Up to index of Isabelle/HOL/CSP/CSP_T
theory CSP_T_semantics(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | December 2004 | | July 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | October 2005 (modified) | | April 2006 (modified) | | March 2007 (modified) | | August 2007 (modified) | | | | CSP-Prover on Isabelle2008 | | June 2008 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_T_semantics imports Trace_op CSP_syntax Domain_T_cms begin (***************************************************************** 1. semantic clause 2. 3. 4. *****************************************************************) (********************************************************* semantic clause *********************************************************) consts traces :: "('p,'a) proc => ('p => 'a domT) => ('a domT)" primrec "traces(STOP) = (%M. {<>}t)" "traces(SKIP) = (%M. {<>, <Tick>}t)" "traces(DIV) = (%M. {<>}t)" "traces(a -> P) = (%M. {t. t = <> | (EX s. t = <Ev a> ^^ s & s :t traces(P) M) }t)" "traces(? :X -> Pf) = (%M. {t. t = <> | (EX a s. t = <Ev a> ^^ s & s :t traces(Pf a) M & a : X) }t)" "traces(P [+] Q) = (%M. traces(P) M UnT traces(Q) M)" "traces(P |~| Q) = (%M. traces(P) M UnT traces(Q) M)" "traces(!! :C .. Pf) = (%M. {t. t = <> | (EX c : sumset C. t :t traces(Pf c) M) }t)" "traces(IF b THEN P ELSE Q) = (%M. (if b then traces(P) M else traces(Q) M))" "traces(P |[X]| Q) = (%M. {u. EX s t. u : s |[X]|tr t & s :t traces(P) M & t :t traces(Q) M }t)" "traces(P -- X) = (%M. {t. EX s. t = s --tr X & s :t traces(P) M }t)" "traces(P [[r]]) = (%M. {t. EX s. s [[r]]* t & s :t traces(P) M }t)" "traces(P ;; Q) = (%M. {u. (EX s. u = rmTick s & s :t traces(P) M ) | (EX s t. u = s ^^ t & s ^^ <Tick> :t traces(P) M & t :t traces(Q) M & noTick s) }t)" "traces(P |. n) = (%M. traces(P) M .|. n)" "traces($p) = (%M. M p)" declare traces.simps [simp del] (*** for dealing with both !nat and !set ***) lemma traces_inv_inj[simp]: "inj f ==> (EX c. (EX n. c = f n & n : N) & t :t traces (Pf (inv f c)) x) = (EX z:N. t :t traces (Pf z) x)" by (auto) lemma Rep_int_choice_traces_nat: "traces(!nat :N .. Pf) = (%M. {t. t = <> | (EX n:N. t :t traces(Pf n) M) }t)" apply (simp add: Rep_int_choice_ss_def) apply (simp add: traces.simps) done lemma Rep_int_choice_traces_set: "traces(!set :Xs .. Pf) = (%M. {t. t = <> | (EX X:Xs. t :t traces(Pf X) M) }t)" apply (simp add: Rep_int_choice_ss_def) apply (simp add: traces.simps) done lemma Rep_int_choice_traces_com_lm: "(EX z. (EX a. z = {a} & a : X) & t :t traces (Pf (contents z)) M) = (EX a:X. t :t traces (Pf a) M)" apply (auto) apply (rule_tac x="{a}" in exI) apply (auto) done lemma Rep_int_choice_traces_com: "traces(! :X .. Pf) = (%M. {t. t = <> | (EX a:X. t :t traces(Pf a) M) }t)" apply (simp add: Rep_int_choice_com_def) apply (simp add: Rep_int_choice_traces_set) apply (simp add: Rep_int_choice_traces_com_lm) done lemma Rep_int_choice_traces_f: "inj f ==> traces(!