Up to index of Isabelle/HOL/HOL-Complex/CSP-Prover
theory Proc_name_cms = Proc_name + Domain_SF_prod_cms:(*-------------------------------------------* | CSP-Prover | | December 2004 | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory Proc_name_cms = Proc_name + Domain_SF_prod_cms: (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* disj_not1: (~ P | Q) = (P --> Q) *) declare disj_not1 [simp del] (* The following simplification is sometimes unexpected. *) (* *) (* not_None_eq: (x ~= None) = (EX y. x = Some y) *) declare not_None_eq [simp del] (***************************************************************** 1. [[<C>]]SF : non expanding 2. 3. 4. *****************************************************************) (********************************************************* map Proc_name T *********************************************************) (*** restSF (sub) ***) lemma Proc_name_restSF_sub: "ev1 rest n <= ev2 rest n ==> [[<C>]]SF ev1 rest n <= [[<C>]]SF ev2 rest n" apply (simp add: Proc_name_evalSF) apply (simp add: prod_restriction_def) apply (simp add: order_prod_def) done (*** restSF (equal) ***) lemma Proc_name_restSF: "ev1 rest n = ev2 rest n ==> [[<C>]]SF ev1 rest n = [[<C>]]SF ev2 rest n" apply (rule order_antisym) by (simp_all add: Proc_name_restSF_sub) (*** Proc_name_evalSF_non_expanding ***) lemma Proc_name_evalSF_non_expanding: "non_expanding [[<C>]]SF" apply (simp add: non_expanding_def map_alpha_def) apply (intro allI) apply (rule rest_distance_subset) apply (intro allI impI) apply (rule Proc_name_restSF, simp) done (****************** to add them again ******************) declare disj_not1 [simp] declare not_None_eq [simp] end
lemma Proc_name_restSF_sub:
ev1 rest n ≤ ev2 rest n ==> [[<C>]]SF ev1 rest n ≤ [[<C>]]SF ev2 rest n
lemma Proc_name_restSF:
ev1 rest n = ev2 rest n ==> [[<C>]]SF ev1 rest n = [[<C>]]SF ev2 rest n
lemma Proc_name_evalSF_non_expanding:
non_expanding [[<C>]]SF