Up to index of Isabelle/HOL/CSP/CSP_T
theory CSP_T_law_etc(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | April 2006 | | March 2007 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_T_law_etc imports CSP_T_law_aux begin (*------------------------* |~| --> !! *------------------------*) lemma cspT_Int_choice_to_Rep: "(P |~| Q) =T[M,M] (!nat n:{0, (Suc 0)} .. (IF (n = 0) THEN P ELSE Q))" apply (rule cspT_rw_right) apply (subgoal_tac "(!nat n:{0, (Suc 0)} .. IF (n = 0) THEN P ELSE Q) =T[M,M] (!nat n:({0} Un {(Suc 0)}) .. IF (n = 0) THEN P ELSE Q)") apply (assumption) apply (rule cspT_decompo) apply (fast) apply (simp) apply (rule cspT_rw_right) apply (rule cspT_Rep_int_choice_union_Int) apply (rule cspT_decompo) apply (rule cspT_rw_right) apply (rule cspT_Rep_int_choice_singleton) apply (simp) apply (rule cspT_rw_right) apply (rule cspT_IF) apply (simp) apply (rule cspT_rw_right) apply (rule cspT_Rep_int_choice_singleton) apply (simp) apply (rule cspT_rw_right) apply (rule cspT_IF) apply (simp) done (*** cspT_Rep_int_choice_set_input ***) lemma cspT_Rep_int_choice_sum_set_input: "!! c:C .. (!set X:(Xsf c) .. (? :X -> (Pff c))) =T[M,M] !set X:(Union {(Xsf c) |c. c : sumset C}) .. (? a:X -> (!! c:{c:C. EX X. X:(Xsf c) & a:X}s .. (Pff c a)))" apply (simp add: cspT_semantics) apply (rule order_antisym) (* <= *) apply (rule) apply (simp add: in_traces) apply (elim conjE exE bexE disjE) apply (simp_all) apply (force) (* => *) apply (rule) apply (simp add: in_traces) apply (elim conjE exE bexE disjE) apply (simp_all) apply (rule_tac x="c" in bexI) apply (force) apply (simp) apply (simp) apply (rule_tac x="ca" in bexI) apply (simp) apply (simp) apply (fast) apply (simp) done (*** cspT_Rep_int_choice_set_input ***) lemma cspT_Rep_int_choice_set_input: "!nat n:N .. (!set X:(Xsf n) .. (? :X -> (Pff n))) =T[M,M] !set X:(Union {(Xsf n) |n. n : N}) .. (? a:X -> (!nat n:{n:N. EX X. X:(Xsf n) & a:X} .. (Pff n a)))" apply (simp add: Rep_int_choice_nat_def) apply (rule cspT_rw_left) apply (rule cspT_Rep_int_choice_sum_set_input) apply (rule cspT_decompo) apply (force) apply (simp) done (*** cspT_Rep_int_choice_set_set_DIV ***) lemma cspT_Rep_int_choice_set_set_DIV: "[| Xs ~= {} ; Ys ~= {} |] ==> !set X:Xs .. (!set Y:Ys .. (? a:(X Un Y) -> DIV)) =T[M,M] !set Z:{X Un Y |X Y. X:Xs & Y:Ys} .. (? a:Z -> DIV)" apply (simp add: cspT_semantics) apply (rule order_antisym) (* <= *) apply (rule) apply (simp add: in_traces) apply (elim conjE exE bexE disjE) apply (simp_all) apply (rule_tac x="X Un Xa" in exI) apply (simp) apply (rule_tac x="X" in exI) apply (rule_tac x="Xa" in exI) apply (simp) apply (rule_tac x="X Un Xa" in exI) apply (simp) apply (rule_tac x="X" in exI) apply (rule_tac x="Xa" in exI) apply (simp) (* => *) apply (rule) apply (simp add: in_traces) apply (elim conjE exE bexE disjE) apply (simp_all) apply (force) done (********************************************************* (P [+] SKIP) |~| (Q [+] SKIP) *********************************************************) (* p.289 *) lemma cspT_Int_choice_Ext_choice_SKIP: "(P [+] SKIP) |~| (Q [+] SKIP) =T[M,M] (P [+] Q [+] SKIP)" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule, simp add: in_traces) apply (force) (* <= *) apply (rule, simp add: in_traces) apply (force) done (********************************************************* (P [+] DIV) |~| (Q [+] DIV) *********************************************************) lemma cspT_Int_choice_Ext_choice_DIV: "(P [+] DIV) |~| (Q [+] DIV) =T[M,M] (P [+] Q [+] DIV)" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule, simp add: in_traces) apply (force) (* <= *) apply (rule, simp add: in_traces) apply (force) done (********************************************************* (P [+] SKIP) |~| (Q [+] DIV) *********************************************************) lemma cspT_Int_choice_Ext_choice_SKIP_DIV: "(P [+] SKIP) |~| (Q [+] DIV) =T[M,M] (P [+] Q [+] SKIP)" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule, simp add: in_traces, force)+ done (********************************************************* (P [+] DIV) |~| (Q [+] SKIP) *********************************************************) lemma cspT_Int_choice_Ext_choice_DIV_SKIP: "(P [+] DIV) |~| (Q [+] SKIP) =T[M,M] (P [+] Q [+] SKIP)" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule, simp add: in_traces, force)+ done (********************************************************* (P [+] SKIP or DIV) |~| (Q [+] DIV or SKIP) *********************************************************) lemma cspT_Int_choice_Ext_choice_SKIP_or_DIV: "[| P2 = SKIP | P2 = DIV ; Q2 = SKIP | Q2 = DIV |] ==> (P1 [+] P2) |~| (Q1 [+] Q2) =T[M,M] (P1 [+] Q1 [+] (P2 |~| Q2))" apply (elim disjE) apply (simp) apply (rule cspT_rw_right) apply (rule cspT_decompo) apply (rule cspT_reflex) apply (rule cspT_idem) apply (simp add: cspT_Int_choice_Ext_choice_SKIP) apply (simp) apply (rule cspT_rw_right) apply (rule cspT_decompo) apply (rule cspT_reflex) apply (rule cspT_unit) apply (simp add: cspT_Int_choice_Ext_choice_SKIP_DIV) apply (simp) apply (rule cspT_rw_right) apply (rule cspT_decompo) apply (rule cspT_reflex) apply (rule cspT_unit) apply (simp add: cspT_Int_choice_Ext_choice_DIV_SKIP) apply (simp) apply (rule cspT_rw_right) apply (rule cspT_decompo) apply (rule cspT_reflex) apply (rule cspT_unit) apply (simp add: cspT_Int_choice_Ext_choice_DIV) done (********************************************************* (P [+] DIV) |~| P *********************************************************) lemma cspT_Ext_choice_DIV_Int_choice_Id: "(P [+] DIV) |~| P =T[M,M] P" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule, simp add: in_traces) apply (force) apply (rule, simp add: in_traces) done (* =================================================== * | addition for CSP-Prover 5 | | (renaming) | * =================================================== *) lemma cspT_Ext_pre_choice_Renaming_fun_step: "(? x:X -> Pf x)[[<rel> f]] =T[M,M] (? y:(f ` X) -> (! x:{x:X. y = f x} .. (Pf x[[<rel> f]])))" apply (rule cspT_rw_left) apply (rule cspT_step) apply (rule cspT_decompo) apply (simp add: fun_to_rel_def) apply (force) apply (rule cspT_decompo) apply (simp add: fun_to_rel_def) apply (force) done (* Act prefix event *) lemma cspT_Act_prefix_Renaming_fun_step: "(a -> P)[[<rel> f]] =T[M,M] f(a) -> P[[<rel> f]]" apply (rule cspT_rw_left) apply (rule cspT_decompo) apply (simp) apply (rule cspT_step) apply (rule cspT_rw_left) apply (rule cspT_Ext_pre_choice_Renaming_fun_step) apply (rule cspT_rw_right) apply (rule cspT_step) apply (rule cspT_decompo) apply (simp) apply (simp) apply (subgoal_tac "{x. x = a & f a = f x}={a}") apply (simp) apply (rule cspT_rw_left) apply (rule cspT_Rep_int_choice_const_com_rule) apply (auto) apply (rule cspT_rw_left) apply (rule cspT_IF_split) apply (auto) done lemmas cspT_Renaming_fun_step = cspT_Ext_pre_choice_Renaming_fun_step cspT_Act_prefix_Renaming_fun_step (* -------- event -------- *) lemma cspT_Act_prefix_Renaming_event1_step_in: "(a -> P)[[a<-->b]] =T[M,M] b -> P[[a<-->b]]" apply (simp add: Renaming_event_def Renaming_event_fun_def) by (rule cspT_rw_left, rule cspT_Act_prefix_Renaming_fun_step, auto) lemma cspT_Act_prefix_Renaming_event2_step_in: "(a -> P)[[b<-->a]] =T[M,M] b -> P[[b<-->a]]" by (simp add: cspT_Act_prefix_Renaming_event1_step_in Renaming_commut) lemma cspT_Act_prefix_Renaming_event_step_notin: "[| a ~= c ; b ~= c |] ==> (c -> P)[[a<-->b]] =T[M,M] c -> P[[a<-->b]]" apply (simp add: Renaming_event_def Renaming_event_fun_def) by (rule cspT_rw_left, rule cspT_Act_prefix_Renaming_fun_step, auto) lemmas cspT_Act_prefix_Renaming_event_step = cspT_Act_prefix_Renaming_event1_step_in cspT_Act_prefix_Renaming_event2_step_in cspT_Act_prefix_Renaming_event_step_notin (* -------- channel -------- *) (* Act prefix channel *) lemma cspT_Act_prefix_Renaming_channel1_step_in: "[| inj f ; ALL x y. f x ~= g y |] ==> (f v -> P)[[f<==>g]] =T[M,M] g v -> P[[f<==>g]]" apply (simp add: Renaming_channel_fun_def Renaming_channel_def) by (rule cspT_rw_left, rule cspT_Act_prefix_Renaming_fun_step, auto) lemma cspT_Act_prefix_Renaming_channel2_step_in: "[| inj f ; ALL x y. f x ~= g y |] ==> (f v -> P)[[g<==>f]] =T[M,M] g v -> P[[g<==>f]]" by (simp add: Renaming_commut cspT_Act_prefix_Renaming_channel1_step_in) lemma cspT_Act_prefix_Renaming_channel_step_notin: "[| (ALL x. a ~= f x) | a ~: range f ; (ALL x. a ~= g x) | a ~: range g |] ==> (a -> P)[[f<==>g]] =T[M,M] a -> P[[f<==>g]]" apply (simp add: Renaming_channel_fun_def Renaming_channel_def) by (rule cspT_rw_left, rule cspT_Act_prefix_Renaming_fun_step, auto) lemmas cspT_Act_prefix_Renaming_channel_step = cspT_Act_prefix_Renaming_channel1_step_in cspT_Act_prefix_Renaming_channel2_step_in cspT_Act_prefix_Renaming_channel_step_notin lemmas cspT_Act_prefix_Renaming_step = cspT_Act_prefix_Renaming_fun_step cspT_Act_prefix_Renaming_event_step cspT_Act_prefix_Renaming_channel_step (* sending -- event -- *) lemma cspT_Send_prefix_Renaming_event1_step_in: "inj f ==> (f!v -> P)[[a<-->f v]] =T[M,M] a -> P[[a<-->f v]]" apply (simp add: csp_prefix_ss_def) apply (simp add: cspT_Act_prefix_Renaming_step) done lemma cspT_Send_prefix_Renaming_event2_step_in: "inj f ==> (f!v -> P)[[f v<-->a]] =T[M,M] a -> P[[f v<-->a]]" by (simp add: Renaming_commut cspT_Send_prefix_Renaming_event1_step_in) lemma cspT_Send_prefix_Renaming_event_step_notin: "[| a ~= f v | f v ~= a ; b ~= f v | f v ~= b |] ==> (f!v -> P)[[a<-->b]] =T[M,M] f!v -> P[[a<-->b]]" apply (simp add: csp_prefix_ss_def) apply (simp add: cspT_Act_prefix_Renaming_step) done lemmas cspT_Send_prefix_Renaming_event_step = cspT_Send_prefix_Renaming_event1_step_in cspT_Send_prefix_Renaming_event2_step_in cspT_Send_prefix_Renaming_event_step_notin (* sending -- channel -- *) lemma cspT_Send_prefix_Renaming_channel1_step_in: "[| inj f ; ALL x y. f x ~= g y |] ==> (f!v -> P)[[f<==>g]] =T[M,M] g!v -> P[[f<==>g]]" apply (simp add: csp_prefix_ss_def) apply (simp add: cspT_Act_prefix_Renaming_step) done lemma cspT_Send_prefix_Renaming_channel2_step_in: "[| inj f ; ALL x y. f x ~= g y |] ==> (f!v -> P)[[g<==>f]] =T[M,M] g!v -> P[[g<==>f]]" by (simp add: Renaming_commut cspT_Send_prefix_Renaming_channel1_step_in) lemma cspT_Send_prefix_Renaming_channel_step_notin: "[| (ALL x. h v ~= f x) | h v ~: range f ; (ALL x. h v ~= g x) | h v ~: range g |] ==> (h!v -> P)[[f<==>g]] =T[M,M] h!v -> P[[f<==>g]]" apply (simp add: csp_prefix_ss_def) apply (simp add: cspT_Act_prefix_Renaming_step) done lemmas cspT_Send_prefix_Renaming_channel_step = cspT_Send_prefix_Renaming_channel1_step_in cspT_Send_prefix_Renaming_channel2_step_in cspT_Send_prefix_Renaming_channel_step_notin lemmas cspT_Send_prefix_Renaming_step = cspT_Send_prefix_Renaming_event_step cspT_Send_prefix_Renaming_channel_step (* --- Rec_prefix_Renaming_even --- *) lemma cspT_Rec_prefix_Renaming_event1_step_in: "[| inj f ; v:X ; ALL x:X. a ~= f x |] ==> (f ? x:X -> Pf x)[[a<-->f v]] =T[M,M] (a -> (Pf v)[[a<-->f v]]) [+] f ? x:(X-{v}) -> (Pf x)[[a<-->f v]]" apply (simp add: csp_prefix_ss_def) apply (rule cspT_rw_left) apply (simp add: Renaming_event_def) apply (rule cspT_Renaming_fun_step) apply (fold Renaming_event_def) apply (rule cspT_rw_right) apply (rule cspT_decompo) apply (rule cspT_step) apply (rule cspT_reflex) apply (rule cspT_rw_right) apply (rule cspT_step) apply (rule cspT_decompo) apply (simp add: inj_on_def) apply (simp add: Image_def image_def) apply (simp add: Renaming_event_fun_def) apply (blast) apply (simp) apply (rule cspT_ref_eq) (* <= *) apply (case_tac "aa = a") (* aa = a *) apply (simp) apply (case_tac "a : f ` (X - {v})") apply (simp add: image_iff) (* a ~: f ` (X - {v})" *) apply (simp) apply (rule cspT_rw_right) apply (rule cspT_IF_split) apply (simp) apply (rule cspT_rw_right) apply (rule cspT_IF_split) apply (simp) apply (rule cspT_Rep_int_choice_left) apply (rule_tac x="f v" in exI) apply (simp add: Renaming_event_fun_def) (* aa ~= a *) apply (simp) apply (rule cspT_rw_right) apply (rule cspT_IF_split) apply (simp) apply (rule cspT_rw_right) apply (rule cspT_IF_split) apply (simp) apply (rule cspT_Rep_int_choice_left) apply (rule_tac x="aa" in exI) apply (simp) apply (simp add: image_iff) apply (erule bexE) apply (simp add: inj_on_def) apply (simp add: Renaming_event_fun_def) apply (force) (* => *) apply (simp add: Renaming_event_fun_def) apply (case_tac "aa = a") (* aa = a *) apply (simp) apply (case_tac "a : f ` (X - {v})") apply (simp add: image_iff) (* a ~: f ` (X - {v})" *) apply (simp) apply (rule cspT_rw_left) apply (rule cspT_IF_split) apply (simp) apply (rule cspT_rw_left) apply (rule cspT_IF_split) apply (simp) apply (rule cspT_Rep_int_choice_right) apply (force) (* aa ~= a *) apply (simp) apply (rule cspT_rw_left) apply (rule cspT_IF_split) apply (simp) apply (rule cspT_rw_left) apply (rule cspT_IF_split) apply (simp) apply (rule cspT_Rep_int_choice_right) apply (auto) done lemma cspT_Rec_prefix_Renaming_event2_step_in: "[| inj f ; v:X ; ALL x:X. a ~= f x |] ==> (f ? x:X -> Pf x)[[f v<-->a]] =T[M,M] (a -> (Pf v)[[f v<-->a]]) [+] f ? x:(X-{v}) -> (Pf x)[[f v<-->a]]" apply (simp add: Renaming_commut) apply (simp add: cspT_Rec_prefix_Renaming_event1_step_in) done lemma cspT_Rec_prefix_Renaming_event_step_notin: "[| (ALL x:X. a ~= f x) | a ~: f ` X ; (ALL x:X. b ~= f x) | b ~: f ` X |] ==> (f ? x:X -> Pf x)[[a<-->b]] =T[M,M] f ? x:X -> (Pf x)[[a<-->b]]" apply (simp add: csp_prefix_ss_def) apply (simp add: Renaming_event_def) apply (rule cspT_rw_left) apply (rule cspT_Renaming_fun_step) apply (fold Renaming_event_def) apply (rule cspT_decompo) apply (simp add: Image_def image_def) apply (simp add: Renaming_event_fun_def) apply (force) apply (subgoal_tac "{x : f ` X. aa = Renaming_event_fun a b x} = {aa}") apply (simp) apply (rule cspT_Rep_int_choice_singleton) apply (simp add: Renaming_event_fun_def) apply (force) done lemmas cspT_Rec_prefix_Renaming_event_step = cspT_Rec_prefix_Renaming_event1_step_in cspT_Rec_prefix_Renaming_event2_step_in cspT_Rec_prefix_Renaming_event_step_notin lemma cspT_Rec_prefix_Renaming_channel1_step_in: "[| inj f ; inj g ; ALL x y. f x ~= g y |] ==> (f ? x:X -> Pf x)[[f<==>g]] =T[M,M] g ? x:X -> (Pf x)[[f<==>g]]" apply (simp add: Renaming_channel_def) apply (simp add: csp_prefix_ss_def) apply (rule cspT_rw_left) apply (rule cspT_Renaming_fun_step) apply (rule cspT_decompo) apply (simp add: Renaming_channel_fun_simp) apply (simp add: image_iff) apply (erule bexE) apply (simp) apply (subgoal_tac "{xa. (EX x:X. xa = f x) & g x = Renaming_channel_fun f g xa} = {f x}") apply (simp) apply (rule cspT_rw_left) apply (rule cspT_Rep_int_choice_singleton) apply (simp) apply (auto) apply (simp add: Renaming_channel_fun_simp) apply (simp add: inj_on_def) apply (force) apply (simp add: Renaming_channel_fun_simp) done lemma cspT_Rec_prefix_Renaming_channel2_step_in: "[| inj f ; inj g ; ALL x y. f x ~= g y |] ==> (f ? x:X -> Pf x)[[g<==>f]] =T[M,M] g ? x:X -> (Pf x)[[g<==>f]]" apply (simp add: Renaming_commut) apply (simp add: cspT_Rec_prefix_Renaming_channel1_step_in) done lemma Renaming_channel_fun_h: "[| ALL x y. f x ~= g y ; ALL x y. f x ~= h y ; ALL x y. g x ~= h y |] ==> Renaming_channel_fun f g (h x) = h x" by (auto simp add: Renaming_channel_fun_def) lemma Renaming_channel_fun_map_h: "[| (ALL x y. f x ~= h y) ; (ALL x y. g x ~= h y) ; ALL x y. f x ~= g y |] ==> Renaming_channel_fun f g ` h ` X = h ` X" apply (simp add: image_def) apply (auto simp