
User Guide CSP-Prover 2005

CSP-Prover Document
Version: DRAFT February 13, 2005

Yoshinao Isobe, Markus Roggenbach

E-mail address for comments: y-isobe@aist.go.jp, M.Roggenbach@swan.ac.uk

Contents

1 Introduction 2

2 Installing Isabelle2004 2

3 Setting up CSP-Prover 3

4 Starting CSP-Prover 5

5 Small demonstrations 6

6 Syntax 7

7 Trace 11

8 Domain 12

9 Semantics 13

10 Verification 13

10.1 Fixed point induction based on cms 14

10.2 Fixed point induction based on cpo 16

10.3 Expanding . 16

10.4 Decomposition . 18

2

10.5 Internal choice . 19

1 Introduction

We describe a new tool called Csp-Prover which is an interactive theorem prover
dedicated to refinement proofs within the process algebra Csp. It aims specif-
ically at proofs on infinite state systems, which may also involve infinite non-
determinism. For this reason, Csp-Prover currently focuses on the stable failures
model F as the underlying denotational semantics of Csp.

Semantically, Csp-Prover offers both classical approaches to denotational se-
mantics: the theory of complete metric spaces as well as the theory of complete
partial orders. In this context the respective Fixed Point Theorems are used for
two purposes: (1) to prove the existence of fixed points, and (2) to prove Csp
refinement between two fixed points. Csp-Prover implements both these theo-
ries for infinite product spaces and thus is capable to deal with infinite systems
of process equations.

Technically, Csp-Prover is based on the generic theorem prover Isabelle, using
the logic HOL-Complex. Within this logic, the syntax as well as the semantics
of Csp is encoded, i.e., Csp-Prover provides a deep encoding of Csp. The
tool’s architecture follows a generic approach which makes it easy to re-use
large parts of the encoding for other Csp models. For instance, merely as a by-
product, Csp-Prover includes also the Csp traces model T . More importantly,
Csp-Prover can easily be extended to the failure-divergence model N and the
various infinite traces models of Csp.

Currently Csp-Prover offers as Csp semantics the traces model and stable failure
models.

In this document, we explain how to set up Csp-Prover and to use it.

2 Installing Isabelle2004

Csp-Prover is encoded in Isabelle2004/HOL-Complex. To install the interactive
theorem prover Isabelle follow the instructions of the Isabelle Web page:

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/index.html

For example, download the following files for Linux/x86 from the web page:

Isabelle2004.tar.gz
ProofGeneral-3.5.tar.gz
polyml_base.tar.gz
polyml_x86-linux.tar.gz
HOL_x86-linux.tar.gz

3

HOL-Complex_x86-linux.tar.gz

Then, uncompress and unpack them into e.g. the directory /usr/local as follows:

tar -C /usr/local -xzf Isabelle2004.tar.gz
tar -C /usr/local -xzf ProofGeneral.tar.gz
tar -C /usr/local -xzf polyml_base.tar.gz
tar -C /usr/local -xzf polyml_x86-linux.tar.gz
tar -C /usr/local -xzf HOL_x86-linux.tar.gz
tar -C /usr/local -xzf HOL-Complex_x86-linux.tar.gz

Isabelle/Isar/HOL is started by

/usr/local/Isabelle/bin/isabelle -I HOL

Proof General is started by

/usr/local/Isabelle/bin/Isabelle

For the rest of this document, we assume that /usr/local/Isabelle/bin is an
executable path.

3 Setting up CSP-Prover

Download the file CSP-Prover2005-2.tar.gz from

http://staff.aist.go.jp/y-isobe/CSP-Prover/CSP-Prover.html

and unpack it e.g. in the directory

/usr/local/CSP-Prover2005-2

by an unpacking command (e.g. tar zxvf CSP-Prover2005-2.tar.gz).

Figure 1 shows the contents of CSP-Prover2005-2. The directories are used as
follows:

• CSP-Prover contains the theory files for Csp-Prover

• Examples contains small examples for testing Csp-Prover.

• DM contains the theory files for an example to verify a classical mutual
exclusion problem called the Dining mathematicians[CS01].

• DM-Seq is another version of the Dining Mathematicians. A sequential
behavior Seq equivalent to a concurrent behavior Sys is given between a
specification Spc and Sys.

• ep2 contains the theory files for an industrial case study on an electronic
payment system ep2[ep202].

• doc contains documentation about Csp-Prover.

4

ep2

CSP-Prover2005-2 src CSP-Prover

Examples

doc

DM

DM-Seq

Figure 1: The directory tree of CSP-Prover2005-2

It is recommended to make a heap file: CSP-Prover, although you can directly
load CSP_Prover.thy, and then prove it, and then use it. If you make the
heap file once, you do not prove them again before using them. The heap file
can be made as follows (or you can also download the heap file for Linux from
http://staff.aist.go.jp/y-isobe/CSP-Prover/CSP-Prover.html):

1. Go to the directory CSP-Prover by

cd /usr/local/CSP-Prover2005-2/src/CSP-Prover

2. Make the heap file CSP-Prover by

isatool usedir -b HOL-Complex CSP-Prover

The heap file will be made in your isabelle directory. If you did not specify
the directory, it is probably

~/isabelle/heaps/polyml-*** (which depends on your OS)

It may take time to make the heap file. For example, 10 minutes by
Pentium M (1.5GHz).

