Up to index of Isabelle/HOL/HOL-Complex/CSP-Prover
theory Conditional_cms = Conditional + Domain_SF_prod_cms: (*-------------------------------------------*
| CSP-Prover |
| December 2004 |
| Yoshinao Isobe (AIST JAPAN) |
*-------------------------------------------*)
theory Conditional_cms = Conditional + Domain_SF_prod_cms:
(* The following simplification rules are deleted in this theory file *)
(* because they unexpectly rewrite UnionT and InterT. *)
(* disj_not1: (~ P | Q) = (P --> Q) *)
declare disj_not1 [simp del]
(* The following simplification is sometimes unexpected. *)
(* *)
(* not_None_eq: (x ~= None) = (EX y. x = Some y) *)
declare not_None_eq [simp del]
(*****************************************************************
1. [[IF b THEN P ELSE Q]]T : map
2. [[IF b THEN P ELSE Q]]F : map
3.
4.
*****************************************************************)
(*********************************************************
map Conditional T
*********************************************************)
(*** restT (subset) ***)
lemma Conditional_restT_sub:
"[| [[P]]T ev1 rest n <= [[P]]T ev2 rest n ;
[[Q]]T ev1 rest n <= [[Q]]T ev2 rest n |]
==> [[IF b THEN P ELSE Q]]T ev1 rest n <= [[IF b THEN P ELSE Q]]T ev2 rest n"
apply (simp add: subsetT_iff)
apply (intro allI impI)
apply (simp add: in_restT)
apply (simp add: Conditional_memT)
done
(*** restT (equal) ***)
lemma Conditional_restT:
"[| [[P]]T ev1 rest n = [[P]]T ev2 rest n ;
[[Q]]T ev1 rest n = [[Q]]T ev2 rest n |]
==> [[IF b THEN P ELSE Q]]T ev1 rest n = [[IF b THEN P ELSE Q]]T ev2 rest n"
apply (rule order_antisym)
by (simp_all add: Conditional_restT_sub)
(*** distT lemma ***)
lemma Conditional_distT:
"TTs = {([[P]]T ev1, [[P]]T ev2), ([[Q]]T ev1, [[Q]]T ev2)}
==> (EX TT. TT:TTs &
distance([[IF b THEN P ELSE Q]]T ev1, [[IF b THEN P ELSE Q]]T ev2)
<= distance((fst TT), (snd TT)))"
apply (rule rest_to_dist_pair)
by (auto intro: Conditional_restT)
(*** map_alpha T lemma ***)
lemma Conditional_evalT_map_alpha_lm:
"[| distance ([[P]]T ev1, [[P]]T ev2) <= alpha * distance (ev1, ev2) ;
distance ([[Q]]T ev1, [[Q]]T ev2) <= alpha * distance (ev1, ev2) |]
==> distance ([[IF b THEN P ELSE Q]]T ev1, [[IF b THEN P ELSE Q]]T ev2)
<= alpha * distance (ev1, ev2)"
apply (insert Conditional_distT
[of "{([[P]]T ev1, [[P]]T ev2), ([[Q]]T ev1, [[Q]]T ev2)}" P ev1 ev2 Q b])
by (auto)
(*** Conditional_evalT_non_expanding ***)
lemma Conditional_evalT_map_alpha:
"[| map_alpha [[P]]T alpha ; map_alpha [[Q]]T alpha |]
==> map_alpha [[IF b THEN P ELSE Q]]T alpha"
apply (simp add: map_alpha_def)
apply (intro allI)
apply (erule conjE)
apply (drule_tac x="x" in spec)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
apply (drule_tac x="y" in spec)
by (simp add: Conditional_evalT_map_alpha_lm)
