simp add: domSF_iff) apply (simp add: DIV_T2) apply (simp add: DIV_F3) apply (simp add: DIV_T3_F4) done end
lemma DIV_memT:
(t :t [[DIV]]T ev) = (t = []t)
lemma DIV_memF:
f ~:f [[DIV]]F ev
lemmas DIV_mem:
(t :t [[DIV]]T ev) = (t = []t)
f ~:f [[DIV]]F ev
lemma DIV_T2:
HC_T2 ([[DIV]]T ev, [[DIV]]F ev)
lemma DIV_F3:
HC_F3 ([[DIV]]T ev, [[DIV]]F ev)
lemma DIV_T3_F4:
HC_T3_F4 ([[DIV]]T ev, [[DIV]]F ev)
lemma DIV_domSF:
([[DIV]]T ev, [[DIV]]F ev) ∈ domSF