
User Guide CSP-Prover Version 5.1

CSP-Prover Document
Version: DRAFT January 6, 2010

Yoshinao Isobe1 and Markus Roggenbach2

1 National Institute of Advanced Industrial Science and Technology, Japan,
y-isobe@aist.go.jp,

2 University of Wales Swansea, United Kingdomm
M.Roggenbach@swan.ac.uk

Contents

1 Introduction 2

2 Installing Isabelle2009-1 3

3 Setting up CSP-Prover 4

4 Starting CSP-Prover 5

5 Small demonstration 6

6 The CSP-dialect CSPTP 6

6.1 Syntax . 6

6.2 Semantics . 10

7 Encoding of the CSPTP 14

7.1 Syntax . 15

7.2 Domain . 19

7.3 Semantics . 22

7.4 Recursive process . 26

1

8 Verification 28

8.1 Semantical proof . 28

8.2 Syntactical manual proof . 29

8.3 Syntactical semi-automatic proof 42

9 Conclusion 45

A Guarded function 46

1 Introduction

We describe a tool called Csp-Prover which is an interactive theorem prover
dedicated to refinement proofs within the process algebra Csp. It aims specif-
ically at proofs on infinite state systems, which may also involve infinite non-
determinism. For this reason, Csp-Prover currently focuses on the stable failures
model F as the underlying denotational semantics of Csp.

Semantically, Csp-Prover offers both classical approaches to denotational se-
mantics: the theory of complete partial orders (cpo) as well as the theory of
complete metric spaces (cms). In this context the respective Fixed Point Theo-
rems are used for two purposes: (1) to prove the existence of fixed points, and
(2) to prove Csp refinement between two fixed points. Csp-Prover implements
both these theories for infinite product spaces and thus is capable to deal with
infinite systems of process equations.

Technically, Csp-Prover is based on the generic theorem prover Isabelle, using
the logic HOL. Within this logic, the syntax as well as the semantics of Csp is
encoded, i.e., Csp-Prover provides a deep encoding of Csp. The tool’s archi-
tecture follows a generic approach which makes it easy to re-use large parts of
the encoding for other Csp models. For instance, merely as a by-product, Csp-
Prover includes also the Csp traces model T . More importantly, Csp-Prover
can easily be extended to the failure-divergence modelN and the various infinite
traces models of Csp.

Consequently, Csp-Prover contains fundamental theorems such as fixed point
theorems on cpo and cms, the definitions of Csp syntax and semantics, and
many Csp-laws and semi-automatic proof methods for verification of refinement
relation. Therefore, Csp-Prover can be used for

1. Verification of infinite state systems. For example, we applied Csp-Prover
to verify a part of the specification of the EP2 system, which is a new
industrial standard of electronic payment systems, in [IR05].

3

2. Establishing new theorems on Csp. For example, Csp-Prover assisted
us very well in proving new theorems on a sound and complete axiom
system for the stable failures equivalence over processes with unbounded
nondeterminism over arbitrary alphabet. The result is included in the
package FNF_F in CSP-Prover-5-1-2009-1.tar.gz.

In Isabelle, theorems, together with definitions and proof-scripts needed for
their proof, can be stored in theory-files. Currently, Csp-Prover consists of 5
packages of theory-files: CSP, CSP T, CSP F, DFP, and FNF F. The package CSP is
the reusable part independent of specific Csp models. For example, it contains
fixed point theorems on cpo and cms, and the definition of Csp syntax. The
packages CSP T and CSP F are instantiated parts for the traces model and the
stable failures model. The packages have a hierarchical organisation as: CSP F
on CSP T on CSP on Isabelle/HOL. The theorems for the sound and complete
axiom system for the stable failures equivalence are stored in the package FNF F
(Full Normal Form for the model F) implemented on CSP F. The package DFP
(Deadlock-Freedom Proof Package) provides some theorems used for proving
deadlock freedom.

In this document, we explain how to set up Csp-Prover and to use it.

2 Installing Isabelle2009-1

Csp-Prover version 5.1 is encoded in Isabelle2009-1/HOL. To install the inter-
active theorem prover Isabelle follow the instructions of the Isabelle Web page:

http://isabelle.in.tum.de/

For example, download the following files for Linux/x86 from the web page:

Isabelle2009-1.tar.gz
ProofGeneral-3.7.1.1.tar.gz
polyml-5.3.0.tar.gz
HOL_x86-linux.tar.gz

Then, uncompress and unpack them into e.g. the directory /usr/local as fol-
lows:

% tar -C /usr/local -xzf Isabelle2009-1.tar.gz
% tar -C /usr/local -xzf ProofGeneral-3.7.1.1.tar.gz
% tar -C /usr/local -xzf polyml-5.3.0.tar.gz
% tar -C /usr/local -xzf HOL_x86-linux.tar.gz

Isabelle can be started with plain tty interaction by

% /usr/local/Isabelle/bin/isabelle tty -l HOL

or with Proof General (Emacs interface wrapper) by

4

% /usr/local/Isabelle/bin/isabelle emacs -l HOL

For the rest of this document, we assume that /usr/local/Isabelle/bin is
an executable path.

3 Setting up CSP-Prover

Download the file CSP-Prover-5-1-2009-1.tar.gz from

http://staff.aist.go.jp/y-isobe/CSP-Prover/CSP-Prover.html

and unpack it e.g. in the directory

/usr/local/CSP-Prover-5-1-2009-1

by an unpacking command (e.g. tar zxvf CSP-Prover-5-1-2009-1.tar.gz).

CSP-Prover-5-1-2009-1 contains the 9 directories as follows:

• CSP : the reusable part of Csp-Prover,

• CSP T : the instantiated part for the traces model T ,

• CSP F : the instantiated part for the stable-failures model F ,

• FNF F : the theory for full normalisation in the model F (see [IR06]),

• DFP : the theory for proving deadlock freedom (see [IRG05]),

• DM : an example to verify the Dining Mathematicians[CS01] (see [IR05]),

• ep2 : an industrial case study on an electronic payment system ep2[ep202]
(see [IR05]),

• Test : small examples for testing Csp-Prover,

• SA Kung : Kung’s systolic array for the multiplication of n × n matrices
(see [IRG05]),

• NBuff : linked n one-buffers,

• UCD : Uniform Candy Distribution Puzzle (see [IR08]).

It is recommended to make heap files: CSP, CSP T, CSP F, FNF F, and DFP.
After making the heap files once, you do not have to prove them again before
using them. You can make the 5 heap files by one command

% make_heaps

at the directory /usr/local/CSP-Prover-5-1-2009-1/, where the environ-
ment variable “ISABELLE bin” has to be set to the path containing the com-
mand isabelle of Isabelle2009-1. The heap file will be made in your Isabella
directory. If you did not specify the directory, it is probably

5

~/.isabelle/heaps/Isabelle2009-1/polyml-*** (depends on your OS)

It may take time to make the five heap files. For example, about 8 minutes by
Intel CPU (Core2, 2.5GHz).

In addition, if you like to comfortably read theory files of Csp-Prover by web-
browsers (e.g. Firefox, · · ·), you can make html files for them by a command

% make_html

at the directory /usr/local/CSP-Prover-5-1-2009-1/. The theory files and
theory dependency-graphs can be browsed by the web-browsers:

% cd ~/.isabelle/browser_info/HOL/CSP
% firefox index.html

or the theory dependency-graphs can be browsed by isabelle:

% cd ~/.isabelle/browser_info/HOL/CSP/
% isabelle browser session.graph

where Java is needed for displaying graphs.

4 Starting CSP-Prover

You can start the logic CSP_F for the stable failures model F of Csp-Prover in
a shell window by

% isabelle tty -l CSP_F

or start it in Proof General[Asp00] by

% isabelle emacs -l CSP_F

It is recommended to use Proof General, which is a superior interface for
Isabelle. In Proof General, you can also select a logic (e.g. CSP, CSP_T, CSP_F,
FNF_F, HOL, · · ·) used in Isabelle from the menu bar. Click the button [Isabelle]
→ [Logics] → [CSP].

In addition, you can also activate X-symbols in Proof General from the menu
bar. Click the button [Proof General] → [option] → [X-Symbol]. Csp-Prover
also provides a more conventional syntax of processes based on X-symbols. For
example, the external choice P [+] Q in ASCII mode is replaced with P 2 Q in
X-symbol mode.

6

5 Small demonstration

Let us prove small examples, for getting the overview how Csp-Prover works. If
you use a shell window and an editor window, the proof is proceeding as follows:

1. Start Isabelle with the logic CSP_F in the shell window by

% isabelle tty -l CSP_F

2. Open the following example in the editor window:

/usr/local/CSP-Prover-5-1-2009-1/Test/Test_infinite.thy

3. Copy the commands from “Test_infinite.thy” and paste them to the
Isabelle window line by line until the proof finishes.

If you can use Proof General, the proof is more elegant as follows:

1. Start Proof General with CSP_F by

% isabelle emacs -l CSP_F

2. Open the following example in the Proof General window:

/usr/local/CSP-Prover-5-1-2009-1/Test/Test_infinite.thy

3. Click the button “Next” in the menu bar until the proof finishes.

Similarly, try to prove another example:

/usr/local/CSP-Prover-5-1-2009-1/Test/Test_finite.thy

The examples ep2 and DM are explained in the web-site of Csp-Prover:

http://staff.aist.go.jp/y-isobe/CSP-Prover/CSP-Prover.html

6 The CSP-dialect CSPTP

This section summarises syntax and semantics of the CSP-dialect CspTP, which
is the input language of Csp-Prover, and then we show that it can deal with
infinitely many mutual recursive processes. The subscript TP of CspTP represents
Theorem Proving.

6.1 Syntax

This section defines syntax of CspTP: Given a type of process names Π and an
alphabet of communications Σ. Figure 1 shows the syntax of processes in CspTP,
where Nat is the set of natural numbers and Choice(Σ) = P(P(Σ)) ⊎ P(Nat).
The set of processes are denoted by Proc(Π,Σ). Note that replicated internal
choice takes an index set C ∈ Choice(Σ) as its parameter, thus C ⊆ P(Σ) or

6.1 Syntax 7

P ::= SKIP %% successful terminating process
| STOP %% deadlock process
| DIV %% divergence
| a → P %% action prefix
| ? x : X → P(x) %% prefix choice
| P 2 P %% external choice
| P ⊓ P %% internal choice
| !! c : C • P(c) %% replicated internal choice
| IF b THEN P ELSE P %% conditional
| P |[X]| P %% generalized parallel
| P \ X %% hiding
| P [[r]] %% relational renaming
| P o

9 P %% sequential composition
| P ⌊n %% depth restriction
| $p %% process name

where X ⊆ Σ, C ∈ Choice(Σ), b ∈ Bool , r ∈ P(Σ × Σ), n ∈ Nat , and p ∈ Π.

Figure 1: Syntax of basic CspTP processes in Csp-Prover.

C ⊆ Nat . To specify the type of the parameter, we often use the following
syntax:

!set X : Xs • P(X) := !! c : Xs • P(c)
!nat n : N • P(n) := !! c : N • P(c)

where Xs ⊆ P(Σ) and N ⊆ Nat . This syntax is convenient in the theorem prover
Isabelle because it is difficult to directly assign such two different types (P(Σ)
and Nat) to a variable C . By a similar reason, the symbol $ is attached to each
process name, in order to convert the type from process names to processes. In
Isabelle, they have to be explicitly distinguished.

To avoid too many parentheses, the operators have the decreasing binding
power, in the following order: conditional, {hiding, renaming, depth restric-
tion}, {action prefix, prefix choice}, sequential composition, generalised parallel,
external choice, replicated internal choice, internal choice.

One difference from conventional Csp is that we replace the generic internal
choice ⊓P by a replicated internal choice !! c : C • P(c), i.e., instead of having
internal choice over an arbitrary class of processes P ⊆ Proc(Π,Σ), internal choice
is restricted to run over an indexed set of processes P(·) : P(Σ)⊎Nat ⇒ Proc(Π,Σ)

only, where C ∈ Choice(Σ). The other difference is that we introduce depth-
restriction ⌊ as a basic operator 1. The restriction plays an important role in

1Although the restriction function is conventionally denoted by ↓, we have already used
it as restriction function in semantic domains. Therefore, ⌊ is used in process expressions in
order to avoid syntactically ambiguous input in Isabelle.

6.1 Syntax 8

full-normalisation. As [Ros98] shows, for the stable-failures model such restric-
tion cannot be defined in terms of the other basic operators.

The following shortcuts are also available in Csp-Prover:

• (Untimed) timeout:

P ◃ Q := (P ⊓ STOP) 2 Q

• Replicated internal choices:

! x : A • P(x) := !set X : {{x} | x ∈ A} • P(contents(X))
!⟨f ⟩ z : Z • P(z) := ! x : {f (z) | z ∈ Z} • P(f −1(z))

where A ⊆ Σ and contents({x}) = x . The second one can be used for
expressing the non-determinism over any type τ by a type converter f :
τ → Σ. For example, if you want to use the non-determinism over real
numbers, it can be expressed as follows:

!⟨real⟩ r : R • P(r)

where R ⊆ Real , real : Real ⇒ Σ, {real(r) | r ∈ Real} ⊆ Σ, and Real is
the set of real numbers.

