Up to index of Isabelle/HOL/CSP/CSP_T
theory CSP_T_law_basic(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | December 2004 | | June 2005 (modified) | | September 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | October 2005 (modified) | | April 2006 (modified) | | March 2007 (modified) | | | | CSP-Prover on Isabelle2009 | | June 2009 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_T_law_basic imports CSP_T_law_decompo begin (***************************************************************** 1. Commutativity 2. Associativity 3. Idempotence 4. Left Commutativity 5. IF *****************************************************************) (********************************************************* top *********************************************************) lemma cspT_STOP_top: "P <=T STOP" apply (simp add: cspT_semantics) apply (simp add: traces_def) done lemma cspT_DIV_top: "P <=T DIV" apply (simp add: cspT_semantics) apply (simp add: traces_def) done lemmas cspT_top = cspT_STOP_top cspT_DIV_top (********************************************************* IF bool *********************************************************) (*------------------* | csp law | *------------------*) lemma cspT_IF_split: "IF b THEN P ELSE Q =T[M,M] (if b then P else Q)" apply (simp add: cspT_semantics) apply (simp add: traces_def) done lemma cspT_IF_True: "IF True THEN P ELSE Q =T[M,M] P" apply (rule cspT_rw_left) apply (rule cspT_IF_split) by (simp) lemma cspT_IF_False: "IF False THEN P ELSE Q =T[M,M] Q" apply (rule cspT_rw_left) apply (rule cspT_IF_split) by (simp) lemmas cspT_IF = cspT_IF_True cspT_IF_False (*-----------------------------------* | Idempotence | *-----------------------------------*) lemma cspT_Ext_choice_idem: "P [+] P =T[M,M] P" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule, simp add: in_traces)+ done lemma cspT_Int_choice_idem: "P |~| P =T[M,M] P" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule, simp add: in_traces)+ done (*------------------* | csp law | *------------------*) lemmas cspT_idem = cspT_Ext_choice_idem cspT_Int_choice_idem (*-----------------------------------* | Commutativity | *-----------------------------------*) (********************************************************* Ext choice *********************************************************) lemma cspT_Ext_choice_commut: "P [+] Q =T[M,M] Q [+] P" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule, simp add: in_traces, fast)+ done (********************************************************* Int choice *********************************************************) lemma cspT_Int_choice_commut: "P |~| Q =T[M,M] Q |~| P" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule, simp add: in_traces, fast)+ done (********************************************************* Parallel *********************************************************) lemma cspT_Parallel_commut: "P |[X]| Q =T[M,M] Q |[X]| P" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule, simp add: in_traces) apply (elim conjE exE) apply (rule_tac x="ta" in exI) apply (rule_tac x="s" in exI) apply (simp add: par_tr_sym) apply (rule, simp add: in_traces) apply (elim conjE exE) apply (rule_tac x="ta" in exI) apply (rule_tac x="s" in exI) apply (simp add: par_tr_sym) done (*------------------* | csp law | *------------------*) lemmas cspT_commut = cspT_Ext_choice_commut cspT_Int_choice_commut cspT_Parallel_commut (*-----------------------------------* | Associativity | *-----------------------------------*) lemma cspT_Ext_choice_assoc: "P [+] (Q [+] R) =T[M,M] (P [+] Q) [+] R" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule, simp add: in_traces)+ done lemma cspT_Ext_choice_assoc_sym: "(P [+] Q) [+] R =T[M,M] P [+] (Q [+] R)" apply (rule cspT_sym) apply (simp add: cspT_Ext_choice_assoc) done lemma cspT_Int_choice_assoc: "P |~| (Q |~| R) =T[M,M] (P |~| Q) |~| R" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule, simp add: in_traces)+ done lemma cspT_Int_choice_assoc_sym: "(P |~| Q) |~| R =T[M,M] P |~| (Q |~| R)" apply (rule cspT_sym) apply (simp add: cspT_Int_choice_assoc) done (*------------------* | csp law | *------------------*) lemmas cspT_assoc = cspT_Ext_choice_assoc cspT_Int_choice_assoc lemmas cspT_assoc_sym = cspT_Ext_choice_assoc_sym cspT_Int_choice_assoc_sym (*-----------------------------------* | Left Commutativity | *-----------------------------------*) lemma cspT_Ext_choice_left_commut: "P [+] (Q [+] R) =T[M,M] Q [+] (P [+] R)" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule, simp add: in_traces)+ done lemma cspT_Int_choice_left_commut: "P |~| (Q |~| R) =T[M,M] Q |~| (P |~| R)" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule, simp add: in_traces)+ done lemmas cspT_left_commut = cspT_Ext_choice_left_commut cspT_Int_choice_left_commut (*-----------------------------------* | Unit | *-----------------------------------*) (*** STOP [+] P ***) lemma cspT_Ext_choice_unit_l: "STOP [+] P =T[M,M] P" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule, simp add: in_traces) apply (force) apply (rule, simp add: in_traces) done lemma cspT_Ext_choice_unit_r: "P [+] STOP =T[M,M] P" apply (rule cspT_rw_left) apply (rule cspT_Ext_choice_commut) apply (simp add: cspT_Ext_choice_unit_l) done lemmas cspT_Ext_choice_unit = cspT_Ext_choice_unit_l cspT_Ext_choice_unit_r lemma cspT_Int_choice_unit_l: "DIV |~| P =T[M,M] P" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule, simp add: in_traces) apply (force) apply (rule, simp add: in_traces) done lemma cspT_Int_choice_unit_r: "P |~| DIV =T[M,M] P" apply (rule cspT_rw_left) apply (rule cspT_Int_choice_commut) apply (simp add: cspT_Int_choice_unit_l) done lemmas cspT_Int_choice_unit = cspT_Int_choice_unit_l cspT_Int_choice_unit_r lemmas cspT_unit = cspT_Ext_choice_unit cspT_Int_choice_unit (*-----------------------------------* | !-empty | *-----------------------------------*) lemma cspT_Rep_int_choice_sum_DIV: "sumset C = {} ==> !! : C .. Pf =T[M1,M2] DIV" apply (simp add: cspT_semantics) apply (simp add: traces_def) done lemma cspT_Rep_int_choice_nat_DIV: "!nat :{} .. Pf =T[M1,M2] DIV" by (simp add: Rep_int_choice_ss_def cspT_Rep_int_choice_sum_DIV) lemma cspT_Rep_int_choice_set_DIV: "!set :{} .. Pf =T[M1,M2] DIV" by (simp add: Rep_int_choice_ss_def cspT_Rep_int_choice_sum_DIV) lemma cspT_Rep_int_choice_com_DIV: "! :{} .. Pf =T[M1,M2] DIV" apply (simp add: Rep_int_choice_com_def) apply (simp add: cspT_Rep_int_choice_set_DIV) done lemma cspT_Rep_int_choice_f_DIV: "inj f ==> !<f> :{} .. Pf =T[M1,M2] DIV" apply (simp add: cspT_semantics) apply (simp add: traces_def) done lemmas cspT_Rep_int_choice_DIV = cspT_Rep_int_choice_sum_DIV cspT_Rep_int_choice_nat_DIV cspT_Rep_int_choice_set_DIV cspT_Rep_int_choice_com_DIV cspT_Rep_int_choice_f_DIV lemmas cspT_Rep_int_choice_DIV_sym = cspT_Rep_int_choice_DIV[THEN cspT_sym] lemmas cspT_Rep_int_choice_empty = cspT_Rep_int_choice_DIV (*-----------------------------------* | !-unit | *-----------------------------------*) lemma cspT_Rep_int_choice_sum_unit: "sumset C ~= {} ==> !! c:C .. P =T[M,M] P" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule) apply (simp only: in_traces) apply (force) apply (rule) apply (simp only: in_traces) apply (force) done lemma cspT_Rep_int_choice_nat_unit: "N ~= {} ==> !nat n:N .. P =T[M,M] P" by (simp add: Rep_int_choice_ss_def cspT_Rep_int_choice_sum_unit) lemma cspT_Rep_int_choice_set_unit: "Xs ~= {} ==> !set X:Xs .. P =T[M,M] P" by (simp add: Rep_int_choice_ss_def cspT_Rep_int_choice_sum_unit) lemma cspT_Rep_int_choice_com_unit: "X ~= {} ==> ! a:X .. P =T[M,M] P" by (simp add: Rep_int_choice_com_def cspT_Rep_int_choice_set_unit) lemma cspT_Rep_int_choice_f_unit: "X ~= {} ==> !