(*** Conditional_evalT_non_expanding ***)
lemma Conditional_evalT_non_expanding:
"[| non_expanding [[P]]T ; non_expanding [[Q]]T |]
==> non_expanding [[IF b THEN P ELSE Q]]T"
by (simp add: non_expanding_def Conditional_evalT_map_alpha)
(*** Conditional_evalT_contraction_alpha ***)
lemma Conditional_evalT_contraction_alpha:
"[| contraction_alpha [[P]]T alpha; contraction_alpha [[Q]]T alpha|]
==> contraction_alpha [[IF b THEN P ELSE Q]]T alpha"
by (simp add: contraction_alpha_def Conditional_evalT_map_alpha)
(*********************************************************
map Conditional F
*********************************************************)
(*** restF (subset) ***)
lemma Conditional_restF_sub:
"[| [[P]]F ev1 rest n <= [[P]]F ev2 rest n ;
[[Q]]F ev1 rest n <= [[Q]]F ev2 rest n |]
==> [[IF b THEN P ELSE Q]]F ev1 rest n <= [[IF b THEN P ELSE Q]]F ev2 rest n"
apply (simp add: subsetF_iff)
apply (intro allI impI)
apply (simp add: in_restF)
apply (simp add: Conditional_memF)
done
(*** restF (equal) ***)
lemma Conditional_restF:
"[| [[P]]F ev1 rest n = [[P]]F ev2 rest n ;
[[Q]]F ev1 rest n = [[Q]]F ev2 rest n |]
==> [[IF b THEN P ELSE Q]]F ev1 rest n = [[IF b THEN P ELSE Q]]F ev2 rest n"
apply (rule order_antisym)
by (simp_all add: Conditional_restF_sub)
(*** distF lemma ***)
lemma Conditional_distF:
"FFs = {([[P]]F ev1, [[P]]F ev2), ([[Q]]F ev1, [[Q]]F ev2)}
==> (EX FF. FF:FFs &
distance([[IF b THEN P ELSE Q]]F ev1, [[IF b THEN P ELSE Q]]F ev2)
<= distance((fst FF), (snd FF)))"
apply (rule rest_to_dist_pair)
by (auto intro: Conditional_restF)
(*** map_alpha F lemma ***)
lemma Conditional_evalF_map_alpha_lm:
"[| distance ([[P]]F ev1, [[P]]F ev2) <= alpha * distance (ev1, ev2) ;
distance ([[Q]]F ev1, [[Q]]F ev2) <= alpha * distance (ev1, ev2) |]
==> distance ([[IF b THEN P ELSE Q]]F ev1, [[IF b THEN P ELSE Q]]F ev2)
<= alpha * distance (ev1, ev2)"
apply (insert Conditional_distF
[of "{([[P]]F ev1, [[P]]F ev2), ([[Q]]F ev1, [[Q]]F ev2)}" P ev1 ev2 Q b])
by (auto)
(*** Conditional_evalF_non_expanding ***)
lemma Conditional_evalF_map_alpha:
"[| map_alpha [[P]]F alpha ; map_alpha [[Q]]F alpha |]
==> map_alpha [[IF b THEN P ELSE Q]]F alpha"
apply (simp add: map_alpha_def)
apply (intro allI)
apply (erule conjE)
apply (drule_tac x="x" in spec)
apply (drule_tac x="x" in spec)
apply (drule_tac x="y" in spec)
apply (drule_tac x="y" in spec)
by (simp add: Conditional_evalF_map_alpha_lm)
(*** Conditional_evalF_non_expanding ***)
lemma Conditional_evalF_non_expanding:
"[| non_expanding [[P]]F ; non_expanding [[Q]]F |]
==> non_expanding [[IF b THEN P ELSE Q]]F"
by (simp add: non_expanding_def Conditional_evalF_map_alpha)
(*** Conditional_evalF_contraction_alpha ***)
lemma Conditional_evalF_contraction_alpha:
"[| contraction_alpha [[P]]F alpha; contraction_alpha [[Q]]F alpha|]