• Internal prefix choice:

! x : A→ P(x) := ! x : A • (x → P(x))

• Sending ‘!’, receiving ‘?’, and non-deterministic sending ‘!?’ prefixes:

a!v → P := a(v)→ P
a?x : X → P(x) := ? x : {a(v) | v ∈ X } → P(a−1(x))
a!?x : X → P(x) := ! x : {a(v) | v ∈ X } → P(a−1(x))

The prefix a!?x : X → P(x) nondeterministically sends a value v ∈ X ,
and then the value is retained in P(v). The non-deterministic sending
prefix may not be used in the implementations, but it can be used for
expressing (loose) specifications in early design stages.

• If the index set in prefix choice, replicated internal choice, etc, is the
universe, the universe can be omitted, for example we can write !nat n •
P(n) instead of !nat n : Nat • P(n) and a?x → P(x) instead of a?x :
Univ → P(x).

• Interleaving, synchronous, and alphabetised parallels:

P ||| Q := P |[∅]|Q
P ∥ Q := P |[Σ]|Q

P |[X ,Y]|Q := (P |[Σ−X]| SKIP) |[X ∩Y]| (Q |[Σ−Y]| SKIP)

6.1 Syntax 9

• Inductive alphabetised parallel:

[∥] ⟨⟩ := SKIP
[∥] (P ,X) a PXlist := P |[X ,Y]| ([∥] PXlist)

where Y =
∪
{X | ∃P . (P ,X) ∈ set(PXlist)} and set(list) is the set of

all the elements in list , thus

set(⟨⟩) = ∅
set(⟨e⟩a tail) = {e} ∪ set(tail)

• Replicated alphabetised parallel:

[∥] i : I • (Pi ,Xi) := [∥] (map (λ i . (Pi ,Xi)) Ilist)

where I is a finite index set and the list Ilist is given from I as follows:

Ilist := ε list . (I = set(list) ∧ | I | = | list |)

where | I | is the size of the finite set I , | list | is the length of list , ε is
the Hilbert’s ε-operator, thus (ε x . pred(x)) is an x such that pred(x) is
true, and map is defined as follows:

map f ⟨⟩ = ⟨⟩
map f (⟨e⟩a tail) = ⟨f (e)⟩a (map f tail)

Note that Ilist is not uniquely decided from I . However, the semantics
of [∥] i : I • (Pi ,Xi) is uniquely decided and it equals to the well known
semantics of Replicated alphabetised parallel.

In Csp, process names are defined by equations of the following form: for
each process name p ∈ Π,

p = P

where P ∈ Proc(Π,Σ). Intuitively, it means that the process name p behaves like
the process P . Since P can contain process names, it allows one to describe re-
cursive processes. For example, a process A, which alternately performs events
a and b iteratively, and can perform c just after b and then successfully termi-
nates, is defined as follows:

A = a → $B
B = (b → $A) 2 (c → SKIP)

CspTP provides a special function PNfunΠ : Π ⇒ Proc(Π,Σ), which is called
a process-name function, in order to describe the right hand sides of defining
equations. Thus, it means that each process name p ∈ Π behaves like the process
PNfunΠ(p). For example, the example A above is defined by the following
function:

PNfunΠ A = a → $B
PNfunΠ B = (b → $A) 2 (c → SKIP)

6.2 Semantics 10

where Σ = {a, b, c} and Π = {A,B}.

Process names can include parameters. For example, process names Inc,
which iteratively sends an increasing natural number n from 0 after start , can
be defined by the following process-name function PNfunΠ:

PNfunΠ Inc = start → $(Loop(0))
PNfunΠ (Loop(n)) = n → $(Loop(n + 1))

where Σ = {start} ∪ Nat and Π = {Int} ∪ {Loop(n) | n ∈ Nat}. Clearly, this
process has infinite states.

We often need to replace a process name p ∈ Π1 by a process f (p), where f
is a function such that f : Π1 ⇒ Proc(Π2,Σ) . Therefore, we define the operation

▹ : Proc(Π1,Σ) ⇒ (Π1 ⇒ Proc(Π2,Σ))⇒ Proc(Π2,Σ)

for the replacement. Thus, P ▹ f is the process obtained from P by replacing
every process name p by f (p). For the example Inc above, it can be unwound
by the operator as follows:

(Inc ▹ PNfunΠ) ▹ PNfunΠ = (start → Loop(0)) ▹ PNfunΠ

= start → 0→ Loop(1)

This substitution operator is extended over functions as follows:

▹▹ : (Π1 ⇒ Proc(Π2,Σ))⇒ (Π2 ⇒ Proc(Π3,Σ))⇒ (Π1 ⇒ Proc(Π3,Σ))
f ▹▹ g = (λ p. f (p) ▹ g)

6.2 Semantics

Currently, Csp-Prover concentrates on the denotational stable-failures model F
of Csp. Its domain FΣ is given as the set of all pairs (T ,F) that satisfy certain
healthiness conditions.

Definition 1 Given a set of communications Σ, the domain of the stable fail-
ures model FΣ is a set of pairs (T ,F) satisfying the following healthiness con-
ditions, where T ⊆ Σ∗X and F ⊆ Σ∗X × P(ΣX) 2.

T1 T is non-empty and prefix closed,

T2 (t ,X) ∈ F =⇒ t ∈ T,

T3 t a ⟨X⟩ ∈ T =⇒ (t a ⟨X⟩,X) ∈ F ,

F2 (t ,X) ∈ F ∧ Y ⊆ X =⇒ (t ,Y) ∈ F,

F3 (t ,X) ∈ F ∧ (∀ a ∈ Y . t a ⟨a⟩ /∈ T) =⇒ (t ,X ∪Y) ∈ F,

F4 t a ⟨X⟩ ∈ T =⇒ (t , Σ) ∈ F.
2ΣX := Σ ∪ {X}, Σ∗X := Σ∗ ∪ {t a ⟨X⟩ | t ∈ Σ∗}.

6.2 Semantics 11

The labels T1, · · · ,F4 of the healthiness conditions are the same as ones used
in [Ros98]. We denote the set of traces satisfying T1 by TΣ, which is exactly
the domain of the traces model.

When (Π,Σ)-model M is given, the semantics parameterised by M of a process
P is defined by [[P]]F(M), where M is used for giving meanings to process names
in the stable failures model F , (i.e. M : Π ⇒ FΣ), and [[·]]F(M) is a map
(Proc(Π,Σ) ⇒ FΣ) expressed with the help of two functions:

[[P]]F(M) = (traces(fst◦M)(P), failuresM (P)).

where fst is a function for extracting the first component from a pair and ◦
is the composition operator of two functions, thus (fst ◦ M) is the (Π, Σ)-
model for giving a meaning to each process name in the traces model T (i.e.
(fst ◦ M) : Π ⇒ TΣ), obtained from M . Then, the functions tracesM and
failuresM are recursively defined by the semantic clauses given in Figure 2. Our
definitions of tracesM and failuresM are identical to those given in [Ros98] except
that the (Π, Σ)-models M are explicitly attached and the clauses of our two
operators, namely replicated internal choice3 and depth restriction are added.
The auxiliary notations t1 |[X]| t2, t \ X , [[r]]∗, [[r]]−1, T ↓ n, and F ↓ n used
in Figure 2 are defined as follows:

• t1 |[X]| t2 is inductively defined by:

⟨x ⟩a t1 |[X]| ⟨x ⟩a t2 = {⟨x ⟩a u | u ∈ t1 |[X]| t2}
⟨x ⟩a t1 |[X]| ⟨x ′⟩a t2 = ∅
⟨x ⟩a t1 |[X]| ⟨⟩ = ∅

⟨⟩ |[X]| ⟨x ⟩a t2 = ∅
⟨⟩ |[X]| ⟨⟩ = {⟨⟩}

⟨y⟩a t1 |[X]| ⟨x ⟩a t2 = {⟨y⟩a u | u ∈ t1 |[X]| ⟨x ⟩a t2}
⟨y⟩a t1 |[X]| ⟨⟩ = {⟨y⟩a u | u ∈ t1 |[X]| ⟨⟩}
⟨x ⟩a t1 |[X]| ⟨y⟩a t2 = {⟨y⟩a u | u ∈ ⟨x ⟩a t1 |[X]| t2}

⟨⟩ |[X]| ⟨y⟩a t2 = {⟨y⟩a u | u ∈ ⟨⟩ |[X]| t2}
⟨y⟩a t1 |[X]| ⟨y ′⟩a t2 = {⟨y⟩a u | u ∈ t1 |[X]| ⟨y ′⟩a t2}

∪{⟨y ′⟩a u | u ∈ ⟨y⟩a t1 |[X]| t2}

where x , x ′ ∈ X ∪ {X}, y , y ′ /∈ X ∪ {X}, and x ̸= x ′,

• (t \ X) is inductively defined by:

⟨⟩ \ X = ⟨⟩
(⟨x ⟩a t) \ X = t \ X (if x ∈ X)
(⟨y⟩a t) \ X = ⟨y⟩a (t \ X) (if y /∈ X)

• [[r]]∗ is the smallest set satisfying the following inference rules:

True ⇒ (⟨⟩, ⟨⟩) ∈ [[r]]∗

True ⇒ (⟨X⟩, ⟨X⟩) ∈ [[r]]∗

(a, b) ∈ r ∧ (t , t ′) ∈ [[r]]∗ ⇒ (a a t , b a t ′) ∈ [[r]]∗

3As we allow the empty set ∅ as an index set C , we need to add {⟨⟩} to the set of traces.

6.2 Semantics 12

tracesM (SKIP) = {⟨⟩, ⟨X⟩}
tracesM (STOP) = {⟨⟩}
tracesM (DIV) = {⟨⟩}

tracesM (a → P) = {⟨⟩} ∪ {⟨a⟩a t ′ | t ′ ∈ tracesM (P)}
tracesM (? x : A → P(x)) = {⟨⟩} ∪ {⟨x ⟩a t ′ | t ′ ∈ tracesM (P(x)), x ∈ A}

tracesM (P 2 Q) = tracesM (P) ∪ tracesM (Q)
tracesM (P ⊓ Q) = tracesM (P) ∪ tracesM (Q)

tracesM (!! c : C • P(c)) =
∪
{tracesM (P(c)) | c ∈ C} ∪ {⟨⟩}

tracesM (IF b THENP ELSEQ) = if b then tracesM (P) else tracesM (Q)
tracesM (P |[X]| Q) =

∪
{t1 |[X]| t2 | t1 ∈ tracesM (P), t2 ∈ tracesM (Q)}

tracesM (P \ X) = {t \ X | t ∈ tracesM (P)}
tracesM (P [[r]]) = {t | ∃ t ′ ∈ tracesM (P). (t ′, t) ∈ [[r]]∗}
tracesM (P o

9 Q) = (tracesM (P) ∩ Σ∗)
∪{t1 a t2 | t1 a ⟨X⟩ ∈ tracesM (P), t2 ∈ tracesM (Q)}

tracesM (P ⌊n) = tracesM (P) ↓ n
tracesM ($p) = M (p)

failuresM (SKIP) = {(⟨⟩,X) | X ⊆ Σ} ∪ {(⟨X⟩,X) | X ⊆ ΣX}
failuresM (STOP) = {(⟨⟩,X) | X ⊆ ΣX}
failuresM (DIV) = ∅

failuresM (a → P) = {(⟨⟩,X) | a /∈ X }
∪ {(⟨a⟩a t ′,X) | (t ′,X) ∈ failuresM (P)}

failuresM (? x : A → P(x)) = {(⟨⟩,X) | A ∩ X = ∅}
∪ {(⟨x ⟩a t ′,X) | (t ′,X) ∈ failuresM (P(x)), x ∈ A}

failuresM (P 2 Q) = {(⟨⟩,X) | (⟨⟩,X) ∈ failuresM (P) ∩ failuresM (Q)}
∪{(t ,X) | t ̸= ⟨⟩,

(t ,X) ∈ failuresM (P) ∪ failuresM (Q)}
∪{(⟨⟩,X) | X ⊆ Σ,
⟨X⟩ ∈ traces(fst◦M)(P) ∪ traces(fst◦M)(Q)}

failuresM (P ⊓ Q) = failuresM (P) ∪ failuresM (Q)
failuresM (!! c : C • P) =

∪
{failuresM (P(c)) | c ∈ C}

failuresM (IF b THENP ELSEQ) = if b then failuresM (P) else failuresM (Q)
failuresM (P |[X]| Q) = {(u,Y ∪ Z) | Y − (X ∪ {X}) = Z − (X ∪ {X}),

∃ t1, t2. u ∈ t1 |[X]| t2,
(t1,Y) ∈ failuresM (P), (t2,Z) ∈ failuresM (Q)}

failuresM (P \ X) = {(t \ X ,Y) | (t ,Y ∪ X) ∈ failuresM (P)}
failuresM (P [[r]]) = {(t ,X) | ∃ t ′. (t ′, t) ∈ [[r]]∗,

(t ′, [[r]]−1(X)) ∈ failuresM (P)}
failuresM (P o

9 Q) = {(t1,X) | t1 ∈ Σ∗, (t1,X ∪ {X}) ∈ failuresM (P)}
∪{(t1 a t2,X) | t1 a ⟨X⟩ ∈ traces(fst◦M)(P),

(t2,X) ∈ failuresM (Q)}
failuresM (P ⌊n) = failuresM (P) ↓ n

failuresM ($p) = snd(M (p))

Figure 2: Semantic clauses for the model F in our CspTP.