In addition, if you like to comfortably read theory files of CSP-Prover by
browsers (e.g. Netscape, mozilla, · · ·), you can make html files for them as
follows:

1. Go to the directory src by

cd /usr/local/CSP-Prover2005-2/src

2. Make html-files by

isatool usedir -i true HOL-Complex CSP-Prover

3. Browse theory files and theory dependency-graphs by

mozilla ~/isabelle/browser_info/HOL/HOL-Complex/CSP-Prover/
index.html

or the theory dependency-graphs by

5

CSP_syntax Infra

Trace

Prefix

Domain_T

Domain_F

Domain_SF

Domain_SF_prod

Trace_par Trace_hide Trace_ren Trace_seq

CSP_semantics

SKIP STOP DIV Act_prefix Ext_pre_choiceExt_choice Int_choice Rep_int_choiceParallel HidingConditional RenamingSeq_compo Proc_name

CSP_proc

CSP_law_commut CSP_law_decompo

CSP_law_SKIP CSP_law_dist CSP_law_ref

CSP_law_step1 CSP_law_step2

CMS

Norm_seq

RS

Domain_T_cms Domain_F_cmsRS_pair

Domain_SF_cms

RS_prod

Domain_SF_prod_cms

STOP_cmsSKIP_cms DIV_cms Act_prefix_cmsExt_choice_cms

Ext_pre_choice_cms

Int_choice_cms Rep_int_choice_cms Conditional_cmsParallel_cms Renaming_cmsSeq_compo_cms Proc_name_cms

CSP_proc_cms

CSP_law_fp_cms

CPO

Domain_T_cpo

Domain_F_cpo

CPO_pair

Domain_SF_cpo

CPO_prod

Domain_SF_prod_cpo

STOP_cpoSKIP_cpo DIV_cpo Act_prefix_cpo

Ext_choice_cpo

Ext_pre_choice_cpoInt_choice_cpo Rep_int_choice_cpo Conditional_cpo

Parallel_cpo

Hiding_cpoRenaming_cpo

Seq_compo_cpo

Proc_name_cpo

CSP_proc_cpo

CSP_law_fp_cpo

CSP_law_etc

CSP_rule_rw

CSP_tactic

CSP_Prover

[Pure]

[HOL]

[HOL-Complex]

Figure 2: The dependency-graph for Csp-Prover

isatool browser ~/isabelle/browser_info/HOL/HOL-Complex/
CSP-Prover/session.graph

where Java is needed for displaying graphs. The dependency-graph created
by isatool for Csp-Prover is shown in Figure 2.

4 Starting CSP-Prover

You can start Csp-Prover in a shell window by

isabelle -I CSP-Prover

or start it in Proof General[Asp00] by

Isabelle -l CSP-Prover

It is recommended to use Proof General, which is a superior interface for Isabelle.
Proof General sometimes conflicts your .emacs and fails. To avoid this, you may
use an option “-u” as follows:

Isabelle -u false -l CSP-Prover

This option disallows Proof General to use your .emacs.

6

In Proof General, you can also select a logic (e.g. CSP-Prover, HOL, HOL-Complex,
· · ·) used in Isabelle from the menu bar. Click the button [Isabelle/Isar] → [Log-
ics] → [CSP-Prover].

In addition, you can also activate X-symbols in Proof General from the menu
bar. Click the button [Proof General] → [option] → [X-Symbol]. Csp-Prover
also provides a more conventional syntax of processes based on X-symbols. For
example, the external choice P [+] Q in ASCII mode is replaced with P � Q in
X-symbol mode.

5 Small demonstrations

Try to prove small examples, for getting the outline how Csp-Prover works. If
you use a shell window and an editor window, then the proof is proceeding as
follows:

1. Start Csp-Prover in the shell window by

isabelle -I CSP-Prover

2. Open the following example in the editor window:

/usr/local/CSP-Prover2005-2/src/Examples/Inc_nat.thy

3. Copy the commands from “Inc_nat.thy” and paste them to the Isabelle
window line by line until the proof finishes.

If you can use Proof General, the proof is more elegant as follows:

1. Start Proof General with Csp-Prover by

Isabelle -l CSP-Prover

2. Open the following example in the Proof General window:

/usr/local/CSP-Prover2005-2/src/Examples/Inc_nat.thy

3. Click the button “Next” in the menu bar until the proof finishes.

More conventional Csp-syntax can be displayed as shown in Figure 3 if you use
Proof General and activate X-symbols from the menu bar.