add: Renaming_channel_fun_h) done lemma cspT_Rec_prefix_Renaming_channel_step_notin: "[| inj h; (ALL x y. f x ~= h y) | range f Int range h = {} ; (ALL x y. g x ~= h y) | range g Int range h = {} ; ALL x y. f x ~= g y |] ==> (h ? x:X -> Pf x)[[f<==>g]] =T[M,M] h ? x:X -> (Pf x)[[f<==>g]]" apply (subgoal_tac "(ALL x y. f x ~= h y) & (ALL x y. g x ~= h y)") apply (simp add: Renaming_channel_def) apply (simp add: csp_prefix_ss_def) apply (rule cspT_rw_left) apply (rule cspT_Renaming_fun_step) apply (rule cspT_decompo) apply (simp add: Renaming_channel_fun_simp) apply (simp add: image_iff) apply (erule bexE) apply (simp) apply (subgoal_tac "{xa. (EX x:X. xa = h x) & h x = Renaming_channel_fun f g xa} = {h x}") apply (simp) apply (rule cspT_rw_left) apply (rule cspT_Rep_int_choice_singleton) apply (simp) apply (auto) apply (simp add: Renaming_channel_fun_simp) apply (simp add: Renaming_channel_fun_simp) apply (blast)+ done lemmas cspT_Rec_prefix_Renaming_channel_step = cspT_Rec_prefix_Renaming_channel1_step_in cspT_Rec_prefix_Renaming_channel2_step_in cspT_Rec_prefix_Renaming_channel_step_notin lemmas cspT_Rec_prefix_Renaming_step = cspT_Rec_prefix_Renaming_event_step cspT_Rec_prefix_Renaming_channel_step (* Nondet Sending *) lemma cspT_Nondet_send_prefix_Renaming_event1_step_in: "[| inj f ; v:X ; ALL x. a ~= f x |] ==> (f !? x:X -> Pf x)[[a<-->f v]] =T[M,M] (a -> (Pf v)[[a<-->f v]]) |~| f !? x:(X-{v}) -> (Pf x)[[a<-->f v]]" apply (simp add: csp_prefix_ss_def) apply (rule cspT_rw_left) apply (rule cspT_Dist) apply (subgoal_tac "(f ` X) = {f v} Un (f ` (X - {v}))") apply (simp del: Un_insert_left) apply (rule cspT_rw_left) apply (rule cspT_Rep_int_choice_com_union_Int) apply (rule cspT_decompo) (* 1 *) apply (rule cspT_rw_left) apply (rule cspT_Rep_int_choice_singleton) apply (simp add: cspT_Act_prefix_Renaming_event_step) (* 2 *) apply (rule cspT_decompo) apply (simp) apply (rule cspT_rw_left) apply (rule cspT_Act_prefix_Renaming_event_step) apply (auto) apply (simp add: inj_on_def) done lemma cspT_Nondet_send_prefix_Renaming_event2_step_in: "[| inj f ; v:X ; ALL x. a ~= f x |] ==> (f !? x:X -> Pf x)[[f v<-->a]] =T[M,M] (a -> (Pf v)[[f v<-->a]]) |~| f !? x:(X-{v}) -> (Pf x)[[f v<-->a]]" apply (simp add: Renaming_commut) apply (simp add: cspT_Nondet_send_prefix_Renaming_event1_step_in) done lemma cspT_Nondet_send_prefix_Renaming_event_step_notin: "[| (ALL x. a ~= f x) | a ~: range f ; (ALL x. b ~= f x) | b ~: range f |] ==> (f !? x:X -> Pf x)[[a<-->b]] =T[M,M] f !? x:X -> (Pf x)[[a<-->b]]" apply (simp add: csp_prefix_ss_def) apply (rule cspT_rw_left) apply (rule cspT_Dist) apply (rule cspT_decompo) apply (simp) apply (rule cspT_rw_left) apply (rule cspT_Act_prefix_Renaming_event_step) apply (auto) done lemmas cspT_Nondet_send_prefix_Renaming_event_step = cspT_Nondet_send_prefix_Renaming_event1_step_in cspT_Nondet_send_prefix_Renaming_event2_step_in cspT_Nondet_send_prefix_Renaming_event_step_notin lemma cspT_Nondet_send_prefix_Renaming_channel1_step_in: "[| inj f ; inj g ; ALL x y. f x ~= g y |] ==> (f !? x:X -> Pf x)[[f<==>g]] =T[M,M] g !? x:X -> (Pf x)[[f<==>g]]" apply (simp add: csp_prefix_ss_def) apply (rule cspT_rw_left) apply (rule cspT_Dist) apply (rule cspT_ref_eq) (* <= *) apply (rule cspT_Rep_int_choice_right) apply (simp add: image_iff) apply (erule bexE) apply (simp) apply (rule cspT_Rep_int_choice_left) apply (rule_tac x="f x" in exI) apply (simp) apply (rule cspT_rw_left) apply (rule cspT_Act_prefix_Renaming_channel_step) apply (simp_all) (* => *) apply (rule cspT_Rep_int_choice_right) apply (simp add: image_iff) apply (erule bexE) apply (simp) apply (rule cspT_Rep_int_choice_left) apply (rule_tac x="g x" in exI) apply (simp) apply (rule cspT_rw_right) apply (rule cspT_Act_prefix_Renaming_channel_step) apply (simp_all) done lemma cspT_Nondet_send_prefix_Renaming_channel2_step_in: "[| inj f ; inj g ; ALL x y. f x ~= g y |] ==> (f !? x:X -> Pf x)[[g<==>f]] =T[M,M] g !? x:X -> (Pf x)[[g<==>f]]" apply (simp add: Renaming_commut) apply (simp add: cspT_Nondet_send_prefix_Renaming_channel1_step_in) done lemma cspT_Nondet_send_prefix_Renaming_channel_step_notin: "[| (ALL x y. f x ~= h y) | (range f Int range h = {}) ; (ALL x y. g x ~= h y) | (range g Int range h = {}) |] ==> (h !? x:X -> Pf x)[[f<==>g]] =T[M,M] h !? x:X -> (Pf x)[[f<==>g]]" apply (simp add: csp_prefix_ss_def) apply (rule cspT_rw_left) apply (rule cspT_Dist) apply (rule cspT_decompo) apply (simp) apply (rule cspT_rw_left) apply (rule cspT_Act_prefix_Renaming_channel_step) apply (blast) apply (blast) apply (simp) done lemmas cspT_Nondet_send_prefix_Renaming_channel_step = cspT_Nondet_send_prefix_Renaming_channel1_step_in cspT_Nondet_send_prefix_Renaming_channel2_step_in cspT_Nondet_send_prefix_Renaming_channel_step_notin lemmas cspT_Nondet_send_prefix_Renaming_step = cspT_Nondet_send_prefix_Renaming_event_step cspT_Nondet_send_prefix_Renaming_channel_step (* ---------------- * in or notin * ---------------- *) lemmas cspT_prefix_Renaming_in_step = cspT_Act_prefix_Renaming_event1_step_in cspT_Act_prefix_Renaming_event2_step_in cspT_Act_prefix_Renaming_channel1_step_in cspT_Act_prefix_Renaming_channel2_step_in cspT_Send_prefix_Renaming_event1_step_in cspT_Send_prefix_Renaming_event2_step_in cspT_Send_prefix_Renaming_channel1_step_in cspT_Send_prefix_Renaming_channel2_step_in cspT_Rec_prefix_Renaming_event1_step_in cspT_Rec_prefix_Renaming_event2_step_in cspT_Rec_prefix_Renaming_channel1_step_in cspT_Rec_prefix_Renaming_channel2_step_in cspT_Nondet_send_prefix_Renaming_event1_step_in cspT_Nondet_send_prefix_Renaming_event2_step_in cspT_Nondet_send_prefix_Renaming_channel1_step_in cspT_Nondet_send_prefix_Renaming_channel2_step_in lemmas cspT_prefix_Renaming_notin_step = cspT_Act_prefix_Renaming_event_step_notin cspT_Act_prefix_Renaming_channel_step_notin cspT_Send_prefix_Renaming_event_step_notin cspT_Send_prefix_Renaming_channel_step_notin cspT_Rec_prefix_Renaming_event_step_notin cspT_Rec_prefix_Renaming_channel_step_notin cspT_Nondet_send_prefix_Renaming_event_step_notin cspT_Nondet_send_prefix_Renaming_channel_step_notin (* ----------------------------------------------------------- *) end