6.2 Semantics 13

• [[r]]−1(X) is defined as:

[[r]]−1(X) = {a | ∃ b ∈ X . (a, b) ∈ r ∨ a = b = X}

• Restriction functions T ↓ n and F ↓ n are defined as:

T ↓ n = {t ∈ T | |t | ≤ n}
F ↓ n = {(t ,X) ∈ F | |t | < n ∨ (∃ t ′. t = t ′ a ⟨X⟩, |t | = n)}

Now, we consider how to decide the (Π, Σ)-model M . As explained in Sub-
section 6.1, it is assumed that each process name p behaves like the process
PNfunΠ(p). Therefore, the (Π, Σ)-model M has to be given so as to satisfy the
following equation: for all p ∈ Π,

[[$p]]F(M) = [[PNfunΠ(p)]]F(M)

Since [[$p]]F(M) = M (p), this can be rewritten to the following form:

M = [[PNfunΠ]]funF (M)

where [[PNfunΠ]]funF (M) = (λ p.[[PNfunΠ(p)]]F(M)). Consequently, the (Π, Σ)-
model M is a fixed point of the function [[PNfunΠ]]funF .

Csp offers two standard approaches to deal with fixed points: complete partial
orders (cpo) with Tarski’s fixed point theorem or complete metric spaces (cms)
with Banach’s fixed point theorem. The cpo approach shows that the function
[[PNfunΠ]]funF has the least fixed point for any process-name function PNfunΠ.
On the other hand, the cms approach shows that the function [[PNfunΠ]]funF has
the unique fixed point if the process PNfunΠ(p) is guarded 4, for every process
name p ∈ Π.

Since the definition of process names depends on which approach is used,
CspTP has a reserved word FPmode, which takes either CMSmode or CPOmode or
MIXmode. If FPmode = CMSmode, then the unique fixed point of [[PNfunΠ]]funF is
used, but it cannot deal with unguarded processes. If FPmode = CPOmode, then
the least fixed point of [[PNfunΠ]]funF is used. It can deal with all processes, but
the uniqueness of the fixed point is not guaranteed. If FPmode = MIXmode, then
the advantages of the both approach are available. Thus, the least fixed point
of [[PNfunΠ]]funF is used for all processes, but the uniqueness is guaranteed for
guarded processes. Therefore, the ideal (Π, Σ)-model, written MFΠ, is given as
follows:

MFΠ = FIX([[PNfunΠ]]funF)

where the function FIX is defined as follows:

FIX(fun) = if FPmode = CMSmode then UFP(fun) else LFP(fun)

4The definition of guardedness is given in Appendix A.

14

where UFP and LFP represent the unique fixed point and the least fixed point,
respectively. Finally, the semantics [[P]]F of each process P is defined as follows:

[[P]]F = [[P]]F(MFΠ)

Given two models M1 and M2 for two sets of process names Π1 and Π2

respectively, parameterised process equivalence =F(M1,M2) and parameterised
process refinement ⊑F(M1,M2) over the stable failures model are then defined as
follows:

P =F(M1,M2) Q ⇔
traces(fst◦M1)(P) = traces(fst◦M2)(Q) ∧ failuresM1(P) = failuresM2(Q),

P ⊑F(M1,M2) Q ⇔
traces(fst◦M1)(P) ⊇ traces(fst◦M2)(Q) ∧ failuresM1(P) ⊇ failuresM2(Q).

Then, since the ideal (Π,Σ)-model is MFΠ, process equivalence =F : Proc(Π1,Σ)×
Proc(Π2,Σ) ⇒ Bool and process refinement ⊑F : Proc(Π1,Σ) × Proc(Π2,Σ) ⇒ Bool
are defined as follows:

P =F Q ⇔ P =F(MFΠ1 ,MFΠ2) Q ,
P ⊑F Q ⇔ P ⊑F(MFΠ1 ,MFΠ2) Q .

Then, as expected, the following properties hold:

1. Let FPmode = CPOmode. Then,

• ∀ p ∈ Π. $p =F PNfunΠ(p),

• ∀ f . ((∀ p ∈ Π. f (p) =F PNfunΠ(p) ▹ f) =⇒ (∀ p ∈ Π. f (p) ⊑F $p)).

2. Let FPmode = CMSmode and PNfunΠ(p) be guarded for any p. Then,

• ∀ p ∈ Π. $p =F PNfunΠ(p),

• ∀ f . ((∀ p ∈ Π. f (p) =F PNfunΠ(p) ▹ f) =⇒ (∀ p ∈ Π. f (p) =F $p)).

Thus, both ways of Csp for dealing with systems of recursive equations, the
cpo approach using Tarski’s fixed point theorem as well as the cms approach
using Banach’s fixed point theorem, are available also in CspTP.

7 Encoding of the CSPTP

This section shows how CspTP introduced in Section 6 is encoded in the generic
theorem prover Isabelle.

7.1 Syntax 15

Conventional symbol ASCII symbol Name

SKIP SKIP successful terminating process
STOP STOP deadlock process
DIV DIV divergence
a → P a ->P action prefix
? x : A → P(x) ? x :A -> P(x) prefix choice
P 2 Q P [+]Q external choice
P ⊓ Q P |~|Q internal choice
!! c : C • P(c) !! c :C ..P(c) replicated internal choice
IF b THEN P ELSE Q IF b THENP ELSEQ conditional
P |[X]| Q P |[X]|Q generalized parallel
P \ X P --X hiding
P [[r]] P [[r]] relational renaming
P o

9 Q P ;;Q sequential composition
P ⌊n P |. n depth restriction
$p $p process name

P ◃ Q P [>Q timeout
!set X : Xs • P(X) !setX :X∫ ..P(X) replicated internal choice over P(Σ)
!nat n : N • P(n) !natn :N ..P(n) replicated internal choice over Nat
! x : A • P(x) ! x :A ..P(x) replicated internal choice over Σ
!⟨f ⟩ z : Z • P(z) !<f > z :Z ..P(z) replicated internal choice with f
! x : A → P(x) ! x :A ->P(x) internal prefix choice
a!v → P a!v ->P sending
a?x : X → P(x) a?x:X ->P(x) receiving
a!?x : X → P(x) a!?x:X ->P(x) non-deterministic sending
P ||| Q P |||Q interleaving
P ∥ Q P ||Q synchronous
P |[X ,Y]| Q P |[X,Y]|Q alphabetized parallel
[∥] i : I • (Pi ,Xi) [||] i:I .. (Pi ,Xi) replicated alphabetized parallel

Figure 3: The ASCII expression of Csp processes.

7.1 Syntax

At first, we give ASCII style expressions of Csp processes in Figure 3 because
the conventional operators use TeX symbols5. These are trivial translations
from TeX symbols to ASCII symbols. You will need Figure 3 when you use
Csp-Prover in fact. However, we consistently continue to use the conventional
symbols such as 2 instead of [+] in this User-Guide because the conventional
symbols allow this guide to be readable and they are almost available in the X-
Symbol mode in the Proof-General which is an XEmacs-like interface of Isabelle.
And, we use conventional symbols on set, logic, etc, as used in the Isabelle-
tutorial[NPW02], for example, a ∈ X and X ⊆ Y are used instead of a:X and

5We had to use the ASCII symbols slightly different from the machine readable processes
Csp-M used in FDR, in order to avoid overloading of symbols which Isabelle had already used.

7.1 Syntax 16

types
’a sets nats = "(’a set set, nat set) sum"

’a aset anat = "(’a set, nat) sum"

datatype
(’p,’a) proc

= STOP

| SKIP
| DIV
| Act prefix "’a" "(’p,’a) proc" (” → ”)
| Ext pre choice "’a set" "’a ⇒ (’p,’a) proc" (”? : → ”)
| Ext choice "(’p,’a) proc" "(’p,’a) proc" (" 2 ")
| Int choice "(’p,’a) proc" "(’p,’a) proc" (" ⊓ ")
| Rep int choice "’a sets nats"

"’a aset anat ⇒ (’p,’a) proc" ("!! : • ")
| IF "bool" "(’p,’a) proc"

"(’p,’a) proc" (”IF THEN ELSE ”)
| Parallel "(’p,’a) proc" "’a set"

"(’p,’a) proc" (" |[]| ")
| Hiding "(’p,’a) proc" "’a set" (" \ ")
| Renaming "(’p,’a) proc" "(’a * ’a) set" (" [[]]")
| Seq compo "(’p,’a) proc" "(’p,’a) proc" (" o

9 ")
| Depth rest "(’p,’a) proc" "nat" (" ⌊ ")
| Proc name "’p" ("$ ")

Figure 4: The recursive definition of the process type.

X <=Y , respectively.

Now, the set of (basic) processes is given as a recursive type (’p,’a) proc
which is defined by the Isabelle command datatype as shown in Figure 4, where
’p is the type of process names Π and ’a is the type of communications Σ. Here,
note that the types of index sets ’a sets nats in replicated internal choice.
As explained in Section 6, an index-set of replicated internal choice is either a
subset of subsets of communications or a subset of natural numbers, thus the
type of index-sets is the disjoint of "’a set set" and "nat set". Therefore, it
is defined by "(’a set set, nat set) sum" as shown at the top of Figure 4,
where sum is the disjoint sum type and is defined by

datatype (’a,’b) sum = type1 "’a" | type2 "’b"

and some lemmas on sum are proven in the theory file CSP/Infra_type.thy.

Furthermore, note the definitions of prefix choice and replicated internal
choice. For example, the following process, which receives a value 0 or 1 and
thereafter if the value is 0 then it successfully terminate else deadlocks,

?n : {0, 1} → (IF (n = 0) THEN SKIP ELSE STOP)

7.1 Syntax 17

syntax
"@Ext pre choice" ::

"pttrn ⇒ ’a set ⇒ ’a proc ⇒ (’p,’a) proc" ("? : → ")

"@Rep int choice" ::

"pttrn ⇒ ’a sets nats ⇒ ’a aset anat ⇒ (’p,’a) proc" ("!! : • ")

translations
"? x : X → P" == "? : X → (λ x . P)"
"!! c : C • P" == "!! : C • (λ c. P)"

Figure 5: The expression of bound variables.

is defined by

? : {0, 1} → (λn. (IF (n = 0) THEN SKIP ELSE STOP))

because bound variables such as n are not used in the definition by datatype.
But, this inconvenience is easily solved by the Isabelle commands syntax and
translations, which make syntactic sugars, as shown in Figure 5.

Derived operators such as ◃ are defined by abbreviation for syntactic macros,
consts to declare types, and defs to define functions. We give some of them in
Figure 6. Here, note replicated internal choice over sets of communications in
the middle of the figure. We explained that it is defined as

!set X : Xs • P(X) := !! c : Xs • P(c)

in Section 6, but more exactly, it has to be defined by explicitly considering the
type conversion by type1, which is one of type-constructors of the disjoint-sum
type sum, as follows:

!set X : Xs • P(X) := !! c : (type1Xs) • P(type1−1(c))

in Isabelle. You can find all the definitions of process expressions in the the
theory-file CSP_syntax.thy in the package CSP.

As explained in Subsection 6.1, CspTP has two reserved words, PNfun and
FPmode, for dealing with fixed points. The types of these words are declared in
the theory file CSP/CSP_syntax.thy as follows, but they are not defined there.

consts PNfun :: "’p ⇒ (’p,’a) proc"

datatype fpmode = CPOmode | CMSmode | MIXmode

consts FPmode :: "fpmode"

They are defined by users, and especially, PNfun is defined for each set of process
names by using the command defs with the option overloaded as explained in
Subsection 7.4

7.1 Syntax 18

%% timeout

abbreviation
Timeout abb :: "(’p,’a) proc ⇒ (’p,’a) proc ⇒ (’p,’a) proc" (" ◃ ")

where
"P ◃ Q" == "(P ⊓ STOP) 2 Q"

%% replicated internal choice over sets

consts
Rep int choice set ::

"’a set set ⇒ (’a set ⇒ (’p,’a) proc) ⇒ (’p,’a) proc"

("!set : • ")

defs
Rep int choice set def :

"!set :Xs • P == !! c:(type1 Xs) • (P((inv type1) c))"

%% replicated internal choice over communications

consts
Rep int choice com ::

"(’a set ⇒ (’a ⇒ (’p,’a) proc) ⇒ (’p,’a) proc" ("! : • ")

defs
Rep int choice com def :

"! : A • P == !setX : {{a} | a. a ∈ A} • P(contents(X))"

Figure 6: The definitions of derived operators.