Similarly, try to prove another example:

/usr/local/CSP-Prover2005-2/src/Examples/Test_Seq.thy

The examples ep2 and DM are explained in the web-page:

http://staff.aist.go.jp/y-isobe/CSP-Prover/CSP-Prover.html

7

Figure 3: A screen shot of a proof by Csp-Prover

6 Syntax

The process algebra Csp [Hoa85, Ros98] is defined relative to a given set of
communications. Its basic processes are built from primitive processes like SKIP
and STOP. Csp includes communication primitives like sending and receiving val-
ues over a communication channel, distinguishes between internal and external
choice between two processes, offers a variety of parallel operators, sequential
composition of processes, and various other features like renaming and hiding.
Figure 4 shows that the Csp dialect implemented by Csp-Prover covers all these
features. This syntax definition involves certain Isabelle notations: given a type
’a as set of communications, a:’a is a single communication, c:(’v⇒’a) de-

8

P ::= SKIP %% successful terminating process
| STOP %% deadlock process
| a -> P %% action prefix
| c ! v -> P %% sending v over channel c (*)
| c ? x : X -> P(x) %% receiving x∈X on channel c (*)
| c !! x : X -> P(x) %% non-deterministic sending x∈X on c (*)
| c !! x -> P(x) %% non-deterministic sending x on c (*)
| ? x : X -> P(x) %% external prefix choice
| ! x : X -> P(x) %% internal prefix choice (*)
| P [+] P %% external choice
| P |~| P %% internal choice
| ! x : X .. P(x) %% replicated internal choice
| IF b THEN P ELSE P %% conditional
| P |[X]| P %% generalized parallel
| P ||| P %% interleaving (*)
| P || P %% synchronous parallel (*)
| P -- X %% hiding
| P [[r]] %% relational renaming
| P ;; P %% sequential composition
| P [> P %% (untimed) timeout (*)
| <C> %% process name

Figure 4: Syntax of basic Csp processes in Csp-Prover.

notes a channel name, v:’v is a passed value, b:bool stands for a boolean
value, X:’a set is a subset of ’a, r:(’a * ’a) set denotes a binary relation
over communications, and C:’n is a process name for recursive behaviors. De-
rived operators are marked by (*).

The set of processes is encoded to a recursive type (’n,’a) proc by the keyword
primrec as shown in Figure 5, where ’n and ’a are types of process-names
and communications, respectively. This means that structural induction over
processes is is available in Csp-Prover by the command induct tac. Operators
involving bound variables such as (? x : X -> P) are defined by syntax and
translations as shown in Figure 6. Derived operators such as sending and
receiving values are also given as syntactic sugar by syntax and translations
as follows:

• Sending a value: (c ! v -> P) sends a value c to a channel c, and there-
after behaves like P. It is a syntactic sugar of ((c v)-> P).

• Receiving values: (c ? x : X -> P(x)) receives a value v from a channel
c and thereafter behaves like P(v) if v ∈ X. If X is the universe, (: X)
can be omitted. They are defined as follows:

c ? x : X -> P(x) = ? y : {(c x) | x ∈ X} -> P(c−1(y))
c ? x -> P(x) = c ? x : UNIV -> P(x)

• Non-deterministic Sending a value: (c !! x : X -> P(x)) non-deterministically

9

datatype
(’n,’a) proc

= STOP

| SKIP
| Act prefix "’a" "(’n,’a) proc" (" -> ")
| Ext pre choice "’a set" "’a ⇒ (’n,’a) proc" ("? : -> ")
| Ext choice "(’n,’a) proc" "(’n,’a) proc" ("([+])")
| Int choice "(’n,’a) proc" "(’n,’a) proc" ("(|~|)")
| Rep int choice "’a set" "’a ⇒ (’n,’a) proc" ("! : .. ")
| · · ·
| Name "’n" ("< >")

Figure 5: The process type defined in Csp-Prover.

syntax
"@Ext pre choice" ::

"pttrn ⇒ ’a set ⇒ (’n,’a) proc ⇒ (’n,’a) proc" ("? : -> ")

"@Rep int choice" ::

"pttrn ⇒ ’a set ⇒ (’n,’a) proc ⇒ (’n,’a) proc" ("! : .. ")

translations
"? x : X -> P == ? :X -> (λx. P)"

"! x : X .. P == ! :X .. (λx. P)"

Figure 6: Operators involving bound variables.

sends a value v to a channel c such as v ∈ X, and thereafter behaves like
P(v). If X is the universe, (: X) can be omitted. They are defined as
follows:

c !! x : X -> P(x) = ! y : {(c x) | x ∈ X} -> P(c−1(y))
c !! x -> P(x) = c !! x : UNIV -> P(x)

• Internal Prefix choice: (! x : X -> P(x)) requires that, for some a ∈
X, an event a can be executed and thereafter it behaves like P(a). It is
defined as follows:

! x : X -> P(x) = ! x : X .. x -> P(x)

• Replicated Internal choice with type-conversion: (f !! x : X .. P(x))
requires that it behaves like P(v) for some v ∈ X, where f is used as a
type converter translating the type of v to the event type. If X is the
universe, (: X) can be omitted. They are defined as follows:

f !! x : X .. P(x) = ! y : {(f x) | x ∈ X} .. P(f−1(y))
f !! x -> P(x) = f !! x : UNIV .. P(x)

Here, the short notations for ? and ! can be unfolded by

10

apply (simp add: csp_ss_def)

If you like to automatically unfold such short-notations, then you can use the
declaration: declare csp_ss_def[simp].