==> contraction_alpha [[IF b THEN P ELSE Q]]F alpha"
by (simp add: contraction_alpha_def Conditional_evalF_map_alpha)
(****************** to add them again ******************)
declare disj_not1 [simp]
declare not_None_eq [simp]
end
lemma Conditional_restT_sub:
[| [[P]]T ev1 rest n ≤ [[P]]T ev2 rest n; [[Q]]T ev1 rest n ≤ [[Q]]T ev2 rest n |] ==> [[IF b THEN P ELSE Q]]T ev1 rest n ≤ [[IF b THEN P ELSE Q]]T ev2 rest n
lemma Conditional_restT:
[| [[P]]T ev1 rest n = [[P]]T ev2 rest n; [[Q]]T ev1 rest n = [[Q]]T ev2 rest n |] ==> [[IF b THEN P ELSE Q]]T ev1 rest n = [[IF b THEN P ELSE Q]]T ev2 rest n
lemma Conditional_distT:
TTs = {([[P]]T ev1, [[P]]T ev2), ([[Q]]T ev1, [[Q]]T ev2)} ==> ∃TT. TT ∈ TTs ∧ distance ([[IF b THEN P ELSE Q]]T ev1, [[IF b THEN P ELSE Q]]T ev2) ≤ distance (fst TT, snd TT)
lemma Conditional_evalT_map_alpha_lm:
[| distance ([[P]]T ev1, [[P]]T ev2) ≤ alpha * distance (ev1, ev2); distance ([[Q]]T ev1, [[Q]]T ev2) ≤ alpha * distance (ev1, ev2) |] ==> distance ([[IF b THEN P ELSE Q]]T ev1, [[IF b THEN P ELSE Q]]T ev2) ≤ alpha * distance (ev1, ev2)
lemma Conditional_evalT_map_alpha:
[| map_alpha [[P]]T alpha; map_alpha [[Q]]T alpha |] ==> map_alpha [[IF b THEN P ELSE Q]]T alpha
lemma Conditional_evalT_non_expanding:
[| non_expanding [[P]]T; non_expanding [[Q]]T |] ==> non_expanding [[IF b THEN P ELSE Q]]T
lemma Conditional_evalT_contraction_alpha:
[| contraction_alpha [[P]]T alpha; contraction_alpha [[Q]]T alpha |] ==> contraction_alpha [[IF b THEN P ELSE Q]]T alpha
lemma Conditional_restF_sub:
[| [[P]]F ev1 rest n ≤ [[P]]F ev2 rest n; [[Q]]F ev1 rest n ≤ [[Q]]F ev2 rest n |] ==> [[IF b THEN P ELSE Q]]F ev1 rest n ≤ [[IF b THEN P ELSE Q]]F ev2 rest n
lemma Conditional_restF:
[| [[P]]F ev1 rest n = [[P]]F ev2 rest n; [[Q]]F ev1 rest n = [[Q]]F ev2 rest n |] ==> [[IF b THEN P ELSE Q]]F ev1 rest n = [[IF b THEN P ELSE Q]]F ev2 rest n
lemma Conditional_distF:
FFs = {([[P]]F ev1, [[P]]F ev2), ([[Q]]F ev1, [[Q]]F ev2)} ==> ∃FF. FF ∈ FFs ∧ distance ([[IF b THEN P ELSE Q]]F ev1, [[IF b THEN P ELSE Q]]F ev2) ≤ distance (fst FF, snd FF)
lemma Conditional_evalF_map_alpha_lm:
[| distance ([[P]]F ev1, [[P]]F ev2) ≤ alpha * distance (ev1, ev2); distance ([[Q]]F ev1, [[Q]]F ev2) ≤ alpha * distance (ev1, ev2) |] ==> distance ([[IF b THEN P ELSE Q]]F ev1, [[IF b THEN P ELSE Q]]F ev2) ≤ alpha * distance (ev1, ev2)
lemma Conditional_evalF_map_alpha:
[| map_alpha [[P]]F alpha; map_alpha [[Q]]F alpha |] ==> map_alpha [[IF b THEN P ELSE Q]]F alpha
lemma Conditional_evalF_non_expanding:
[| non_expanding [[P]]F; non_expanding [[Q]]F |] ==> non_expanding [[IF b THEN P ELSE Q]]F
lemma Conditional_evalF_contraction_alpha:
[| contraction_alpha [[P]]F alpha; contraction_alpha [[Q]]F alpha |] ==> contraction_alpha [[IF b THEN P ELSE Q]]F alpha