[version 5]: In Csp-Prover version 5, the following convenient short nota-
tions are introduced for renaming :

• P [[a ←→ b]] (written P[[a <--> b]] in ASCII) is the process obtained
by swapping the events a and b in the process P .

• P [[c ⇐⇒ d]] (written P[[c <==> d]] in ASCII) is the process obtained
by swapping the channels c and d in the process P .

• P [[a ←− b]] (written P[[a <-- b]] in ASCII) is the process obtained by
replacing the event a by b in the process P .

• P [[c ⇐= d]] (written P[[c <== d]] in ASCII) is the process obtained by
replacing the channel c by d in the process P .

• P [[A←← b]] (written P[[A <<- b]] in ASCII) is the process obtained by
replacing all the events in the set A by b in the process P .

For example, the following equations hold:

(a → b → c → SKIP)[[a ←→ b]] =F b → a → c → SKIP
(in?x → out !x → SKIP)[[out ⇐⇒ mid]] =F in?x → mid !x → SKIP

(a → b → c → SKIP)[[a ←− b]] =F b → b → c → SKIP
(a → b → c → d → SKIP)[[{a, c} ←← b]] =F b → b → b → d → SKIP

7.2 Domain 19

Auxiliary laws for the short notations are also proven in Csp-Prover version 5,
and they are automatically applied by the CSP-methods cspF_auto, cspF_hsf,
cspF_renaming, etc as explained in Subsection 8.3, later. It will make proofs
easy to read. The short notations for renaming are used in the examples NBuff
and UCD in CSP-Prover-5-1-2009-1.

7.2 Domain

In this subsection, we encode the domain for the stable-failures model F . How-
ever, first of all, we briefly explain how to define a new type from an existing
type by the Isabelle command typedef. It defines a new type as a non-empty
subset of an existing type:

typedef SubType = {x::SuperType. Pred(x)}

Here, Pred is a predicate over the existing type SuperType, and SubType is the
newly defined type by the subset. When a new type is defined by typedef, a
set and two type-converters are automatically declared for relating the new type
with the existing type.

SubType :: SuperType set,
Rep SubType :: SuperType ⇒ SubType,
Abs SubType :: SubType ⇒ SuperType.

Then, the set SubType is defined as {x::SuperType. Pred(x)}, and the fol-
lowing properties are asserted:

Rep SubType s ∈ SubType,
Abs SubType (Rep SubType s) = s,

s ∈ SubType ⇒ Rep SubType (Abs SubType s) = s,

where the name SubType is used as both a type and a set.

Now, let us start defining the type of domain for the stable-failures model F .
At first, the type of events which consist of communications (whose type is ’a)
and the termination symbol X (written Tick in ASCII) is defined as follows:

datatype ’a event = Ev ’a | X

Then, the type of traces which may have the successful termination symbol X
in the last place as follows:

typedef ’a trace = "{s::(’a event list). X /∈ set (butlast s)}"

where the function butlast removes the last element of the list s and the
function set transforms a list to a set of elements contained in the list. The
basic operators over traces are defined from the corresponding operators over
lists with help of type-converters Rep_domT and Abs_domT. For example, the

7.2 Domain 20

concatenate operator a (written ^^^ in ASCII)6 over traces is defined from the
concatenate operator @ over lists as follows:

consts
appt :: "’a trace ⇒ ’a trace ⇒ ’a trace" (infixr "a" 65)

defs
appt def : "s a t == Abs trace (Rep trace s @ Rep trace t)"

See the theory-file Trace.thy in the package CSP for more details. Many useful
lemmas on traces such as associativity are also given there.

Secondly, the type of domain for the traces model T is defined as the set of
subsets of traces which satisfy the healthiness condition T1 (i.e. non-empty and
prefix closed) as follows:

typedef ’a domT = "{T::(’a trace set). HC T1(T)}"

where HC_T1 is the encoded healthiness condition T1.

Isabelle has provided a type class of types together with a partial order ≤
(written <= in ASCII), and lemmas and theorems on such types have been
proven. Such lemmas and theorems can be applied to newly defined types,
provided such order ≤ over the types is defined and is proven to be a partial
order. In the case of domT, such order ≤ over domT can be defined from the
inclusion ⊆ as follows:

defs (overloaded)

subdomT def : "T ≤ S == (Rep domT T) ⊆ (Rep domT S)"

where “overloaded” means ≤ (to be proven to be a partial order) is instantiated.
See the theory-file Domain_T.thy in the package CSP_T for more details.

In the same way as domT, the set of failures satisfying the healthiness condition
F2 is given as a type as follows:

typedef ’a setF = "{F::(’a failure set). HC F2(F)}"

where ’a failure is a synonym which can be defined by the Isabelle command
types:

types ’a failure = "’a trace * ’a event set"

where * is a type constructor of pairs. And the partial order ≤ over setF is also
overloaded as follows:

defs (overloaded)

subsetF def : "F ≤ E == (Rep setF F) ⊆ (Rep setF E)"

6NOTE: ^^ was used as the concatenate operator in Csp-Prover version 5.0, but it is
newly used for expressing power functions in Isabelle 2009-1. Therefore, it is replaced by ^^^

in Csp-Prover version 5.1.

7.2 Domain 21

See the theory-file Set_F.thy in the package CSP_F for more details.

Then, the type of domain for the stable-failures model F is defined as the
set of subsets of pairs of traces and failures which satisfy all the healthiness
conditions:

typedef
’a domF = "{TF::(’a domT * ’a setF).

HC T2(TF) ∧ HC T3(TF) ∧ HC F3(TF) ∧ HC F4(TF)}"

where HC_T2, HC_T3, HC_F3, and HC_F4 are the encoded healthiness conditions
T2, T3, F3, and F4. For example, T3 is encoded as follows:

consts HC T3 :: "(’a domT * ’a setF) ⇒ bool"

defs
HC T3 def :

"HC T3 TF == ∀ t . (t a ⟨X⟩ ∈t (fst TF) ∧ noTick t)
−→ (∀X . (t a ⟨X⟩ , X) ∈f (snd TF))"

where fst and snd are the functions for extracting the components of a pair:
fst(x , y) = x and snd(x , y) = y . The subscripts t and f are attached to
operators on traces and failures, respectively, e.g. ∈t and ∈f. The condition
noTick t means that the trace t does not contain X. This condition is not
explicitly written in the definition of T3 shown in Subsection 6.2 because ta⟨X⟩
implicitly means that t has no X. On the other hand, a is a total function7

because Isabelle does not allow us to define truly partial functions. Therefore,
the condition noTick t is necessary. See the theory-file Domain_F.thy in the
package CSP_F for more details.

The partial order over domF is defined as the combination of the partial orders
≤ over domT and setF:

defs (overloaded)

subdomF def : "SF1 ≤ SF2 == (Rep domF SF1) ≤ (Rep domF SF2)"

where (Rep domF SF) has the type (’a domT * ’a setF), and the order over
pairs is defined in the usual way (see Infra_pair.thy in CSP):

defs (overloaded)

order pair def : "x ≤ y == (fst x) ≤ (fst y) ∧ (snd x) ≤ (snd y)"

In this case, it can be easily proven that ≤ over domF is a partial order indeed.
That means (domF, ≤) can be proven to be an instance of the type class of
partial ordered set as follows:

instance domF :: (type) order

7For example, ⟨X⟩ a ⟨X⟩ is meaningless and cannot be interpreted to ⟨X,X⟩, but such
application ⟨X⟩a ⟨X⟩ of a is not forbidden.

7.3 Semantics 22

As shown above, ’a domF is not (’a domT * ’a setF) but is its subtype defined
by typedef. Therefore, it is convenient to define the following notations in
order to directly express pairs in ’a domF and extract the first or the second
component from them.

consts
pairF:: "’a domT ⇒ ’a setF ⇒ ’a domF" ("(,,)")

fstF :: "’a domF ⇒ ’a domT"

sndF :: "’a domF ⇒ ’a setF"

defs
pairF def: "(T ,, F) == Abs domF (T, F)"

fstF def : "fstF == fst o Rep domF"

sndF def : "sndF == snd o Rep domF"

7.3 Semantics

The functions traces and failures for giving the meaning of processes are re-
cursively defined by primrec which is an Isabelle command used for defin-
ing functions whose argument has a recursive type defined by datatype such
as proc, see Figures 7 and 8. You will find the definitions of traces and
failures in the theory-file CSP_T_semantics.thy in the package CSP_T and
CSP_F_semantics.thy in CSP_F, respectively.

The encodings of the auxiliary functions |[X]|tr and \tr (see Subsection 6.2 for
the definitions) over traces are given in Trace_par.thy and Trace_hide.thy
respectively, and the encodings of [[r]]∗ and [[r]]inv are given in Trace_ren.thy
in the package CSP. And, (rmTick s) is the trace obtained by removing X
from s and it is encoded in Trace_seq.thy. Furthermore, ↓ (written .|. in
ASCII) is a restriction function which is given over both domT and setF, in
Domain_T_cms.thy in the package CSP_T and Set_F_cms.thy in CSP_F, respec-
tively. The function sumset is used for mapping type-constructors, type1 and
type2, of disjoint-sum of two set types into elements in the sets and is defined
in CSP/Infra_type.thy as follows:

consts
sumset :: "(’a set, ’b set) sum => (’a,’b) sum set"

primrec
"sumset (type1X) = {type1 a |a. a ∈ X }"
"sumset (type2X) = {type2 a |a. a ∈ X }"

Here, note that the type of index-sets used in replicated internal choice is not
"(’a set, nat) sum set", but is "(’a set set, nat set) sum". The first
"(’a set, nat) sum set" allows one to mix sets of alphabets and natural
numbers in an index-set like {0, 1, {a}, {b, c}}, but our Csp-dialect CspTP does
not allow it.

7.3 Semantics 23

consts traces :: "(’p,’a) proc ⇒ (’p ⇒ ’a domT) ⇒ ’a domT"

primrec
"traces(STOP) = (λM . {⟨⟩}t)"
"traces(SKIP) = (λM . {⟨⟩, ⟨X⟩}t)"
"traces(DIV) = (λM . {⟨⟩}t)"
"traces(a → P) = (λM . {t. t = ⟨⟩ ∨

(∃ s. t = ⟨Ev a⟩a s ∧ s ∈t traces(P))M }t)"
"traces(? : X → P) = (λM . {t. t = ⟨⟩ ∨

(∃ a s. t = ⟨Ev a⟩a s ∧ s ∈t traces(P a)M ∧
a ∈ X)}t)"

"traces(P 2 Q) = (λM . traces(P)M ∪t traces(Q)M)"

"traces(P ⊓ Q) = (λM . traces(P)M ∪t traces(Q)M)"

"traces(!! : C • P) = (λM . {t. t = ⟨⟩ ∨
(∃ c ∈ sumset(C). t ∈t traces(P c)M)}t)"

"traces(IF b THENP ELSEQ) = (λM .

(if b then traces(P)M else traces(Q)M))"

"traces(P |[X]| Q) = (λM . {u. ∃ s t. u ∈ s |[X]|tr t ∧
s ∈t traces(P)M ∧ t ∈t traces(Q)M }t)"

"traces(P \ X) = (λM . {t. ∃ s. t = s \tr X ∧ s ∈t traces(P)M }t)"
"traces(P [[r]]) = (λM . {t. ∃ s. s [[r]]∗ t ∧ s ∈t traces(P)M }t)"
"traces(P o

9 Q) = (λM . {u. (∃ s. u = rmTick s ∧ s ∈t traces(P)M)∨
(∃ s t. u = s a t ∧ s a ⟨X⟩ ∈t traces(P)M ∧
t ∈t traces(Q)M ∧ noTick s) }t)"

"traces(P ⌊n) = (λM . traces(P)M ↓ n)"
"traces($p) = (λM . M (p))"

Figure 7: The encoding of the function traces

As explained in Subsection 6.2, the parameterised semantics [[P]]F(M) of each
process P with respect to the (Π, Σ)-model M and [[f]]funF of each process func-
tion f are defined with the help of the two functions traces and failures as
follows (see CSP_F_semantics.thy):

consts
semFf :: "(’p,’a) proc ⇒ (’p ⇒ ’a domF) ⇒ ’a domF" ("[[]]Ff")
semFfun :: "(’p ⇒ (’p,’a) proc) ⇒

(’p ⇒ ’a domF) ⇒ (’p ⇒ ’a domF)" ("[[]]Ffun")

defs
semFf def : "[[P]]Ff == (λM . (traces(P)M ,, failures(P)M))"

semFfun def: "[[f]]Ffun == (λM . λ p. [[f (p)]]FfM)"

Then, the ideal (Π,Σ)-model MF which give proper meanings to process
names, the process equivalence =F (written =F in ASCII), and the process
refinement ⊑F (written <=F in ASCII) are defined as shown in Figure 9. Here,
it is important to check that (traces(P) (fstF ◦ M), failures(P)M) is in

7.3 Semantics 24

consts failures :: "(’p,’a) proc ⇒ (’p ⇒ ’a domF) ⇒ ’a setF"

primrec
"failures(STOP) = (λM . {f . ∃X . f = (⟨⟩,X) }f)"
"failures(SKIP) = (λM . {f . (∃X. f = (⟨⟩,X) ∧ X ⊆Evset) ∨

(∃X . f = (⟨X⟩,X)) }f)"
"failures(DIV) = (λM . {}f)"
"failures(a → P) = (λM . {f . (∃X. f = (⟨⟩,X) ∧ Ev a /∈ X) ∨

(∃ s X. f = (⟨Ev a⟩a s,X) ∧
(s, X) ∈ failures(P)M) }f)"

"failures(? : X → P) = (λM . {f . (∃Y . f = (⟨⟩,Y) ∧ (Ev‘X)∩Y = {}) ∨
(∃ a s Y . f = (⟨Ev a⟩a s,X) ∧
(s, X) ∈ failures(P a)M ∧ a ∈ X) }f)"

"failures(P 2 Q) = (λM . {f . (∃X. f = (⟨⟩,X) ∧
f ∈f failures(P)M ∩f failures(Q)M) ∨

(∃ s X. f = (s,X) ∧ s ̸= ⟨⟩ ∧
f ∈f failures(P)M ∪f failures(Q)M) ∨

(∃X . f = (⟨⟩,X) ∧ X ⊆ Evset ∧
⟨X⟩ ∈t traces(P) (fstF ◦ M) ∪t

traces(Q) (fstF ◦ M)) }f)"
"failures(P ⊓ Q) = (λM . failures(P)M ∪f failures(Q)M ")

"failures(!! : C • P) = (λM . {f .
(∃ c ∈ sumset(C). f ∈f failures(P c)M)}f)"

"failures(IF b THENP ELSEQ) = (λM .