The other derived operators for timeout or parallelism are also given as follows:

• Timeout: (P [> Q) behaves like P for a short time before it opts to behave
like Q. It is defined as follows:

P [> Q = (P |~| STOP) [+] Q

• Synchronous Parallel: (P || Q) is a parallel composition, where every
event must synchronize between P and Q. It is defined as follows:

P || Q = (P |[UNIV]| Q)

• Interleaving: (P ||| Q) is a parallel composition, where P and Q have no
communication. It is defined as follows:

P ||| Q = (P |[{}]| Q)

In Csp, recursive processes are either defined by process equations or by so-
called µ-recursion. Here, Csp-Prover currently offers only the former mecha-
nism, and they take the form (LET:fp df IN P) as follows:

type (’n,’a) procDF = "’n ⇒ (’n,’a) proc"

datatype fp type = Ufp | Lfp

datatype
(’n,’a) procRC = Letin "fp type" "(’n,’a) procDF" "(’n,’a) proc"

("LET: IN ")

their type is (’n,’a) procRC. Here, the function df binds process names to
processes, it has the type (’n,’a) procDF. And fp is a variable instantiated
by either Ufp or Lfp, and specifies which fixed point of df is used for giving
the meaning of process names: i.e. the unique fixed point by Ufp and the least
fixed point by Lfp. Thus, intuitively, (LET:fp df IN P) behaves like the body
process P, where each process name C in P behaves like a process df C. In the
current Csp-Prover, (LET df IN P) is an abbreviation of (LET:Ufp df IN P).

The most convenient way to define such function df is to use Isabelle’s keyword
primrec for defining recursive functions. For example, a process Inc which
iteratively sends an increasing natural number n to a channel c is defined as
follows:

primrec df (Loop n) = c ! n -> <Loop (n+1)>

defs "Inc def: Inc == LET df IN <Loop 0>"

Such a parametrised process expressions can – on the semantical side of Csp –
give rise to infinite systems of equations.

11

Example 6.1 The recursive process Sys in Inc nat used in Section 5 is defined
as follows:

datatype Event = Num nat | Read nat

datatype SysName = UI | VAR nat

consts
SysDef :: "(SysName, Event) procDF"

primrec
SysDef (UI) = Read ? m -> Num ! m -> <UI>"

SysDef (VAR n) = Read ! n -> <VAR (Suc n)>"

consts
Sys :: "(SysName, Event) procRC"

defs Sys def:

"Sys == LET SysDef

IN (<UI> |[range Read]| <VAR 0>) -- (range Read)"

�

It is often required to replace each process-name C in a process P with f(C). It is
expressed as (Rewrite P By f), where P and f have types (’n,’a) proc and
’n => (’m,’a) proc, respectively. Therefore, (Rewrite P By f) is a process,
whose type is (’m,’a) proc, obtained by replacing each process <C> with a
process f(C).

7 Trace

Csp has a special event Tick which represents a successful termination. So, the
set of events consists of communications, whose type is ’a, and Tick as follows:

datatype ’a event = Ev ’a | Tick

Then, a trace is a list of events such that Tick does not occur except in the
last place of the list. Furthermore, undefined element None is added to the type
of traces because concatenations of two traces are not always traces (e.g. the
concatenation of [Tick] and [Tick]). Therefore, the type of traces is defined
as follows:

typedef ’a Some trace = {ss::’a event list. Tick /∈ set (butlast ss)}
types ’a trace = "’a Some trace option"

where the function butlast removes the last element of s and the function set
transforms a list to a set of elements contained in the list. And, the type ’b
option consists of Some ’b and None.

Then, the type converters between ’a list and ’a trace are defined as follows:

12

consts
Abs trace = "’a event list => ’a trace"

Rep trace :: "’a trace => ’a event list"

defs
Abs trace def : "Abs trace s == if s ∈ Some trace

then Some (Abs Some trace s)

else None"

Rep trace def : "Rep trace s == Rep Some trace (the s)"

8 Domain

In the stable failures model, the behavior of each process is expressed by the
set of traces that it can perform and a set of failures. A failure is a pair (t ,X)
of a trace t and a set X of refusal events. Intuitively, a failure (t ,X) represents
that events included in X cannot be performed after performing t . The type of
failures is easily defined as follows:

type ’a failure = "’a trace * ’a event set"

