Up to index of Isabelle/HOL/HOL-Complex/CSP-Prover
theory Int_choice_cms = Int_choice + Domain_SF_prod_cms:(*-------------------------------------------* | CSP-Prover | | December 2004 | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory Int_choice_cms = Int_choice + Domain_SF_prod_cms: (* The following simplification rules are deleted in this theory file *) (* because they unexpectly rewrite UnionT and InterT. *) (* disj_not1: (~ P | Q) = (P --> Q) *) declare disj_not1 [simp del] (* The following simplification is sometimes unexpected. *) (* *) (* not_None_eq: (x ~= None) = (EX y. x = Some y) *) declare not_None_eq [simp del] (***************************************************************** 1. [[P |~| Q]]T : non expanding 2. [[P |~| Q]]F : non expanding 3. 4. *****************************************************************) (********************************************************* map Int_choice T *********************************************************) (*** restT (subset) ***) lemma Int_choice_restT_sub: "[| [[P]]T ev1 rest n <= [[P]]T ev2 rest n ; [[Q]]T ev1 rest n <= [[Q]]T ev2 rest n |] ==> [[P |~| Q]]T ev1 rest n <= [[P |~| Q]]T ev2 rest n" apply (simp add: subsetT_iff) apply (intro allI impI) apply (simp add: in_restT) apply (simp add: Int_choice_memT) by (auto) (*** restT (equal) ***) lemma Int_choice_restT: "[| [[P]]T ev1 rest n = [[P]]T ev2 rest n ; [[Q]]T ev1 rest n = [[Q]]T ev2 rest n |] ==> [[P |~| Q]]T ev1 rest n = [[P |~| Q]]T ev2 rest n" apply (rule order_antisym) by (simp_all add: Int_choice_restT_sub) (*** distT lemma ***) lemma Int_choice_distT: "TTs = {([[P]]T ev1, [[P]]T ev2), ([[Q]]T ev1, [[Q]]T ev2)} ==> (EX TT. TT:TTs & distance([[P |~| Q]]T ev1, [[P |~| Q]]T ev2) <= distance((fst TT), (snd TT)))" apply (rule rest_to_dist_pair) by (auto intro: Int_choice_restT) (*** map_alpha T lemma ***) lemma Int_choice_evalT_map_alpha_lm: "[| distance ([[P]]T ev1, [[P]]T ev2) <= alpha * distance (ev1, ev2) ; distance ([[Q]]T ev1, [[Q]]T ev2) <= alpha * distance (ev1, ev2) |] ==> distance ([[P |~| Q]]T ev1, [[P |~| Q]]T ev2) <= alpha * distance (ev1, ev2)" apply (insert Int_choice_distT [of "{([[P]]T ev1, [[P]]T ev2), ([[Q]]T ev1, [[Q]]T ev2)}" P ev1 ev2 Q]) by (auto) (*** Int_choice_evalT_non_expanding ***) lemma Int_choice_evalT_map_alpha: "[| map_alpha [[P]]T alpha ; map_alpha [[Q]]T alpha |] ==> map_alpha [[P |~| Q]]T alpha" apply (simp add: map_alpha_def) apply (intro allI) apply (erule conjE) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) apply (drule_tac x="y" in spec) apply (drule_tac x="y" in spec) by (simp add: Int_choice_evalT_map_alpha_lm) (*** Int_choice_evalT_non_expanding ***) lemma Int_choice_evalT_non_expanding: "[| non_expanding [[P]]T ; non_expanding [[Q]]T |] ==> non_expanding [[P |~| Q]]T" by (simp add: non_expanding_def Int_choice_evalT_map_alpha) (*** Int_choice_evalT_contraction_alpha ***) lemma Int_choice_evalT_contraction_alpha: "[| contraction_alpha [[P]]T alpha; contraction_alpha [[Q]]T alpha|] ==> contraction_alpha [[P |~| Q]]T alpha" by (simp add: contraction_alpha_def Int_choice_evalT_map_alpha) (********************************************************* map Int_choice F *********************************************************) (*** restF (subset) ***) lemma Int_choice_restF_sub: "[| [[P]]F ev1 rest n <= [[P]]F ev2 rest n ; [[Q]]F ev1 rest n <= [[Q]]F ev2 rest n |] ==> [[P |~| Q]]F ev1 rest n <= [[P |~| Q]]F ev2 rest n" apply (simp add: subsetF_iff) apply (intro allI impI) apply (simp add: in_restF) apply (simp add: Int_choice_memF) apply (elim conjE exE disjE) by (fast)+ (*** restF (equal) ***) lemma Int_choice_restF: "[| [[P]]F ev1 rest n = [[P]]F ev2 rest n ; [[Q]]F ev1 rest n = [[Q]]F ev2 rest n |] ==> [[P |~| Q]]F ev1 rest n = [[P |~| Q]]F ev2 rest n" apply (rule order_antisym) by (simp_all add: Int_choice_restF_sub) (*** distF lemma ***) lemma Int_choice_distF: "FFs = {([[P]]F