(if b then failures(P)M else failures(Q)M))"

"failures(P |[X]| Q) = (λM . {f . ∃ u Y Z. f = (u,Y ∪ Z) ∧
Y -((Ev‘X) ∪ {X}) = Z-((Ev‘X) ∪ {X}) ∧
(∃ s t. u ∈ s |[X]|tr t ∧ (s,Y)∈f failures(P)M∧

(t,Z)∈f failures(Q)M)}f)"
"failures(P \ X) = (λM . {f . ∃ s Y . f = (s \tr X,Y) ∧

(s, (Ev‘X)∪Y)∈f failures(P)M }f)"
"failures(P [[r]]) = (λM . {f . ∃ s t X . f = (t,X) ∧ s [[r]]∗ t ∧

(s, [[r]]inv X)∈f failures(P)M }f)"
"failures(P o

9 Q) = (λM . {f . (∃ t X . f = (t,X) ∧
(t,X ∪ {X})∈f failures(P)M ∧ noTick t) ∨

(∃ s t X . f = (t a t,X) ∧
s a ⟨X⟩ ∈t traces(P) (fstF ◦ M) ∧
(t,X)∈f failures(Q)M ∧ noTick s) }f)"

"failures(P ⌊n) = (λM . failures(P)M ↓ n)"
"failures($p) = (λM . sndF(M (p)))"

Figure 8: The encoding of the function failures

7.3 Semantics 25

(* fixed point and semantics *)

consts
semFfix :: "(’p ⇒ (’p,’a) proc) ⇒ (’p ⇒ ’a domF)" ("[[]]Ffix")
MF :: "(’p ⇒ ’a domF)"

semF :: "(’p,’a) proc ⇒ ’a domF" ("[[]]F")

defs
semFfix def : "[[f]]Ffix == (if (FPmode = CMSmode)

then (UFP ([[f]]Ffun))
else (LFP ([[f]]Ffun)))"

MF def : "MF == [[PNfun]]Ffix"
semF def : "[[P]]F == [[P]]Ff MF"

(* process equation and refinement *)

consts
refF :: "(’p,’a) proc ⇒ (’p ⇒ ’a domF) ⇒ (’q ⇒ ’a domF) ⇒

(’q,’a) proc ⇒ bool" (" ⊑F[,] ")

eqF :: "(’p,’a) proc ⇒ (’p ⇒ ’a domF) ⇒ (’q ⇒ ’a domF) ⇒
(’q,’a) proc ⇒ bool" (" =F[,] ")

defs
refF def : "P1 ⊑F[M1,M2] P2 == [[P2]]Ff M2 ≤ [[P1]]Ff M1"

eqF def : "P1 =F[M1,M2] P2 == [[P1]]Ff M1 = [[P2]]Ff M2"

syntax

" refFfix" :: "(’p,’a) proc ⇒ (’q,’a) proc ⇒ bool" (" ⊑F ")

" eqFfix" :: "(’p,’a) proc ⇒ (’q,’a) proc ⇒ bool" (" =F ")

translations

"P1 ⊑F P2" == "P1 ⊑F[MF,MF] P2"

"P1 =F P2" == "P1 =F[MF,MF] P2"

Figure 9: The encoding of process equation and refinement

domF indeed. It is proven in the following lemma (see CSP_F_domain.thy):

lemma proc domF[simp]:"(traces(P)(fstF ◦ M), failures(P)M)∈domF"

This lemma allows us to prove the following expected properties:

7.4 Recursive process 26

lemma fstF semF[simp]: "fstF [[P]]F = traces(P)(fstF ◦ MF)""

lemma sndF semF[simp]: "sndF [[P]]F = failures(P) MF"

lemma cspF eqF semantics: "(P =F[M1,M2] Q) =
((traces(P)(fstF ◦ M1) = traces(Q)(fstF ◦ M2))∧
(failures(P)(M1) = failures(Q)(M2)))"

lemma cspF refF semantics: "(P ⊑F[M1,M2] Q) =
((traces(Q)(fstF ◦ M2) ≤ traces(P)(fstF ◦ M1))∧
(failures(Q)(M2) ≤ failures(P)(M1)))"

At the end of this subsection, we would like to briefly tell the expressive
power of our Csp dialect CspTP. At first glance, the input language of Csp-
Prover seems to be weaker than full Csp as the generic internal choice operator
⊓P 8 missing. However, we have proven the following theorem which shows
that our language to be expressive with respect to the stable-failures domain.

theorem EX proc domF: "∀SF . ∃P . [[P]]F = SF"

This theorem and the proof are given in CSP_F_surj.thy in the package CSP_F.

7.4 Recursive process

In this subsection, we show how to encode recursive processes into Csp-Prover
by using the following example:

PNFunΠ (Empty(id)) = left?r → $(Full(r, id))
PNFunΠ (Full(r, id)) = right(r, id) → $(Empty(id + 1))

where the set of process names Π and the alphabet Σ are given as follows:

Π = {Empty(id) | id ∈ Nat} ∪ {Full(r, id) | r ∈ Real, id ∈ Nat}
Σ = {left(r) | r ∈ Real} ∪ {right(r, id) | r ∈ Real, id ∈ Nat}

where Nat and Real are the set of natural numbers and the set of real numbers.
Now, let

Buffer = $(Empty(0)).

Then, the process Buffer iteratively receives a real number r from the channel
left and sends it to a channel right together with an increasing natural number
id whose initial value is 0.

The process Buffer can be encoded into Csp-Prover as shown in Figure 10.
In the lines 1 and 2, the types of alphabets Event and process names Name
are declared. Next, the function Bufferfun for defining each process name is
defined by the Isabelle command primrec (line 5), which is useful for defining
recursive processes in a conventional style because pattern matching on the first

8P is an non-emptyset of processes and the semantics is given as:

traces(⊓P) =
∪

{traces(P) | P ∈ P}
failures(⊓P) =

∪
{failures(P) | P ∈ P}

7.4 Recursive process 27

1 datatype Event = left real | right "real * nat"

2 datatype Name = Empty nat | Full real nat

3

4 consts Bufferfun :: "Name ⇒ (Name, Event) proc"

5 primrec
6 "Bufferfun (Empty n) = left ? r → $(Full r n)"

7 "Bufferfun (Full r n) = right (r,n) → $(Empty (Suc n))"

8 defs (overloaded) Set Bufferfun def [simp]: "PNfun == Bufferfun"

9

10 consts Buffer :: "(Name, Event) proc"

11 defs Buffer def: "Buffer == $(Empty 0)"

Figure 10: An encoding of the example Buffer

argument is available. Finally, the function Bufferfun is defined to be PNfun
(line 8). It means that Bufferfun is automatically used for giving the meaning
to process names in Names. There are a number of ways to define functions
in Isabelle, but this is a good and simple way to define recursive processes in
Csp-Prover.

As explained in Subsection 6.2, process-name functions have to be guarded
when the cms approach is employed for dealing with unique fixed points. In
Csp-Prover, it is almost automatised to prove the guardedness. For example,
it can be easily proven that Bufferfun is guarded by the following three steps
(see Test_Buffer.thy in Test):

lemma guardedfun Bufferfun[simp]:

"guardedfun Bufferfun" %% goal to be proven

apply (simp add: guardedfun def, rule) %% unfolding guardedfun def

apply (induct tac p) %% instantiating names

apply (simp all) %% automatic proof

done

By applying the first command, the following subgoal is displayed.

goal (lemma (guardedfun Bufferfun), 1 subgoal):

1.
∧

p. guarded (Bufferfun p)

Next, in order to instantiate p whose type is Name, structural induction on p is
applied by (induct tac p) because Name is defined by datatype (note: it is
not important whether p is recursively defined or not):

goal (lemma (guardedfun Bufferfun), 2 subgoals):

1.
∧

p nat . guarded (Bufferfun (Empty nat))
2.

∧
p real nat . guarded (Bufferfun (Full real nat))

Then, the subgoals can be automatically proven by simps. This proof strategy
is available to most of proofs for guardedness.

28

8 Verification

In order to verify the process equivalence P =F Q and the process refinement
P ⊑F Q in Csp-Prover, Csp-Prover provides three kinds of strategies: (1) se-
mantical proof by the definition of traces and failures, (2) syntactical manual
proof by algebraic Csp laws, and (3) syntactical semi-automatic proof by meth-
ods. It is recommended to take a look at the theory file Test_proof.thy in the
package Test. The theory file gives three different proofs mentioned above of
the following equality:

((a → P) |[{a}]| (a → Q)) =F a → (P |[{a}]|Q)

8.1 Semantical proof

In this proof style, the important lemmas are cspF eqF semantics, in traces,
and in failures. The lemma cspF eqF semantics shown in Subsection 7.3
translates the equality =F into the equality over traces and failures, then
lemmas in traces and in failures interpret traces(P) and failures(P),
according to the semantic clauses, see Figures 7 and 8. For example, when a
subgoal contains the following form,

· · · ∧ t ∈ttraces(a → P)M ∧ · · ·

and if the command (simp add: in traces) is applied, then it will be rewrit-
ten to the following subgoal (∗1):

· · · ∧ (t = ⟨⟩ ∨ (∃ s. t = ⟨Ev a⟩a s ∧ s ∈ttraces(P)M)) ∧ · · ·

On the other hand, if the command (simp add: traces.simps)9 was applied
instead of (simp add: in traces), it would be rewritten to the following sub-
goal (∗2):

· · · ∧ (t ∈t {t = ⟨⟩ ∨ (∃ s. t = ⟨Ev a⟩a s ∧ s ∈ttraces(P)M)}t) ∧ · · ·

Here, note that it is not trivial to transform the subgoal (∗2) to (∗1) because
(t ∈t {t . · · ·}t) is an abbreviation of

t ∈ Rep domT (Abs domT {t . · · ·}),

thus the transformation from (∗2) to (∗1) requires that {t . · · ·} ∈ domT, in other
words, {t . · · ·} is a non-empty and prefix-closed set.

In Csp-Prover, the required property ({t . · · ·} ∈ domT) for each operator has
already been proven in the theory-file CSP_T_traces.thy, and then the lemma
in traces is given in order to reduce the proof obligation. Similarly, you will

9This rule traces.simps is automatically added to the simplification rules when traces is
defined by primrec. However, we do not recommend to use traces.simps as explained later
soon. Therefore, the rule is removed from the simplification rules by the command declare
traces.simps [simp del].

8.2 Syntactical manual proof 29

prefer in failures to failures.simps. In summary, the semantical proof will
proceed as follows:

1. P =F Q is rewritten to

(traces(P)(fstF ◦ MF) = traces(Q)(fstF ◦ MF)) ∧
(failures(P)(MF) = failures(Q)(MF))

by (simp add: cspF eqF semantics). For P ⊑F Q , you will apply the
lemma (cspF refF semantics) instead.

2. (traces(P)(M) = traces(Q)(M)) is rewritten to two subgoals

(traces(P)(M) ≤ traces(Q)(M))∧
(traces(Q)(M) ≤ traces(P)(M))

by (rule order antisym).

3. (traces(P)(M) ≤ traces(Q)(M)) is rewritten to∧
t. (t ∈t traces(P)(M) =⇒ t ∈t traces(Q)(M))

by (rule subdomTI).