In the current Csp-Prover, the domains of the stable-failures model F and the
traces model T are instantiated as types ’a domSF and ’a domT, respectively,
where ’a is the type of communications. Here, the type ’a domT can be reused
for defining ’a domSF:

typedef ’a domT = "{T::(’a trace set). HC T1(T)}”
typedef ’a domF = "{F::(’a failure set). HC F2(F)}”
types ’a domTF = "’a domT * ’a domF”
typedef ’a domSF = "{SF::(’a domTF). HC T2(SF) & HC T3(SF)

& HC F3(SF) & HC F4(SF)}"

where HC T1, HC F2, · · ·, HC F4 are predicates which exactly represents health-
iness conditions given in [Ros98] and defined as follows:

HC T1(T) = prefix closed T & T �= {} & None /∈ T

HC F2(F) = (∀s X Y. ((s,X) ∈ F & Y ⊆ X) → (s,Y) ∈ F) &

(∀X. (None, X) /∈ F)

HC T2(SF) = ∀s X. (s,X) ∈f snd SF → s ∈t fst SF

HC T3(SF) = ∀s. s @t [�]t ∈t fst SF & notick s

→ (∀X. (s @t [�]t ,X) ∈f snd SF)

HC F3(SF) = ∀s X Y. (s,X) ∈f snd SF & notick s &

(∀a∈Y. s @t [a]t /∈t fst SF) → (s,X ∪ Y) ∈f snd SF

HC F4(SF) = ∀s. s @t [�]t ∈t fst SF & notick s

→ (s, Evset) ∈f snd SF

where Evset is UNIV−{�} and subscripts t and f (e.g. in ∈t and ∈f) are
attached to operators on domT and domF, in order to avoid conflicts with the

13

operators on Isabelle’s built-in types such as list and set.

Here, a pair constructor for ’a domSF is given as follows:

consts
pairSF :: "’a domT => ’a domF => ’a domSF" ("(0 ,,)" [51,52] 0)

fstSF :: "’a domSF => ’a domT"

sndSF :: "’a domSF => ’a domT"

defs
pairSF def : "(S,,F) == Abs domSF (S, F)"

fstSF def : "fstSF == fst o Rep domSF"

sndSF def : "sndSF == snd o Rep domSF"

Intuitively, (T ,, F) requires T and F to satisfy healthiness conditions T1 and
F2, respectively, and the pair of them to satisfy T2, T3, F3, and F4.

Furthermore, in order to analyze infinite systems, the infinite product (’i,’a)
domSF prod of ’a domSF is defined as a synonym as follows:

types (’i,’a) domSF prod = "’i => ’a domSF"

where the type ’i represents the indexing set of the product space.

9 Semantics

The Csp semantics is defined by translating process-expressions into elements
of the model F by a mapping ([[P]]SF e) as shown in Fig. 7, where e is an
evaluation function for process names in P. The mapping ([[P]]SF e) is a pair
of mappings ([[P]]T e ,, [[P]]F e). The mappings ([[P]]T e) and ([[P]]F e) are
recursively defined by the same semantic clauses of the model F in [Ros98].
Furthermore, the meaning [[df]]DF of each defining function is defined such that
the meaning of each process name C is [[df C]]SF. Finally, the meaning [[LET:fp
df IN P]]RC of each recursive process is defined by [[P]]SF, where the meaning of
each process name in P is given by a suitable fixed point of [[df]]DF.

(the definition of all the operators will be written.)

10 Verification

You can verify the refinement relation <=F (whose X-symbol is �F) and the
equivalence relation =F, which are defined as follows, based on the stable failures
model in the current Csp-Prover 2005.

(R1 <=F R2) = ([[R2]]RC ⊆ [[R1]]RC)
(R1 =F R2) = ([[R2]]RC = [[R1]]RC)

10.1 Fixed point induction based on cms 14

consts
evalT :: "’a proc ⇒ (’n,’a) domSF prod ⇒ ’a domT" ("[[]]T")
evalF :: "’a proc ⇒ (’n,’a) domSF prod ⇒ ’a domF" ("[[]]F")
evalSF :: "’a proc ⇒ (’n,’a) domSF prod ⇒ ’a domSF" ("[[]]SF")

primrec
"[[STOP]]T = (λe. {[]t}t)"
"[[SKIP]]T = (λe. {[]t, [�]t}t)"
"[[a -> P]]T = (λe. {t. t=[]t ∨ (∃s. t=[Ev a]t @t s ∧ s ∈t [[P]]T e) }t)"
"[[? : X -> Pf]]T = (λe. {t. t=[]t ∨ (∃a s. t=[Ev a]t @t s ∧ s ∈t [[Pf a]]T e ∧ a∈X) }t)"

.

.