ev1, [[P]]F ev2), ([[Q]]F ev1, [[Q]]F ev2)} ==> (EX FF. FF:FFs & distance([[P |~| Q]]F ev1, [[P |~| Q]]F ev2) <= distance((fst FF), (snd FF)))" apply (rule rest_to_dist_pair) by (auto intro: Int_choice_restF) (*** map_alpha F lemma ***) lemma Int_choice_evalF_map_alpha_lm: "[| distance ([[P]]F ev1, [[P]]F ev2) <= alpha * distance (ev1, ev2) ; distance ([[Q]]F ev1, [[Q]]F ev2) <= alpha * distance (ev1, ev2) |] ==> distance ([[P |~| Q]]F ev1, [[P |~| Q]]F ev2) <= alpha * distance (ev1, ev2)" apply (insert Int_choice_distF [of "{([[P]]F ev1, [[P]]F ev2), ([[Q]]F ev1, [[Q]]F ev2)}" P ev1 ev2 Q]) by (auto) (*** Int_choice_evalF_non_expanding ***) lemma Int_choice_evalF_map_alpha: "[| map_alpha [[P]]F alpha ; map_alpha [[Q]]F alpha |] ==> map_alpha [[P |~| Q]]F alpha" apply (simp add: map_alpha_def) apply (intro allI) apply (erule conjE) apply (drule_tac x="x" in spec) apply (drule_tac x="x" in spec) apply (drule_tac x="y" in spec) apply (drule_tac x="y" in spec) by (simp add: Int_choice_evalF_map_alpha_lm) (*** Int_choice_evalF_non_expanding ***) lemma Int_choice_evalF_non_expanding: "[| non_expanding [[P]]F ; non_expanding [[Q]]F |] ==> non_expanding [[P |~| Q]]F" by (simp add: non_expanding_def Int_choice_evalF_map_alpha) (*** Int_choice_evalF_contraction_alpha ***) lemma Int_choice_evalF_contraction_alpha: "[| contraction_alpha [[P]]F alpha; contraction_alpha [[Q]]F alpha|] ==> contraction_alpha [[P |~| Q]]F alpha" by (simp add: contraction_alpha_def Int_choice_evalF_map_alpha) (****************** to add them again ******************) declare disj_not1 [simp] declare not_None_eq [simp] end
lemma Int_choice_restT_sub:
[| [[P]]T ev1 rest n ≤ [[P]]T ev2 rest n; [[Q]]T ev1 rest n ≤ [[Q]]T ev2 rest n |] ==> [[P |~| Q]]T ev1 rest n ≤ [[P |~| Q]]T ev2 rest n
lemma Int_choice_restT:
[| [[P]]T ev1 rest n = [[P]]T ev2 rest n; [[Q]]T ev1 rest n = [[Q]]T ev2 rest n |] ==> [[P |~| Q]]T ev1 rest n = [[P |~| Q]]T ev2 rest n
lemma Int_choice_distT:
TTs = {([[P]]T ev1, [[P]]T ev2), ([[Q]]T ev1, [[Q]]T ev2)} ==> ∃TT. TT ∈ TTs ∧ distance ([[P |~| Q]]T ev1, [[P |~| Q]]T ev2) ≤ distance (fst TT, snd TT)
lemma Int_choice_evalT_map_alpha_lm:
[| distance ([[P]]T ev1, [[P]]T ev2) ≤ alpha * distance (ev1, ev2); distance ([[Q]]T ev1, [[Q]]T ev2) ≤ alpha * distance (ev1, ev2) |] ==> distance ([[P |~| Q]]T ev1, [[P |~| Q]]T ev2) ≤ alpha * distance (ev1, ev2)
lemma Int_choice_evalT_map_alpha:
[| map_alpha [[P]]T alpha; map_alpha [[Q]]T alpha |] ==> map_alpha [[P |~| Q]]T alpha
lemma Int_choice_evalT_non_expanding:
[| non_expanding [[P]]T; non_expanding [[Q]]T |] ==> non_expanding [[P |~| Q]]T
lemma Int_choice_evalT_contraction_alpha:
[| contraction_alpha [[P]]T alpha; contraction_alpha [[Q]]T alpha |] ==> contraction_alpha [[P |~| Q]]T alpha
lemma Int_choice_restF_sub:
[| [[P]]F ev1 rest n ≤ [[P]]F ev2 rest n; [[Q]]F ev1 rest n ≤ [[Q]]F ev2 rest n |] ==> [[P |~| Q]]F ev1 rest n ≤ [[P |~| Q]]F ev2 rest n
lemma Int_choice_restF:
[| [[P]]F ev1 rest n = [[P]]F ev2 rest n; [[Q]]F ev1 rest n = [[Q]]F ev2 rest n |] ==> [[P |~| Q]]F ev1 rest n = [[P |~| Q]]F ev2 rest n
lemma Int_choice_distF:
FFs = {([[P]]F ev1, [[P]]F ev2), ([[Q]]F ev1, [[Q]]F ev2)} ==> ∃FF. FF ∈ FFs ∧ distance ([[P |~| Q]]F ev1, [[P |~| Q]]F ev2) ≤ distance (fst FF, snd FF)
lemma Int_choice_evalF_map_alpha_lm:
[| distance ([[P]]F ev1, [[P]]F ev2) ≤ alpha * distance (ev1, ev2); distance ([[Q]]F ev1, [[Q]]F ev2) ≤ alpha * distance (ev1, ev2) |] ==> distance ([[P |~| Q]]F ev1, [[P |~| Q]]F ev2) ≤ alpha * distance (ev1, ev2)
lemma Int_choice_evalF_map_alpha:
[| map_alpha [[P]]F alpha; map_alpha [[Q]]F alpha |] ==> map_alpha [[P |~| Q]]F alpha
lemma Int_choice_evalF_non_expanding:
[| non_expanding [[P]]F; non_expanding [[Q]]F |] ==> non_expanding [[P |~| Q]]F
lemma Int_choice_evalF_contraction_alpha:
[| contraction_alpha [[P]]F alpha; contraction_alpha [[Q]]F alpha |] ==> contraction_alpha [[P |~| Q]]F alpha