(*-------------------------------------------*
| CSP-Prover |
| December 2004 |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory DIV = CSP_semantics:
(*****************************************************************
1. ([[DIV]]T ev, [[DIV]]F ev) : domSF
2.
3.
4.
*****************************************************************)
(*********************************************************
domT and domF
*********************************************************)
(*** DIV_memT ***)
lemma DIV_memT: "(t :t [[DIV]]T ev) = (t = []t)"
by (simp add: evalT_def memT_def Abs_domT_inverse)
(*** DIV_memF ***)
lemma DIV_memF : "(f ~:f [[DIV]]F ev)"
apply (simp add: memF_def evalF_def)
by (simp add: Abs_domF_inverse empF_def)
lemmas DIV_mem = DIV_memT DIV_memF
(*******************************
DIVsf in domSF
*******************************)
(* T2 *)
lemma DIV_T2 : "HC_T2 ([[DIV]]T ev, [[DIV]]F ev)"
by (simp add: HC_T2_def DIV_mem)
(* F3 *)
lemma DIV_F3 : "HC_F3 ([[DIV]]T ev, [[DIV]]F ev)"
by (simp add: HC_F3_def DIV_mem)
(* T3_F4 *)
lemma DIV_T3_F4 : "HC_T3_F4 ([[DIV]]T ev, [[DIV]]F ev)"
by (simp add: HC_T3_F4_def DIV_mem)
(*** DIV_domSF ***)
lemma DIV_domSF : "([[DIV]]T ev, [[DIV]]F ev) : domSF"
apply (simp add: domSF_iff)
apply (simp add: DIV_T2)
apply (simp add: DIV_F3)
apply (simp add: DIV_T3_F4)
done
end
lemma DIV_memT:
(t :t [[DIV]]T ev) = (t = []t)
lemma DIV_memF:
f ~:f [[DIV]]F ev
lemmas DIV_mem:
(t :t [[DIV]]T ev) = (t = []t)
f ~:f [[DIV]]F ev
lemma DIV_T2:
HC_T2 ([[DIV]]T ev, [[DIV]]F ev)
lemma DIV_F3:
HC_F3 ([[DIV]]T ev, [[DIV]]F ev)
lemma DIV_T3_F4:
HC_T3_F4 ([[DIV]]T ev, [[DIV]]F ev)
lemma DIV_domSF:
([[DIV]]T ev, [[DIV]]F ev) ∈ domSF