.
"[[<C>]]T = (λe. fstSF (e C))" (∗ note: fstSF (T ,, F) = T ∗)

primrec
"[[STOP]]F = (λe. {f. ∃X. f=([]t, X) }f)
"[[SKIP]]F = (λe. {f. (∃X. f=([]t, X) ∧ X ⊆ Evset) ∨ (∃X. f=([�]t, X)) }f)
"[[a -> P]]F = (λe. {f. (∃X. f=([]t, X) ∧ Ev a /∈ X) ∨

(∃s X. f=([Ev a]t @t s, X) ∧ (s, X) ∈f [[P]]F e) }f)
"[[? : X -> Pf]]F = (λe. {f. (∃Y. f=([]t, Y) ∧ Ev‘X ∩ Y = {}) ∨

(∃a s Y. f=([Ev a]t @t s, Y) ∧ (s, Y)∈f[[Pf a]]F e) ∧ a∈X) }f)
.
.
.

"[[<C>]]F = (λe. sndSF (e C))" (∗ note: sndSF (T ,, F) = F ∗)

defs evalSF def :
"[[P]]SF == (λe. ([[P]]T e ,, [[P]]F e))”

consts
evalDF :: "(’n⇒(’m,’a) proc)⇒(’m,’a) domSF prod ⇒(’n,’a) domSF prod" ("[[]]DF")
evalRC :: "(’n,’a) procRC⇒’a domSF" ("[[]]RC")

defs evalDF def :
"[[df]]DF == (λe. (λC. ([[df C]]SF e)))"

recdef evalRC "measure (λx. 0)"
"[[LET:Ufp df IN P]]RC = [[P]]SF (UFP [[df]]DF)" (∗ based on cms ∗)
"[[LET:Lfp df IN P]]RC = [[P]]SF (LFP [[df]]DF)" (∗ based on cpo ∗)

Figure 7: The mapping from each process to a domain

Csp-Prover gives many Csp-rules for verifying the relations by rewriting Csp-
expressions. You can use these Csp-rules in Isabelle by loading the main theory
CSP_Prover, for example, as follows

theory T = CSP_Prover:

This means that your theory T will be proven by CSP-Prover.

In Csp-Prover, proofs mainly consist of three phases: (1) unfolding recursive
processes, (2) expanding processes to head-normal-forms (hnf), and (3) decom-
posing them. These are explained in the rest of this section.

10.1 Fixed point induction based on cms

It is hard to verify (LET df1 IN P1) <=F (LET df2 IN P2) only by rewriting
P1 and P2 because they are different processes names defined df1 and df2, re-
spectively. This problem is solved by applying fixed point induction. Therefore,

10.1 Fixed point induction based on cms 15

(LET:fp df1 IN P1) <=F (LET:fp df2 IN P2) can be verified by proving the
following subgoals for both cases fp=Ufp and fp=Lfp:

1. !!C. nohide (df1 C)
2. !!C. guard (df1 C)
3. !!C. nohide (df2 C)
4. !!C. guard (df2 C)
5. LET df2 IN (Rewrite P1 By f12) <=F LET df2 IN P2
6. !!C. LET df2 IN (Rewrite (df1 C) By f12) <=F LET df2 IN (f12 C)

where f12 is a function which takes a process-name in df1 and returns a process-
expression containing process-names defined by df2, such that for each process
name C, f12(C) refines C. Such function will be given by users because it is hard
to automatically find such function f12 from df1 and df2, but Csp-Prover will
be able to assist they to find it.

It is important to note that expressions of the form (LET df1 IN ...) is not
contained in the subgoals. It allows us to verify the refinement between recursive
processes containing different process-names.

For example, the function Spc to Sys (an instance of f12 above) which relates
SpcDef to SysDef is defined as follows

primrec
"Spc_to_Sys (Cspc n)

= (<UI> |[range Read]| <VAR n>) -- (range Read)"

in the example Example/Inc_nat (also see Section 5 and Example 6.1). Then,
when a goal is given as follows:

Spc <=F Sys

and the following command is applied:

apply (rule csp_fp_induct_cms[of _ _ _ "Spc_to_Sys"])

then the following subgoals are returned:

goal (lemma, 6 subgoals):
1. !!C. nohide (SpcDef C)
2. !!C. guard (SpcDef C)
3. !!C. nohide (SysDef C)
4. !!C. guard (SysDef C)
5.

LET SysDef IN Rewrite (<Cspc 0>) By Spc_to_Sys <=F
LET SysDef IN (<UI> |[range Read]| <VAR 0>) -- range Read

6. !!C.
LET SysDef IN Rewrite (SpcDef C) By Spc_to_Sys <=F
LET SysDef IN Spc_to_Sys C

The rule csp_fp_induct_cms can be applied to verification on equality such
as (LET df1 IN P1) =F (LET df2 IN P2). Furthermore, Csp-Prover provides

10.2 Fixed point induction based on cpo 16

a symmetric rule with (csp_fp_induct_cms). Therefore, in order to verify
a refinement (LET:fp df1 IN P1) <=F (LET:fp df2 IN P2) , the symmetric
rule (csp_fp_induct_rev) infers the following subgoals:

1. !!C. nohide (df1 C)
2. !!C. guard (df1 C)
3. !!C. nohide (df2 C)
4. !!C. guard (df2 C)
5. LET df1 IN P1 <=F LET df1 IN (Rewrite P2 By f21)
6. !!C. LET df1 IN (f21 C) <=F LET df1 IN (Rewrite (df2 C) By f21)

where f21 is a function which takes a process-name in df2 and returns a process-
expression containing process-names defined by df1.