4. in traces is applied to each t ∈t traces(P)(M).

5. Similarly, the lemmas (rule subsetFI) and in failures will be used
for failures(P)(M).

Now, take a look at the proof script of the lemma semantical proof in
Test_proof.thy in Test. The proof proceeds according to the above instruc-
tion10. During the proof, the subgoals are sometimes complex. It will be found
that Csp-Prover assists the proof well.

8.2 Syntactical manual proof

Csp-Prover also provides a lot of algebraic Csp laws which have already been
proven by the semantical way mentioned in the previous subsection. Such al-
gebraic Csp laws allow us to prove the process equivalence and the process
refinement by syntactically rewriting process expressions.

The Csp laws implemented in Csp-Prover are given in Figures 11, · · ·, 17.
The Csp laws and their names such as (2-step) are almost the same as the laws
and the names given in [Ros98]. The differences from [Ros98] are denoted by
the superscripts ∗ and + attached to names. The superscript ∗ means modified
laws, and the superscript + means added laws. All the laws in Figures 11, · · ·,
17 have already been proven by the semantical way mentioned, thus they are
proven to be sound.

10The lemmas whose name has the form par tr · · · relate to |[X]|tr over traces, and they
are given in Trace par.thy in CSP.

8.2 Syntactical manual proof 30

"cspF reflex"

P =F P (reflexivity)

"cspF sym"

P =F Q =⇒ Q =F P (symmetry)

"cspF trans"

[| P1 =F P2; P2 =F P3 |] =⇒ P1 =F P3 (transitivity)

"cspF decompo"

[| a = b; P =F Q |] =⇒ a → P =F b → Q (prefix-cong)

[| X = Y ;
∧

x . x ∈ X =⇒ P(x) =F Q(x) |]
=⇒ ? x : X → P(x) =F ? x : Y → Q(x) (?-cong)

[| P1 =F Q1; P2 =F Q2 |] =⇒ P1 2 P2 =F Q1 2 Q2 (2-cong)

[| P1 =F Q1; P2 =F Q2 |] =⇒ P1 ⊓ P2 =F Q1 ⊓ Q2 (⊓-cong)

[| C1 = C2;
∧

c. c ∈ C1 =⇒ P(c) =F Q(c) |]
=⇒ !! c : C1 → P(c) =F !! c : C2 → Q(c) (!!-cong)

[| P1 =F Q1; P2 =F Q2 |] =⇒ P1 |[X]| P2 =F Q1 |[X]|Q2 (|[X]|-cong)

[| X = Y ; P =F Q |] =⇒ P \ X =F Q \ Y (hide-cong)

[| r1 = r2; P =F Q |] =⇒ P [[r1]] =F Q [[r2]] (ren-cong)

[| P1 =F Q1; P2 =F Q2 |] =⇒ P1
o
9 P2 =F Q1

o
9 Q2 (o

9-cong)

[| n1 = n2; P =F Q |] =⇒ P ⌊n1 =F Q ⌊n2 (⌊ -cong)+

Figure 11: Csp congruence laws

8.2 Syntactical manual proof 31

"cspF IF"

IF True THEN P ELSE Q =F P (if-true)
IF False THEN P ELSE Q =F Q (if-false)

"cspF idem"

P 2 P =F P (2-idem)
P ⊓ P =F P (⊓-idem)

"cspF commut"

P 2 Q =F Q 2 P (2-sym)
P ⊓ Q =F Q ⊓ P (⊓-sym)
P |[X]|Q =F Q |[X]| P (|[X]|-sym)

"cspF assoc"

P 2 (Q 2 R) =F (P 2 Q) 2 R (2-assoc)
P ⊓ (Q ⊓ R) =F (P ⊓ Q) ⊓ R (⊓-assoc)

"cspF unit"

P 2 Stop =F P (2-unit)
P ⊓ Div =F P (⊓-unit)

"cspF Rep int choice empty"

!! c : ∅ • P(c) =F DIV (!!-emptyset)+

"cspF Rep int choice const"

[| C ̸= ∅; ∀ c ∈ C .P(c) = Q |] =⇒ !! c : C • P(c) =F Q (!!-const)∗

"cspF Rep int choice union Int"

!! c : (C1 ∪ C2) • P(c) =F (!! c : C1 • P(c)) ⊓ (!! c : C2 • P(c)) (!!-union-⊓)∗

Figure 12: Csp basic laws

8.2 Syntactical manual proof 32

"cspF Dist"

C ̸= ∅ =⇒ (!! c : C • P(c)) 2 Q =F !! c : C • (P(c) 2 Q) (2-Dist)

C ̸= ∅ =⇒ (!! c : C • P(c)) |[X]|Q =F !! c : C • (P(c) |[X]|Q) (|[X]|-Dist)

(!! c : C • P(c)) \ X =F !! c : C • (P(c) \ X) (hide-Dist)

(!! c : C • P(c))[[r]] =F !! c : C • (P(c)[[r]]) ([[r]]-Dist)

(!! c : C • P(c)) o
9 Q =F !! c : C • (P(c) o

9 Q) (o
9-Dist)

(!! c : C • P(c)) ⌊n =F !! c : C • (P(c) ⌊n) (⌊ -Dist)+

"cspF dist"

(P1 ⊓ P2) 2 Q =F (P1 2 Q) ⊓ (P2 2 Q) (2-dist)

(P1 ⊓ P2) |[X]|Q =F (P1 |[X]|Q) ⊓ (P2 |[X]|Q) (|[X]|-dist)

(P1 ⊓ P2) \ X =F (P1 \ X) ⊓ (P2 \ X) (hide-dist)

(P1 ⊓ P2)[[r]] =F (P1[[r]]) ⊓ (P2[[r]]) ([[r]]-dist)

(P1 ⊓ P2) o
9 Q =F (P1

o
9 Q) ⊓ (P2

o
9 Q) (o

9-dist)

(P1 ⊓ P2) ⌊n =F (P1 ⌊n) ⊓ (P2 ⌊n) (⌊ -dist)+

!!c : C • (P1(c) ⊓ P2(c)) =F (!!c : C • P1(c)) ⊓ (!!c : C • P2(c)) (!!-dist)

"cspF Ext dist"

(P1 2 P2)[[r]] =F (P1[[r]]) 2 (P2[[r]]) ([[r]]-2-dist)

(P1 2 P2) ⌊n =F (P1 ⌊n) 2 (P2 ⌊n) (⌊ -2-dist)+

Figure 13: Csp distributive laws

8.2 Syntactical manual proof 33

"cspF step"

STOP =F ? x : ∅ → P(x) (stop-step)

a → P =F ? x : {a} → P (prefix-step)

(? x : A→ P(x)) 2 (? x : B → Q(x))
=F? x : (A ∪ B)→ (IF (x ∈ A ∩ B) THEN P(x) ⊓ Q(x)

ELSE IF (x ∈ A) THEN P(x) ELSE Q(x)) (2-step)

(?x : A→ P ′(x)) |[X]| (?x : B → Q ′(x))
=F (?x : ((X ∩A ∩ B) ∪ (A−X) ∪ (B −X))→

IF (x ∈ X)
THEN (P ′(x) |[X]|Q ′(x))
ELSE IF (x ∈ A ∩ B)

THEN ((P ′(x) |[X]| (?x : B → Q ′(x))) ⊓
((?x : A→ P ′(x)) |[X]|Q ′(x)))

ELSE IF (x ∈ A)
THEN (P ′(x) |[X]| (?x : B → Q ′(x)))
ELSE ((?x : A→ P ′(x)) |[X]|Q ′(x))) (|[X]|-step)

(? x : A→ P(x)) \ X
=F IF (A ∩X =F ∅)

THEN ? x : A→ (P(x) \ X)
ELSE (? x : (A−X)→ (P(x) \ X))

◃ (! x : (A ∩X) • (P(x) \ X)) (hide-step)

(? x : A→ P(x))[[r]]
=F ? x : {x | ∃ a ∈ A. (a, x) ∈ r} →

(! a : {a ∈ A | (a, x) ∈ r} • (P(a)[[r]])) ([[r]]-step)

(? x : A→ P(x)) o
9 Q =F ? x : A→ (P(x) o

9 Q) (o
9-step)

(? x : A→ P(x)) ⌊ (n + 1) =F ? x : A→ (P(x) ⌊n) (⌊ -step)+

Figure 14: Csp step laws

8.2 Syntactical manual proof 34

"cspF step ext"

((?x : A→ P ′(x)) ◃ P ′′) |[X]| ((?x : B → Q ′(x)) ◃ Q ′′)
=F (?x : ((X ∩A ∩ B) ∪ (A−X) ∪ (B −X))→

IF (x ∈ X)
THEN (P ′(x) |[X]|Q ′(x))
ELSE IF (x ∈ A ∩ B)

THEN ((P ′(x) |[X]| ((?x : B → Q ′(x)) ◃ Q ′′)) ⊓
(((?x : A→ P ′(x)) ◃ P ′′) |[X]|Q ′(x)))

ELSE IF (x ∈ A)
THEN (P ′(x) |[X]| ((?x : B → Q ′(x)) ◃ Q ′′))
ELSE (((?x : A→ P ′(x)) ◃ P ′′) |[X]|Q ′(x)))

◃ ((P ′′ |[X]| ((?x : B → Q ′(x)) ◃ Q ′′)) ⊓
(((?x : A→ P ′(x)) ◃ P ′′) |[X]|Q ′′)) (|[X]|-◃-split)∗

((?x : A→ P ′(x)) ◃ P ′′) |[X]| (?x : B → Q ′(x))
=F (?x : ((X ∩A ∩ B) ∪ (A−X) ∪ (B −X))→

IF (x ∈ X)
THEN (P ′(x) |[X]|Q ′(x))
ELSE IF (x ∈ A ∩ B)

THEN ((P ′(x) |[X]| (?x : B → Q ′(x))) ⊓
(((?x : A→ P ′(x)) ◃ P ′′) |[X]|Q ′(x)))

ELSE IF (x ∈ A)
THEN (P ′(x) |[X]| (?x : B → Q ′(x)))
ELSE (((?x : A→ P ′(x)) ◃ P ′′) |[X]|Q ′(x)))

◃ (P ′′ |[X]| (?x : B → Q ′(x))) (|[X]|-◃-input)∗

"cspF Ext choice SKIP DIV resolve"

P 2 SKIP = P ◃ SKIP (2-skip-resolve)
P 2 DIV = P ◃ DIV (2-div-resolve)

"cspF Depth rest Zero"

P ⌊ 0 =F DIV (⌊ -zero)+

"cspF Depth rest min"

(P ⌊n) ⌊m =F P ⌊min(n,m) (⌊ -min)+

Figure 15: Csp extended step laws and depth-restriction laws

8.2 Syntactical manual proof 35

"cspF SKIP DIV"

SKIP 2 DIV =F SKIP (skip-div-2)

SKIP |[X]| SKIP =F SKIP (skip-|[X]|)
DIV |[X]| DIV =F DIV (div-|[X]|)
SKIP |[X]| DIV =F DIV (skip-div-|[X]|)

SKIP |[X]| (? x : A→ P(x))
=F ? x : (A−X)→ (SKIP |[X]| P(x)) (|[X]|-preterm)
DIV |[X]| (? x : A→ P(x))
=F (? x : (A−X)→ (DIV |[X]| P(x))) 2 DIV (div-|[X]|-step)

SKIP |[X]| ((? x : A→ P(x)) 2 SKIP)
=F (? x : (A−X)→ (SKIP |[X]| P(x))) 2 SKIP (skip-|[X]|-2-skip)
SKIP |[X]| ((? x : A→ P(x)) 2 DIV)
=F (? x : (A−X)→ (SKIP |[X]| P(x))) 2 DIV (skip-|[X]|-2-div)

DIV |[X]| (P 2 SKIP) =F DIV |[X]| P (div-|[X]|-2-skip)
DIV |[X]| (P 2 DIV) =F DIV |[X]| P (div-|[X]|-2-div)

SKIP \ X =F SKIP (skip-hide)
DIV \ X =F DIV (div-hide)

((? x : A→ P(x)) 2 SKIP) \ X
=F ((? x : (A−X)→ (P(x) \ X)) 2 SKIP)
⊓ (! x : (A ∩X) • (P(x) \ X)) (skip-hide-step)

((? x : A→ P(x)) 2 DIV) \ X
=F ((? x : (A−X)→ (P(x) \ X)) 2 DIV)
⊓ (! x : (A ∩X) • (P(x) \ X)) (div-hide-step)

SKIP[[r]] =F SKIP (skip-[[r]]-id)
DIV[[r]] =F DIV (div-[[r]]-id)
SKIP o

9 P =F P (o
9-unit-l)

DIV o
9 P =F DIV (div-o9)

((? x : A→ P(x)) ◃ SKIP) o
9 R

=F (? x : A→ (P(x) o
9 R)) ◃ R (skip-o9-step)

((? x : A→ P(x)) ◃ DIV) o
9 R

=F (? x : A→ (P(x) o
9 R)) ◃ DIV (div-o9-step)