<f> :X .. Pf) = (%M. {t. t = <> | (EX a:X. t :t traces(Pf a) M) }t)" apply (simp add: Rep_int_choice_f_def) apply (simp add: Rep_int_choice_traces_com) done lemmas Rep_int_choice_traces = Rep_int_choice_traces_nat Rep_int_choice_traces_set Rep_int_choice_traces_com Rep_int_choice_traces_f lemmas traces_def = traces.simps Rep_int_choice_traces (*==================================================================* traces model *==================================================================*) lemma traces_Int_choice_Ext_choice: "traces(P |~| Q) = traces(P [+] Q)" apply (simp add: expand_fun_eq) by (simp add: traces_def) (************************************************************* set of length of traces+ lengthset is related to Depth restriction operator (P |. n) *************************************************************) consts lengthset :: "('p,'a) proc => ('p => 'a domT) => nat set" defs lengthset_def: "lengthset P == (%M. {n. EX t. t :t traces P M & (n = lengtht t | n = Suc (lengtht t) & noTick t)})" (********************************************************* semantics *********************************************************) (*** M-parametarized semantics ***) consts semTf :: "('p,'a) proc => ('p => 'a domT) => 'a domT" ("[[_]]Tf") semTfun :: "('p => ('p,'a) proc) => ('p => 'a domT) => ('p => 'a domT)" ("[[_]]Tfun") defs semTf_def : "[[P]]Tf == (%M. traces(P) M)" semTfun_def : "[[Pf]]Tfun == (%M. %p. [[Pf p]]Tf M)" (* notation (xsymbols) semTf ("[|_|]Tf") notation (xsymbols) semTfun ("[|_|]Tfun") *) (*** relation ***) lemma semTf_semTfun: "(%p. [[Pf p]]Tf M) = [[Pf]]Tfun M" by (simp add: semTfun_def semTf_def) lemma traces_semTfun: "(%p. traces (Pf p) M) = [[Pf]]Tfun M" by (simp add: semTfun_def semTf_def) (*------------------------------------------------------------------* M such that [[p]]T M = [[PNfun(p)]]T M such M is the fixed point of the function [[PNfun(p)]]Tfun *------------------------------------------------------------------*) consts semTfix :: "('p => ('p,'a) proc) => ('p => 'a domT)" ("[[_]]Tfix") defs semTfix_def : "[[Pf]]Tfix == (if (FPmode = CMSmode) then (UFP ([[Pf]]Tfun)) else (LFP ([[Pf]]Tfun)))" (* notation (xsymbols) semTfix ("[|_|]Tfix") *) consts MT :: "('p => 'a domT)" defs MT_def : "MT == [[PNfun]]Tfix" (*** semantics ***) consts semT :: "('p,'a) proc => 'a domT" ("[[_]]T") defs semT_def : "[[P]]T == [[P]]Tf MT" (* notation (xsymbols) semT ("[|_|]T") *) (********************************************************* relations over processes *********************************************************) consts refT :: "('p,'a) proc => ('p => 'a domT) => ('q => 'a domT) => ('q,'a) proc => bool" ("(0_ /<=T[_,_] /_)" [51,0,0,50] 50) eqT :: "('p,'a) proc => ('p => 'a domT) => ('q => 'a domT) => ('q,'a) proc => bool" ("(0_ /=T[_,_] /_)" [51,0,0,50] 50) defs refT_def : "P1 <=T[M1,M2] P2 == [[P2]]Tf M2 <= [[P1]]Tf M1" eqT_def : "P1 =T[M1,M2] P2 == [[P1]]Tf M1 = [[P2]]Tf M2" (*------------------------------------* | X-Symbols | *------------------------------------*) (* notation (xsymbols) refT ("(0_ /\<sqsubseteq>T[_,_] /_)" [51,0,0,50] 50) *) (********************************************************* relations