10.2 Fixed point induction based on cpo

Csp-Prover also provides a fixed point induction rule (csp_fp_induct_cpo)
based on cpo for verification on refinement with least fixed points. By the rule,
(LET:Lfp df1 IN P1) <=F (LET:Lfp df2 IN P2) can be verified by proving
the following subgoals:

1. LET:Lfp df1 IN P1 <=F LET:Lfp df1 IN (Rewrite P2 By f21)
2. !!C. LET:Lfp df1 IN (f21 C) <=F

LET:Lfp df1 IN (Rewrite (df2 C) By f21)

This rule is similar to the rule (csp_fp_induct_rev) based on cms, but the rule
based on cpo does not require processes to be guarded and has no hiding. This
induction rule is demonstrated by the example Test_Lfp.thy in the directory

CSP-Prover2005-2/src/Examples

Since the least fixed point is used in cpo, the rule (csp_fp_induct_cpo) cannot
be applied to verification on equality and there is no symmetric rule such as
(csp_fp_induct_cms). Users can select a fixed point induction rule according
to situations.

10.3 Expanding

To verify (LET df1 IN P1) <=F (LET df2 IN P2), it is useful to transform
P1 and P2 to head-normal-forms (hnf) such as (? x:X -> P) or (P |~| Q) or
(! x:X .. P). To do that, rewriting laws called step laws (e.g. see P.32 (1.14)
in [Ros98]) and distributive laws are given in Csp. Csp-Prover gives tactics
based on the laws for getting hnfs. The most powerful tactic is “csp_hnf_tac”.
This tactic applies step laws Csp-expressions which are unguarded (by Prefix or
Prefix choice) because of avoiding excessive expanding, which makes expressions
to be unreadable. User defined tactics are applied in Isar-mode as follows:

10.3 Expanding 17

apply (tactic {* csp_hnf_tac 1 *})

where 1 represents that this tactic is applied to the first subgoal.

The tactic csp_hnf_tac contains the following smaller tactics, and they can be
individually applied for reducing proof cost.

• csp_unwind_tac is a tactic for unwinding process-names, if every defini-
tions of process-names are guarded and have no hiding.

For example, assume that a sub-goal is given as follows:

Spc <=F
LET SysDef IN (<UI> |[range Read]| <VAR 0>) -- range Read

where Spc and SysDef are defined in Inc_nat (also see Example 6.1).
Now, apply the tactic as follows:

apply (tactic {* csp_unwind_tac 1 *})

Then, the sub-goal will be rewritten to the following new sub-goal:

Spc <=F
LET SysDef
IN (Read ? m -> Num m -> <UI>

|[range Read]| Read ! 0 -> <VAR (Suc 0)>)
-- range Read

As shown this result, the unguarded process-names UI and VAR are re-
placed with their process-expressions defined by SysDef. It is important
that the process-names in the new sub-goal are not unfolded because they
are guarded. This technique works for avoiding infinite rewriting.

Note: before applying this tactic, it should be proven that every definitions
of process-names are guarded and have no hiding. They are easily proven,
for example, by

lemma guardSysDef[simp]: "!!C. guard (SysDef C)"
by (induct_tac C, simp_all)

but they are not automatically proven by (auto).

• csp_step_tac is a tactic for transforming processes of the form STOP,
a -> P, P [+] Q, P |[X]| Q, P -- X, P [[r]], or P ;; Q, to processes
(hnfs) of the form ? x:A -> P’, used as follows:

apply (tactic {* csp_step_tac 1 *})

csp_light_step_tac is a tactic for transforming processes of the form
STOP, or a -> P, to processes (hnfs) of the form ? x:A -> P’. Since the
proof cost of csp_step_tac is often high, csp_light_step_tac is some-
times used instead of csp_step_tac.

10.4 Decomposition 18

• csp_dist_tac is a tactic for distributing unguarded operators over inter-
nal choices and replicated internal choices.

• csp_simp_tac is a tactic for simplify processes by mainly evaluating con-
ditions. Simplification rules can be manually added or deleted as follows:

apply (tactic {* csp_simp_tac 1 *})
apply (tactic {* csp_simp_add_tac "name1" 1 *})
apply (tactic {* csp_simp_del_tac "name2" 1 *})
apply (tactic {* csp_simp_add_del_tac "name1" "name2" 1 *})

where name1 and name2 are theory-names added to and deleted from sim-
plification rules, respectively. Do not forget to convert the theory-names
to strings by double-quotations.

• csp_rule_tac is a tactic for applying an introduction rule to sub-expressions
as follows:

apply (tactic {* csp_rule_tac "name" 1 *})

where name is a name of introduction rule.

• csp_asm_tac is a tactic for applying assumptions.

10.4 Decomposition

It is possible to decompose process-expressions to sub-expressions and verify the
sub-expressions because of their congruency and monotonicity.