SKIP ⌊ (n + 1) =F SKIP (skip- ⌊)+
DIV ⌊n =F DIV (div- ⌊)+

Figure 16: Csp skip and div laws

8.2 Syntactical manual proof 36

"cspF Rep int choice input set"

!! c : C • (? x : A(c)→ P(c, x))
=F !set X : {A(c) | c ∈ C}•

(? x : X → (!! c : {c ∈ C | x ∈ A(c)} • P(c, x))) (!!-input-!set)+

"cspF Rep int choice Ext Dist"

∀ c ∈ C .Q(c) ∈ {SKIP, DIV} =⇒
!!c : C • (P(c) 2 Q(c))
=F (!!c : C • P(c)) 2 (!!c : C •Q(c)) (!!-2-Dist)+

"cspF Rep int choice input Dist"

[| Q = SKIP ∨ Q = DIV |] =⇒
(!set X : X • (?x : X → P(x))) 2 Q
=F (?x :

∪
X → P(x)) 2 Q (!!-input-Dist)+

"cspF norm"

? x : A→ P(x)
=F ((? x : A→ P(x)) 2 DIV) ⊓ (? x : A→ DIV) (?-div)+

!! c : C • (!set X : X (c) • (? x : X → DIV))
=F !set X :

∪
{X (c) | c ∈ C} • (? x : X → DIV) (!!-!set-div)+

if X ⊆ Y and (∀Y ∈ Y. ∃X ∈ X .X ⊆ Y ⊆ A) then
((? x : A→ P(x)) 2 R) ⊓ (!set X : X • (? x : X → DIV))
=F ((? x : A→ P(x)) 2 R) ⊓ (!set X : Y • (? x : X → DIV)) (?-!set-⊆)+

"cspF nat Depth rest"

P =F !nat n • (P ⌊n) (!nat- ⌊)+

Figure 17: Csp replicated internal choice laws and normalising laws

8.2 Syntactical manual proof 37

Here, you might have a question about completeness, thus for every process
P ,Q such that P =F Q , is it possible to syntactically prove the equality by the
Csp laws without using the semantics (i.e. [[P]]F = [[Q]]F) ? The answer is yes.
We discussed the completeness in [IR06], and you can find the whole proof in
the theory-files in the package FNF_F.

In Figures 11, · · ·, 17, the labels written in ASCII such as "cspF reflex"
given for each block are the names of lemmas in Csp-Prover. Some lemmas such
as "cspF decompo" contains more than two laws. When such lemma is applied
to a subgoal, a law matching to the subgoal is selected and is applied.

Now, take a look at the proof script of the lemma syntactical proof in
Test_proof.thy in Test. The key laws to prove the following main goal are
step-laws.

goal (lemma (syntactical proof), 1 subgoal):

1. ((a → P) |[{a}]| (a → Q)) =F a → (P |[{a}]| Q)

However, you cannot directly apply (simp add: cspF step) because the equal-
ity is not = but is =F . We explain how to rewrite the expression by the Csp
laws step by step.

In general, it is firstly stated by either cspF rw left or cspF rw right 11

which side of =F is rewritten. For example, by applying (rule cspF rw left),
the main goal is rewritten to

goal (lemma (syntactical proof), 2 subgoals):

1. ((a → P) |[{a}]| (a → Q)) =F ?P2.0
2. ?P2.0 =F a → (P |[{a}]| Q)

where ?P2.0 is a variable called schematic variable or unknown which is auto-
matically generated by Isabelle. Such variable will be instantiated later.

Next, it may be expected to apply the (|[X]|-step) law, but it is not available
yet. Before applying (|[X]|-step), (a → P) has to transformed to the form of
? a : Y → P ′(a). To do that, decompose the parallel operator in the first goal
by (rule cspF decompo). It generates the following subgoals:

goal (lemma (syntactical proof), 4 subgoals):

1. {a} = ?Y 1
2. a → P =F ?Q1.1
3. a → Q =F ?Q2.1
4. ?Q1.1|[?Y 1]| ?Q2.1 =F a → (P |[{a}]| Q)

The first goal is trivial. By applying (simp), the schematic variable ?Y 1 is
instantiated to {a} and the first goal disappears:

11The lemma cspF rw right includes [| P3 =F P2; P1 =F P2 |] =⇒ P1 =F P3, and it
can be derived from cspF trans and cspF sym. cspF rw left includes cspF trans.

8.2 Syntactical manual proof 38

goal (lemma (syntactical proof), 3 subgoals):

1. a → P =F ?Q1.1
2. a → Q =F ?Q2.1
3. ?Q1.1 |[{a}]| ?Q2.1 =F a → (P |[{a}]| Q)

Here, apply (rule cspF step) to the first goal, then ?Q1.1 is instantiated to
? x : {a} → P as follows:

goal (lemma (syntactical proof), 2 subgoals):

1. a → Q =F ?Q2.1
2. (? x : {a} → P) |[{a}]| ?Q2.1 =F a → (P |[{a}]| Q)

Similarly, by (rule cspF step) again, you will get the following subgoal:

goal (lemma (syntactical proof), 1 subgoal):

1. (? x : {a} → P) |[{a}]| (? x : {a} → Q) =F a → (P |[{a}]| Q)

Then, you can apply the (|[X]|-step) law on the left side by (rule cspF rw left)
and (rule cspF step). And continue to apply the commands until done in
the proof script of the lemma syntactical proof in Test_proof.thy. You
will see the outline of the syntactical proof.

Hitherto, we have given the instruction for syntactical proof of =F . The
process refinement ⊑F is also proven by a similar way. The lemmas (rule
cspF rw left), (rule cspF rw right), and (rule cspF decompo) can be
also applied to ⊑F

12. The additional laws for ⊑F are shown Figure 18.

In summary, the syntactical proof will proceed as follows:

1. It is selected by either (rule cspF rw left) or (rule cspF rw right)
which side of P =F Q (or P ⊑F Q) is rewritten.

2. Decompose the expression by (rule cspF decompo) until the subexpres-
sion to be rewritten appears alone.

3. Apply the Csp rule by (rule cspF · · ·).

You will find a lot of syntactical proof technique in the theory-files (e.g. lemma
cspF fsfF Ext choice eqF in FNF_F_sf_ext.thy) in the package FNF_F. For
example, if you want to apply the law cspF assoc to a subgoal in the opposite
direction (i.e. (P 2 Q) 2 R =F P 2 (Q 2 R)), you can apply the com-
mand (rule cspF assoc[THEN cspF sym]). In this case, at first cspF sym is
applied to cspF assoc, then the result is applied to the subgoal.

In the rest of this subsection, we give Csp laws for recursive processes, see Fig-
ure 19. The law (fix-!nat) can replace fixed point by unbounded internal choice.
It may be useful for theoretical work. On the other hand, the unwinding law
and the fixed-point induction laws will be often used in practical verifications.
The unwinding law is intuitively understandable, but the fixed-point induction

12For example, (rule cspF rw right) includes [| P3 =F P2; P1 ⊑F P2 |] =⇒ P1 ⊑F P3,
and (rule cspF decompo) includes [| a = b; P ⊑F Q |] =⇒ a → P ⊑F b → Q .

8.2 Syntactical manual proof 39

"cspF ref eq iff"

(P ⊑F Q) = (P =F Q ⊓ P) (⊑F -=F -iff)

"cspF ref eq"

[| P ⊑F Q ; Q ⊑F P |] =⇒ P =F Q (⊑F -=F)

"cspF eq ref"

P =F Q =⇒ P ⊑F Q (=F -⊑F)

"cspF Int choice left1"

P1 ⊑F Q =⇒ P1 ⊓ P2 ⊑F Q (⊓-left-1)

"cspF Int choice left2"

P2 ⊑F Q =⇒ P1 ⊓ P2 ⊑F Q (⊓-left-2)

"cspF Int choice right"

[| P ⊑F Q1; P ⊑F Q2 |] =⇒ P ⊑F Q1 ⊓ Q2 (⊓-right)

"cspF Rep int choice left"

(∃ c. c ∈ C ∧ P(c) ⊑F Q) =⇒ !! c : C • P(c) ⊑F Q (!!-left)

"cspF Rep int choice right"

(
∧

c. c ∈ C =⇒ P ⊑F Q(c)) =⇒ P ⊑F !! c : C •Q(c) (!!-right)

"cspF decompo subset"

[| C2 ⊆ C1;
∧

c. c ∈ C2 =⇒ P(c) ⊑F Q(c) |]
=⇒ !! c : C1 • P(c) ⊑F !! c : C2 •Q(c) (!!-subset)

[| Y ̸= {}; Y ⊆ X ;
∧

x . x ∈ Y =⇒ P(x) ⊑F Q(x) |]
=⇒ ! x : X • (x → P(x)) ⊑F ? x : Y → Q(x) (!!-?-subset)

"cspF Ext choice right"

[| P ⊑F Q1; P ⊑F Q2 |] =⇒ P ⊑F Q1 2 Q2 (2-right)

Figure 18: Csp refinement laws

8.2 Syntactical manual proof 40

"cspF FIX"

[| FPmode = CMSmode −→ guardedfun PNfun |]
=⇒ $p =F (!nat n • ((PNfun▹▹)(n)(λ p′. DIV))(p))) (fix !nat)

"cspF unwind"

[| FPmode = CMSmode −→ guardedfun PNfun |]
=⇒ $p =F PNfun(p) (unwind)

"cspF fp induct right"

[| FPmode = CMSmode −→ guardedfun PNfun;
Q ⊑F f (p);

∧
p. f (p) ⊑F PNfun(p) ▹ f |]

=⇒ Q ⊑F $p (induct-right-ref)

[| FPmode = CMSmode; guardedfun PNfun;
Q =F f (p);

∧
p. f (p) =F PNfun(p) ▹ f |]

=⇒ Q =F $p (induct-right-eq)

"cspF fp induct left"

[| FPmode = CMSmode; guardedfun PNfun;
f (p) ⊑F Q ;

∧
p. PNfun(p) ▹ f ⊑F f (p) |]

=⇒ $p ⊑F Q (induct-left-ref)

[| FPmode = CMSmode; guardedfun PNfun;
f (p) =F Q ;

∧
p. PNfun(p) ▹ f =F f (p) |]

=⇒ $p =F Q (induct-left-eq)

Figure 19: Csp fixed-point laws

1 datatype DFName = DF

2

3 consts DFfun :: "DFName ⇒ (DFName, Event) proc"

4 primrec "DFfun (DF) = ! x → $DF"

5 defs (overloaded) Set DFfun def [simp]: "PNfun == DFfun"

Figure 20: The deadlock-free specification DF

laws might not be intuitive. We pick up the law (induct-right-ref) and explain
it by using the example Buffer in Figure 10.

As a simple example, we verify Buffer is deadlock-free, thus $DF ⊑F Buffer,

8.2 Syntactical manual proof 41

where DF is the deadlock-free specification which always requires to perform an
event at least, and is encoded into Csp-Prover as shown in Figure 20. The guard-
edness of DFfun can be proven by the same proof script used for Bufferfun. See
the lemma manual_proof_Buffer in the theory file Test/Test_Buffer.thy. In
this verification, we use the cms approach (i.e. FPmode=CMSmode). After setting
$DF ⊑F Buffer as the main goal and unfolding the definition of Buffer, the
following goal is displayed:

goal (lemma (manual proof Buffer), 1 subgoal):

1. $DF ⊑F $Empty 0

In general, the fixed point induction is applied at first. So, when you apply the
fixed point induction to the goal by (rule cspF fp induct right) and simp
command twice, you will have the following two subgoals (∗):

goal (lemma (manual proof Buffer), 2 subgoals):

1. $DF ⊑F ?f (Empty 0)

2.
∧

p. ?f (p) ⊑F (Bufferfun(p))▹?f

where the schematic variable ?f is a function used for relating each process name
on the right hand side to a process on the left hand side. However, it is difficult to
instantiate the variable ?f later. It would be better that such function ?f is given
by users because it is hard to automatically find such functions, although Csp-
Prover can assist them to find such functions. In this example, such function
can be given as follows:

consts
Buffer to DF :: "Name ⇒ (DFName, Event) proc"

primrec
"Buffer to DF (Empty n) = $DF"

"Buffer to DF (Full r n) = $DF"

Then, it is possible to apply the fixed point induction whose ?f has been in-
stantiated to Buffer to DF by

(rule cspF fp induct right[of "Buffer to DF"])

The application generates the following subgoals instead of (∗):

goal (lemma (manual proof Buffer), 2 subgoals):

1. $DF ⊑F Buffer to DF (Empty 0)

2.
∧

p. Buffer to DF(p) ⊑F (Bufferfun(p))▹Buffer to DF

The subgoal 1 is trivial because Buffer to DF (Empty n) = $DF. The variable
p in the subgoal 2 can be instantiated to (Empty nat) and (Full real nat) by
(induct tac p) as explained at the end of Subsection 7.4. And thereafter, by
applying (simp all), the following two subgoals are obtained 13:

13In this proof, we added csp prefix ss def into the simplification rules by

declare csp prefix ss def [simp]
in order to automatically unfold the definition of syntactic sugar of sending and receiving
because step-laws cannot directly be applied to the prefixes such as a!x and a?x .