over processes (fixed point) *********************************************************) abbreviation refTfix :: "('p,'a) proc => ('q,'a) proc => bool" ("(0_ /<=T /_)" [51,50] 50) where "P1 <=T P2 == P1 <=T[MT,MT] P2" abbreviation eqTfix :: "('p,'a) proc => ('q,'a) proc => bool" ("(0_ /=T /_)" [51,50] 50) where "P1 =T P2 == P1 =T[MT,MT] P2" (* =T and <=T *) lemma refT_semT: "P1 <=T P2 == [[P2]]T <= [[P1]]T" apply (simp add: refT_def) apply (simp add: semT_def) done lemma eqT_semT: "P1 =T P2 == [[P1]]T = [[P2]]T" apply (simp add: eqT_def) apply (simp add: semT_def) done (*------------------------------------* | X-Symbols | *------------------------------------*) (* notation (xsymbols) refTfix ("(0_ /\<sqsubseteq>T /_)" [51,50] 50) *) (*------------------* | csp law | *------------------*) (*** semantics ***) lemma cspT_eqT_semantics: "(P =T[M1,M2] Q) = (traces P M1 = traces Q M2)" by (simp add: eqT_def semT_def semTf_def) lemma cspT_refT_semantics: "(P <=T[M1,M2] Q) = (traces Q M2 <= traces P M1)" by (simp add: refT_def semT_def semTf_def) lemmas cspT_semantics = cspT_eqT_semantics cspT_refT_semantics (*** eq and ref ***) lemma cspT_eq_ref_iff: "(P1 =T[M1,M2] P2) = (P1 <=T[M1,M2] P2 & P2 <=T[M2,M1] P1)" by (auto simp add: refT_def eqT_def intro:order_antisym) lemma cspT_eq_ref: "P1 =T[M1,M2] P2 ==> P1 <=T[M1,M2] P2" by (simp add: cspT_eq_ref_iff) lemma cspT_ref_eq: "[| P1 <=T[M1,M2] P2 ; P2 <=T[M2,M1] P1 |] ==> P1 =T[M1,M2] P2" by (simp add: cspT_eq_ref_iff) (*** reflexivity ***) lemma cspT_reflex_eq_P[simp]: "P =T[M,M] P" by (simp add: eqT_def) lemma cspT_reflex_eq_STOP[simp]: "STOP =T[M1,M2] STOP" apply (simp add: cspT_semantics) apply (simp add: traces_def) done lemma cspT_reflex_eq_SKIP[simp]: "SKIP =T[M1,M2] SKIP" apply (simp add: cspT_semantics) apply (simp add: traces_def) done lemma cspT_reflex_eq_DIV[simp]: "DIV =T[M1,M2] DIV" apply (simp add: cspT_semantics) apply (simp add: traces_def) done lemmas cspT_reflex_eq = cspT_reflex_eq_P cspT_reflex_eq_STOP cspT_reflex_eq_SKIP cspT_reflex_eq_DIV lemma cspT_reflex_ref_P[simp]: "P <=T[M,M] P" by (simp add: refT_def) lemma cspT_reflex_ref_STOP[simp]: "STOP <=T[M1,M2] STOP" apply (simp add: cspT_semantics) apply (simp add: traces_def) done lemma cspT_reflex_ref_SKIP[simp]: "SKIP <=T[M1,M2] SKIP" apply (simp add: cspT_semantics) apply (simp add: traces_def) done lemma cspT_reflex_ref_DIV[simp]: "DIV <=T[M1,M2] DIV" apply (simp add: cspT_semantics) apply (simp add: traces_def) done lemmas cspT_reflex_ref = cspT_reflex_ref_P cspT_reflex_ref_STOP cspT_reflex_ref_SKIP cspT_reflex_ref_DIV lemmas cspT_reflex = cspT_reflex_eq cspT_reflex_ref (*** symmetry ***) lemma cspT_sym: "P1 =T[M1,M2] P2 ==> P2 =T[M2,M1] P1" by (simp add: eqT_def) lemma cspT_symE: "[| P1 =T[M1,M2] P2 ; P2 =T[M2,M1] P1 ==> Z |] ==> Z" by (simp add: eqT_def) (*** transitivity ***) lemma cspT_trans_left_eq: "[| P1 =T[M1,M2] P2 ; P2 =T[M2,M3] P3 |] ==> P1 =T[M1,M3] P3" by (simp add: eqT_def) lemma cspT_trans_left_ref: "[| P1 <=T[M1,M2] P2 ; P2 <=T[M2,M3] P3 |] ==> P1 <=T[M1,M3] P3" by (simp add: refT_def) lemmas cspT_trans_left = cspT_trans_left_eq cspT_trans_left_ref lemmas cspT_trans = cspT_trans_left lemma cspT_trans_right_eq: "[| P2 =T[M2,M3] P3 ; P1 =T[M1,M2] P2 |] ==> P1 =T[M1,M3] P3" by (simp add: eqT_def) lemma cspT_trans_right_ref: "[| P2 <=T[M2,M3] P3 ; P1 <=T[M1,M2] P2 |] ==> P1 <=T[M1,M3] P3" by (simp add: refT_def) lemmas cspT_trans_right = cspT_trans_right_eq cspT_trans_right_ref (*** rewrite (eq) ***) lemma cspT_rw_left_eq_MT: "[| P1 =T P2 ; P2 =T P3 |] ==> P1 =T P3" by (simp add: eqT_def) lemma cspT_rw_left_eq: "[| P1 =T[M1,M1] P2 ; P2 =T[M1,M3] P3 |] ==> P1 =T[M1,M3] P3" by (simp add: eqT_def) lemma cspT_rw_left_ref_MT: "[| P1 =T P2 ; P2 <=T P3 |] ==> P1 <=T P3" by (simp add: refT_def eqT_def) lemma cspT_rw_left_ref: "[| P1 =T[M1,M1] P2 ; P2 <=T[M1,M3] P3 |] ==> P1 <=T[M1,M3] P3" by (simp add: refT_def eqT_def) lemmas cspT_rw_left = cspT_rw_left_eq_MT cspT_rw_left_ref_MT cspT_rw_left_eq cspT_rw_left_ref lemma cspT_rw_right_eq: "[| P3 =T[M3,M3] P2 ; P1 =T[M1,M3] P2 |] ==> P1 =T[M1,M3] P3" by (simp add: eqT_def) lemma cspT_rw_right_eq_MT: "[| P3 =T P2 ; P1 =T P2 |] ==> P1 =T P3" by (simp add: eqT_def) lemma cspT_rw_right_ref: "[| P3 =T[M3,M3] P2 ; P1 <=T[M1,M3] P2 |] ==> P1 <=T[M1,M3] P3" by (simp add: refT_def eqT_def) lemma cspT_rw_right_ref_MT: "[| P3 =T P2 ; P1 <=T P2 |] ==> P1 <=T P3" by (simp add: refT_def eqT_def) lemmas cspT_rw_right = cspT_rw_right_eq_MT cspT_rw_right_ref_MT cspT_rw_right_eq cspT_rw_right_ref (*** rewrite (ref) ***) lemma cspT_tr_left_eq: "[| P1 =T[M1,M1] P2 ; P2 =T[M1,M3] P3 |] ==> P1 =T[M1,M3] P3" by (simp add: eqT_def) lemma cspT_tr_left_ref: "[| P1 <=T[M1,M1] P2 ; P2 <=T[M1,M3] P3 |] ==> P1 <=T[M1,M3] P3" by (simp add: refT_def eqT_def) lemmas cspT_tr_left = cspT_tr_left_eq cspT_tr_left_ref lemma cspT_tr_right_eq: "[| P2 =T[M3,M3] P3 ; P1 =T[M1,M3] P2 |] ==> P1 =T[M1,M3] P3" by (simp add: eqT_def) lemma cspT_tr_right_ref: "[| P2 <=T[M3,M3] P3 ; P1 <=T[M1,M3] P2 |] ==> P1 <=T[M1,M3] P3" by (simp add: refT_def eqT_def) lemmas cspT_tr_right = cspT_tr_right_eq cspT_tr_right_ref (*----------------------------------------* | rewriting processes in assumptions | *----------------------------------------*) (*** rewrite (eq) ***) lemma cspT_rw_left_eqE_MF: "[| P1 =T P3 ; P1 =T P2 ; [| P2 =T P3 |] ==> R |] ==> R" apply (subgoal_tac "P2 =T P3") apply (simp) apply (rule cspT_rw_left) apply (rule cspT_sym) apply (simp) apply (simp) done lemma cspT_rw_left_eqE: "[| P1 =T[M1,M3] P3 ; P1 =T[M1,M1] P2 ; [| P2 =T[M1,M3] P3 |] ==> R |] ==> R" apply (subgoal_tac "P2 =T[M1,M3] P3") apply (simp) apply (rule cspT_rw_left) apply (rule cspT_sym) apply (simp) apply (simp) done lemma cspT_rw_left_refE_MF: "[| P1 <=T P3 ; P1 =T P2 ; [| P2 <=T P3 |] ==> R |] ==> R" apply (subgoal_tac "P2 <=T P3") apply (simp) apply (rule cspT_rw_left) apply (rule cspT_sym) apply (simp) apply (simp) done lemma cspT_rw_left_refE: "[| P1 <=T[M1,M3] P3 ; P1 =T[M1,M1] P2 ; [| P2 <=T[M1,M3] P3 |] ==> R |] ==> R" apply (subgoal_tac "P2 <=T[M1,M3] P3") apply (simp) apply (rule cspT_rw_left) apply (rule cspT_sym) apply (simp) apply (simp) done lemmas cspT_rw_leftE = cspT_rw_left_eqE_MF cspT_rw_left_refE_MF cspT_rw_left_eqE cspT_rw_left_refE (* right *) lemma cspT_rw_right_eqE_MF: "[| P1 =T P3 ; P3 =T P2 ; [| P1 =T P2 |] ==> R |] ==> R" apply (subgoal_tac "P1 =T P2") apply (simp) apply (rule cspT_rw_right) apply (rule cspT_sym) apply (simp) apply (simp) done lemma cspT_rw_right_eqE: "[| P1 =T[M1,M3] P3 ; P3 =T[M3,M3] P2 ; [| P1 =T[M1,M3] P2 |] ==> R |] ==> R" apply (subgoal_tac "P1 =T[M1,M3] P2") apply (simp) apply (rule cspT_rw_right) apply (rule cspT_sym) apply (simp) apply (simp) done lemma cspT_rw_right_refE_MF: "[| P1 <=T P3 ; P3 =T P2 ; [| P1 <=T P2 |] ==> R |] ==> R" apply (subgoal_tac "P1 <=T P2") apply (simp) apply (rule cspT_rw_right) apply (rule cspT_sym) apply (simp) apply (simp) done lemma cspT_rw_right_refE: "[| P1 <=T[M1,M3] P3 ; P3 =T[M3,M3] P2 ; [| P1 <=T[M1,M3] P2 |] ==> R |] ==> R" apply (subgoal_tac "P1 <=T[M1,M3] P2") apply (simp) apply (rule cspT_rw_right) apply (rule cspT_sym) apply (simp) apply (simp) done lemmas cspT_rw_rightE = cspT_rw_right_eqE_MF cspT_rw_right_refE_MF cspT_rw_right_eqE cspT_rw_right_refE (*-----------------------------------------* | noPN | *-----------------------------------------*) lemma traces_noPN_Constant_lm: "noPN P --> (EX T. traces P = (%M. T))" apply (induct_tac P) apply (simp add: traces_def, force) apply (simp add: traces_def, force) apply (simp add: traces_def, force) apply (simp add: traces_def, force) (* Ext_pre_choice *) apply (intro impI) apply (simp) apply (subgoal_tac "ALL x. EX T. traces (fun2 x) = (%M. T)") apply (simp add: choice_ALL_EX) apply (erule exE) apply (simp add: traces_def) apply (force) apply (simp) apply (simp add: traces_def, force) apply (simp add: traces_def, force) (* Rep_int_choice *) apply (intro impI) apply (simp) apply (subgoal_tac "ALL x. EX T. traces (fun x) = (%M. T)") apply (simp add: choice_ALL_EX) apply (erule exE) apply (simp add: traces_def) apply (force) apply (simp) (* IF *) apply (simp add: traces_def) apply (case_tac "bool") apply (simp) apply (simp) apply (simp add: traces_def, force) apply (simp add: traces_def, force) apply (simp add: traces_def, force) apply (simp add: traces_def, force) apply (simp add: traces_def, force) apply (simp add: traces_def) done lemma traces_noPN_Constant: "noPN P ==> (EX T. traces P = (%M. T))" apply (simp add: traces_noPN_Constant_lm) done (*-----------------------------------------* | substitution | *-----------------------------------------*) lemma semT_subst: "[[P<<f]]T = [[P]]Tf (%q. [[f q]]T)" apply (induct_tac P) apply (simp_all add: semT_def semTf_def traces_def) done lemma semT_subst_semTfun: "(%q. [[ (Pf q)<<f ]]T) = ([[Pf]]Tfun (%q. [[f q]]T))" apply (simp add: semTfun_def) apply (simp add: expand_fun_eq) apply (rule allI) apply (simp add: semT_subst) done lemma traces_subst: "traces(P<<f) M = traces P (%q. traces(f q) M)" apply (induct_tac P) apply (simp_all add: semT_def traces_def) done end