• csp_rm_head is a rule for removing the same head of head-normal forms
like

LET df IN ? x:X -> P =F LET df IN ? x:Y -> Q

Since this is added to (automatically applied) introduction rules, it can
be easily applied as follows:

apply (rule)

Then, the above sub-goal is decomposed to 2 subgoal:

1. X = Y
2. !!a. a : Y ==> LET df IN P =F LET df IN Q

The first goal may be solved by Isabelle set-theory and a tactic like
csp_hnf_tac can be applied to the second goal again, to transforms them
to hnfs.

• csp_decompo is more powerful rule than csp_rm_head, and it decomposes
expressions if their outermost operators are the same. For example, the
goal

LET df IN P1 [+] P2 =F LET df IN Q1 [+] Q2

10.5 Internal choice 19

is decomposed the two sub-goals

1. LET df IN P1 =F LET df IN Q1
2. LET df IN P2 =F LET df IN Q2

by the proof command

apply (rule csp_decompo)

However, this rule is unsafe because unexpected decomposition can be
done. For example, do not apply this rule to the goal

LET df IN a -> SKIP [+] b -> SKIP
=F LET df IN b -> SKIP [+] a -> SKIP

• csp_free_decompo is a rule for decomposing expressions if they are not
the forms of a -> P, ? x:X -> P, ! x:X .. P, and IF b THEN P ELSE Q,
thus only unguarded expressions (by events or conditions) can be decom-
posed. This rule can be used for avoiding excessive decompositions, which
are often caused by csp_decompo.

• csp_decompo_subset is a rule for removing replicated internal choices.
Thus, the goal

LET df IN ! x:X .. P(x) <=F LET df IN ! x:Y .. Q(x)

is rewritten to the following sub-gaols

1. Y <= X
2. !!a. a:Y ==> LET df IN P(a) <=F LET df IN Q(a)

by the proof command

apply (rule csp_decompo_subset)

This rule also works for the expressions whose operators are internal and
external prefix choices as follows:

LET df IN ! x:X .. x -> P(x) <=F LET df IN ? x:Y -> Q(x)

This goal is rewritten to the following sub-gaols by this rule:

1. Y ~={}
2. Y <= X
3. !!a. a:Y ==> LET df IN P(a) <=F LET df IN Q(a)

10.5 Internal choice

By distributive laws, unguarded internal choices can be outermost. Then, the
outermost internal choices can be removed by the following rules.

10.5 Internal choice 20

• csp_Int_choice_right is a rule for removing internal choices. Since this
rule is safe, it is added to (automatically applied) introduction rules [in-
tro!]. For example, the goal

LET df IN P <=F LET df IN Q1 |~| Q2

is rewritten to the following sub-gaols

1. LET df IN P <=F LET df IN Q1
2. LET df IN P <=F LET df IN Q2

by the proof command apply (rule).

• csp_Rep_int_choice_right is a rule for removing replicated internal
choices. This rule is similar to csp_Int_choice_right. For example,
the goal

LET df IN P <=F LET df IN ! x:X .. (Q x)

is rewritten to the following sub-gaol

1. !!a. a : X ==> LET df IN P <=F LET df IN (Q a)

by the proof command apply (rule).

• Internal choices on the left hand side have to be carefully removed because
users have to choice a suitable rule from the following three rules:

– csp_Int_choice_left1 : for choosing P from P |~| Q.

– csp_Int_choice_left2 : for choosing Q from P |~| Q.

– csp_Int_choice_left3 : for choosing both of P and Q from P |~| Q.

For example, the goal

LET df IN P1 |~| P2 <=F LET df IN Q

is rewritten to the following sub-gaol

1. LET df IN P1 <=F LET df IN Q

by the proof command

apply (rule csp_Int_choice_left1)

and it is rewritten to the following sub-gaol

1. LET df IN P1 [+] P2 <=F LET df IN Q

by the proof command

apply (rule csp_Int_choice_left3)

• csp_Rep_int_choice_left is a rule for replacing replicated internal choices
on the left hand side with existential quantifiers. For example, the goal

LET df IN ! x:X .. (P x) <=F LET df IN Q

REFERENCES 21

is rewritten to the following sub-gaol

1. EX a. a : X & LET df IN P a <=F LET df IN Q

by the proof command:

apply (rule csp_Rep_int_choice_left)

Sorry. This document has not been completed yet.

References

[Asp00] David Aspinall. Proof general: A generic tool for proof development. In
Susanne Graf and Michael Schwartzbach, editors, TACAS 2000, LNCS
1785, pages 38–42. Springer, 2000.

[CS01] E. M. Clarke and H. Schlingloff. Model checking. In A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoning. Elsevier
Science, 2001.

[ep202] eft/pos 2000 Specification, version 1.0.1. EP2 Consortium, 2002.

[Hoa85] Charles Antony Richard Hoare. Communicating Sequential Processes.
Prentice Hall, 1985.

[Ros98] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall,
1998.