8.3 Syntactical semi-automatic proof 42

goal (lemma (manual proof Buffer), 2 subgoals):

1. $DF ⊑F ? a:(range left)→ $DF

2.
∧

real nat . $DF ⊑F right (real, nat)→ $DF

These two subgoals are easily proven by unwinding (i.e. cspF unwind) and
decomposition (i.e. cspF decompo subset). See the proof script in the lemma
manual_proof_Buffer.

8.3 Syntactical semi-automatic proof

In Subsection 8.2, we explained the syntactical proof. In this proof, you can
completely control which subexpression is rewritten. It may be sometimes con-
venient for theoretical works, but may be redundant for practical verification.
In this subsection, we give methods to automatically apply Csp laws.

The most powerful CSP-method is cspF_auto which automatically applies
CSP-laws to unguarded subexpressions in both sides. The method cspF_auto
applies the following Csp laws with the following priority (i.e. the assumptions
has the highest priority).

1. Assumptions, (i.e. asm_full_simp_tac is used)

2. The law cspF_choice_IF, which consists of (cspF_IF), (cspF_idem),
(cspF_unit), etc to simplify processes.

3. Laws specified by users. (explained below)

4. The law cspF_all_dist, which consists of cspF_dist, cspF_Dist, etc, to
distribute operators on choice operators. (see CSP_F_law_dist.thy)

5. The laws for renaming prefixes by short notations ←→ and ⇐⇒.

6. The law cspF_SKIP_DIV_sort, which is derived from (cspF_commut) and
(cspF_assoc) to sort processes over 2 to the form ? x : X → P(x) 2 SKIP
or ? x : X → P(x) 2 DIV if unguarded SKIP or DIV exists.

7. The law cspF_SKIP_DIV_resolve, which is derived from (cspF_SKIP_DIV),
(cspF_Ext_choice_SKIP_DIV_resolve), and (cspF_step_ext) to sequen-
tialise processes together with SKIP or DIV.

8. The law cspF_step, to sequentialise processes.

9. The auxiliary laws which delay rewriting internal choice.

10. The law cspF_unwind to unwind recursive processes.

(see the ML-function cspF_auto_core in CSP_F_tactic.thy for more details)

Since the method cspF_auto is powerful, it is sometimes required to apply
only specific laws to avoid excessive rewriting. Therefore, the following sub
methods are also provided, where numbers refer to the CSP-laws in cspF_auto
above.

8.3 Syntactical semi-automatic proof 43

• cspF_simp applies CSP-laws 2 and 3.

• cspF_asm applies CSP-laws 1, 2 and 3.

• cspF_dist applies CSP-laws 2, 3, and 4.

• cspF_ren applies CSP-laws 2, 3, and 5.

• cspF_unwind applies CSP-laws 2, 3, and 10.

• cspF_step applies CSP-laws 2, 3, 5, 6, 7, and 8.

• cspF_hsf applies CSP-laws 2, 3, 4, 5, 6, 7, and 8.

You can apply CSP-methods by the command apply as usual, for example,

apply (cspF auto)

where the method is applied to the first subgoal. Note that you may consecu-
tively apply cspF_auto more than twice because an application of a Csp law
can make the other Csp law applicable. If you want to automatically apply the
method as repeatedly as possible, the Isabelle option +, which expresses one or
more repetitions, is useful:

apply (cspF auto)+

Take a look at the proof-script of the lemma tactical proof in Test_proof.thy
in Test. By the method, the lemma is easily proven only by two lines:

apply (cspF auto)+
apply (auto)

If you want to apply CSP-methods only to the left-hand side (resp., right-
hand side), attach the _left (resp., _rigth) to the last of the names of the
methods. For example, the following command applies CSP-laws only to the
left hand:

apply (cspF auto left)

If you want to apply CSP-laws laws, which you have already proven, to each
unguarded subexpression14, specify them as an argument of methods as follows:

apply (cspF simp laws)

For example, assume that the following law has already been proven:

lemma new law: "(P 2 Q) 2 P =F (P 2 Q)"

Then, you can apply the law to each subexpression in the first subgoal by

apply (cspF simp new law)

This option can be used for separating a large proof into some partial proofs
as shown in the package DM. To simultaneously apply two or more proven laws,

14For example, CSP-laws can be applied to each subprocess P and Q in P 2 Q , but cannot
be applied to R in a → R. This constraint is used for avoiding infinite rewriting by unwinding.

8.3 Syntactical semi-automatic proof 44

the command lemmas will be useful, for example to combine law1 and law2
to laws:

lemmas laws = law1 law2

All the above methods applies CSP-laws only to unguarded subexpressions,
but it is sometimes useful to deeply simplify guarded subexpressions even if it
takes a lot of time. Therefore, The following methods are also provided:

• cspF_simp_deep is the deep version of cspF_simp, thus it applies CSP-
laws 2 and 3 to all the subexpressions.

• cspF_ren_deep is the deep version of cspF_ren, thus it applies CSP-laws
2, 3 and 5 to all the subexpressions.

All the method explained above can be applied to both verifications of the
process equivalence P =F Q and the process refinement P ⊑F Q . Next, the
methods for the process refinement are given:

• cspF_refine_asm_left (resp., cspF_refine_asm_right) rewrites the left
(resp., right) hand side by the transitive law with using assumptions.

• cspF_refine_left (resp., cspF_refine_right) rewrites the left (resp.,
right) hand side by the transitive law without using assumptions.

These methods also have an argument for adding the laws already proven. For
example, assume that the following law has already been proven:

lemma new ref law: "P ◃ Q ⊑F P 2 Q"

Then, you can apply the law to the left hand side by the following command.

apply (cspF refine left new ref law)

By this command, ◃ in the left hand side is replaced by 2. For example, by this
command,

(P1 ◃ P2) 2 P3 ⊑F (Q1 ◃ Q2) 2 Q3 (∗1)

is rewritten to

(P1 2 P2) 2 P3 ⊑F (Q1 ◃ Q2) 2 Q3. (∗2)

Note that (∗2) implies (∗1).

On the other hand, when the law new ref law is applied to the right hand
side by the following command, 2 is replaced by ◃.

apply (cspF refine left new ref law)

For example, by this command, the subgoal (∗1) is rewritten to

(P1 ◃ P2) 2 P3 ⊑F (Q1 ◃ Q2) ◃ Q3. (∗3)

Note that (∗3) implies (∗1).

45

[version 5]: In Csp-Prover version 4, ML functions are used for giving
semi-automatic commands and they can be applied by the method tactic, for
example,

apply (tactic {* cspF simp tac 1 *})

Therefore, the following command applications

apply (tactic {* cspF · · · tac 1 *})
apply (tactic {* cspF simp with tac "law" 1 *}),

for the Csp-Prover version 4 have to be replaced by

apply (cspF · · ·)
apply (cspF simp law)

for the new Csp-Prover version 5.

9 Conclusion

This User-Guide is a draft version, and will be updated near future. Please keep
to check the Csp-Prover’s web site:

http://staff.aist.go.jp/y-isobe/CSP-Prover/CSP-Prover.html

Also Csp-Prover is still being developed and improved. Your feedback would
be very welcome!

References

[Asp00] D. Aspinall. Proof general: A generic tool for proof development. In
TACAS 2000, LNCS 1785, pages 38–42. Springer, 2000.

[CS01] E. M. Clarke and H. Schlingloff. Model checking. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning. Elsevier
Science, 2001.

[ep202] eft/pos 2000 Specification, version 1.0.1. EP2 Consortium, 2002.

[IR05] Y. Isobe and M. Roggenbach. A generic theorem prover of CSP re-
finement. In TACAS 2005, LNCS 3440, pages 108–123. Springer,
2005.

[IR06] Yoshinao Isobe and Markus Roggenbach. A complete axiomatic se-
mantics for the csp stable failures model. In CONCUR 2006, LNCS.
Springer, 2006.

46

[IR08] Yoshinao Isobe and Markus Roggenbach. Csp-prover – a proof tool
for the verification of scalable concurrent systems. Computer Software
– JSSST Journal, 25(4):85–92, 2008.

[IRG05] Y. Isobe, M. Roggenbach, and S. Gruner. Extending CSP-Prover
by deadlock-analysis: Towards the verification of systolic arrays. In
FOSE 2005, Japanese Lecture Notes Series 31. Kindai-kagaku-sha,
2005.

[NPW02] T. Nipkow, L. C. Paulon, and M. Wenzel. Isabelle/HOL. LNCS 2283.
Springer, 2002. http://www4.in.tum.de/~nipkow/LNCS2283/.

[Ros98] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice
Hall, 1998. Or No.68 in
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/pubs.html.

A Guarded function

As explained in Subsection 6.2, process-name functions have to be guarded when
the cms approach is employed. In this section, we explain the notion of guard
and define the function guardedfun for checking the guardedness.

In general, the process name p is said to be guarded in a process P (or P
is guarded) if each occurrence of p is within some subexpression a → P ′ or
? x : A→ P ′(x). However, we should deal with sequential composition P1

o
9 P2

more carefully, thus the question is if P2 should be guarded or not? For example,
the following processes (1) and (2) are guarded, but (3) is not guarded.

(1) (a → SKIP) o
9 $p

(2) SKIP o
9 (a → $p)

(3) SKIP o
9 $p

It means P2 does not have to be guarded if each occurrence of SKIP in P1 are
guarded. Therefore, for defining guardedness, we need a predicate for checking
whether SKIP is guarded or not. Figure 21 shows the encoded predicate gSKIP
used for guaranteeing that SKIP is guarded. The following property, which
can be proven by induction (see lemma gSKIP_to_Tick_notin_traces in the
theory-file CSP_T_contraction.thy in the package CSP_T), shows what we need
for defining guarded processes.

gSKIP(P) implies ⟨X⟩ /∈ traces(P)M .

By a similar way, the following two predicates over processes also are defined:

• noPN(P): It means that P has no process name.

• noHide(P): It means that if P has a subexpression of the form Q \ X ,
then Q has no process name (i.e. noPN(Q)).

47

consts gSKIP :: "(’p,’a) proc ⇒ bool"

primrec
"gSKIP(STOP) = True"

"gSKIP(SKIP) = False"

"gSKIP(DIV) = True"

"gSKIP(a → P) = True"

"gSKIP(? : X → P) = True"

"gSKIP(P 2 Q) = gSKIP(P)∧ gSKIP(Q)"

"gSKIP(P ⊓ Q) = gSKIP(P)∧ gSKIP(Q)"

"gSKIP(!! : C • P) = (∀ c ∈ C . gSKIP(P(c)))"
"gSKIP(IF b THENP ELSEQ) = gSKIP(P)∧ gSKIP(Q)"

"gSKIP(P |[X]| Q) = gSKIP(P)∨ gSKIP(Q)"

"gSKIP(P \ X) = False"

"gSKIP(P [[r]]) = gSKIP(P)"

"gSKIP(P o
9 Q) = gSKIP(P)∨ gSKIP(Q)"

"gSKIP(P ⌊n) = gSKIP(P)∨ n = 0"
"gSKIP($p) = False"

Figure 21: The predicate gSKIP for guaranteeing that SKIP is guarded.

consts guarded :: "(’p,’a) proc ⇒ bool"

primrec
"guarded(STOP) = True"

"guarded(SKIP) = True"

"guarded(DIV) = True"

"guarded(a → P) = noHide(P)"

"guarded(? : X → P) = (∀ a ∈ X . noHide(P(a)))"
"guarded(P 2 Q) = guarded(P)∧ guarded(Q)"

"guarded(P ⊓ Q) = guarded(P)∧ guarded(Q)"

"guarded(!! : C • P) = (∀ c ∈ C . guarded(P(c)))"
"guarded(IF b THENP ELSEQ) = guarded(P)∧ guarded(Q)"

"guarded(P |[X]| Q) = guarded(P)∧ guarded(Q)"

"guarded(P \ X) = noPN(P)"

"guarded(P [[r]]) = guarded(P)"

"guarded(P o
9 Q) = (guarded(P)∧ gSKIP(P)∧ noPN(Q)) ∨

(guarded(P)∧ guarded(Q))"

"guarded(P ⌊n) = guarded(P)∨ n = 0"
"guarded($p) = False"

Figure 22: The predicate guarded for checking guardedness of processes.

Then, the predicate guarded for checking the guardedness is defined as shown
in Figure 22. Note that guarded(P o

9 Q) is true even if Q is not guarded, if
SKIP in P is guarded (i.e. gSKIP(P)).

48

Finally, the predicate guarded is extended over functions as follows because
we have to check the guardedness of PNfun:

consts
guardedfun :: "(’p ⇒ (’q,’a) proc) ⇒ bool"

defs
guardedfun def: "guardedfun(f) == (∀ p. guarded(f (p)))"

All these predicates are encoded in the theory file CSP/CSP_syntax.thy be-
cause they are independent of semantic models.