<f> a:X .. P =T[M,M] P" apply (simp add: Rep_int_choice_f_def) apply (simp add: cspT_Rep_int_choice_com_unit) done lemmas cspT_Rep_int_choice_unit = cspT_Rep_int_choice_sum_unit cspT_Rep_int_choice_nat_unit cspT_Rep_int_choice_set_unit cspT_Rep_int_choice_com_unit cspT_Rep_int_choice_f_unit (*-----------------------------------* | !-const | *-----------------------------------*) (* const *) lemma cspT_Rep_int_choice_sum_const: "[| sumset C ~= {} ; ALL c: sumset C. Pf c = P |] ==> !! :C .. Pf =T[M,M] P" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule) apply (simp only: in_traces) apply (force) apply (rule) apply (simp only: in_traces) apply (force) done lemma cspT_Rep_int_choice_nat_const: "[| N ~= {} ; ALL n:N. Pf n = P |] ==> !nat :N .. Pf =T[M,M] P" apply (simp add: Rep_int_choice_ss_def) apply (rule cspT_Rep_int_choice_sum_const) by (auto) lemma cspT_Rep_int_choice_set_const: "[| Xs ~= {} ; ALL X:Xs. Pf X = P |] ==> !set :Xs .. Pf =T[M,M] P" apply (simp add: Rep_int_choice_ss_def) apply (rule cspT_Rep_int_choice_sum_const) by (auto) lemma cspT_Rep_int_choice_com_const: "[| X ~= {} ; ALL a:X. Pf a = P |] ==> ! :X .. Pf =T[M,M] P" apply (simp add: Rep_int_choice_com_def) apply (rule cspT_Rep_int_choice_set_const) by (auto) lemma cspT_Rep_int_choice_f_const: "[| inj f ; X ~= {} ; ALL a:X. Pf a = P |] ==> !<f> :X .. Pf =T[M,M] P" apply (simp add: Rep_int_choice_f_def) apply (rule cspT_Rep_int_choice_com_const) by (auto) lemmas cspT_Rep_int_choice_const = cspT_Rep_int_choice_sum_const cspT_Rep_int_choice_nat_const cspT_Rep_int_choice_set_const cspT_Rep_int_choice_com_const cspT_Rep_int_choice_f_const (*-----------------------------------* | |~|-!-union | *-----------------------------------*) lemma cspT_Int_Rep_int_choice_sum_union: "C1 =type= C2 ==> (!! :C1 .. P1f) |~| (!! :C2 .. P2f) =T[M,M] (!! c:(C1 Uns C2) .. IF (c : sumset C1 & c : sumset C2) THEN (P1f c |~| P2f c) ELSE IF (c : sumset C1) THEN P1f c ELSE P2f c)" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule) apply (simp add: in_traces) apply (elim conjE bexE disjE) apply (simp_all) apply (rule disjI2) apply (rule_tac x="c" in bexI) apply (simp add: in_traces) apply (simp) apply (rule disjI2) apply (rule_tac x="c" in bexI) apply (simp add: in_traces) apply (simp) (* => *) apply (rule) apply (simp add: in_traces) apply (elim conjE exE bexE disjE) apply (simp_all) apply (elim conjE exE bexE disjE) apply (simp_all) apply (case_tac "c : sumset C2") apply (simp add: in_traces) apply (force) apply (simp add: in_traces) apply (force) apply (case_tac "c : sumset C1") apply (simp add: in_traces) apply (force) apply (simp add: in_traces) apply (force) done lemma cspT_Int_Rep_int_choice_nat_union: "(!nat :N1 .. P1f) |~| (!nat :N2 .. P2f) =T[M,M] (!nat n:(N1 Un N2) .. IF (n : N1 & n : N2) THEN (P1f n |~| P2f n) ELSE IF (n : N1) THEN P1f n ELSE P2f n)" apply (simp add: Rep_int_choice_ss_def) apply (rule cspT_rw_left) apply (rule cspT_Int_Rep_int_choice_sum_union) apply (simp_all) apply (rule cspT_decompo) by (auto) lemma cspT_Int_Rep_int_choice_set_union: "(!set :Xs1 .. P1f) |~| (!set :Xs2 .. P2f) =T[M,M] (!set X:(Xs1 Un Xs2) .. IF (X : Xs1 & X : Xs2) THEN (P1f X |~| P2f X) ELSE IF (X : Xs1) THEN P1f X ELSE P2f X)" apply (simp add: Rep_int_choice_ss_def) apply (rule cspT_rw_left) apply (rule cspT_Int_Rep_int_choice_sum_union) apply (simp_all) apply (rule cspT_decompo) by (auto) lemma cspT_Int_Rep_int_choice_com_union: "(! :X1 .. P1f) |~| (! :X2 .. P2f) =T[M,M] (! a:(X1 Un X2) .. IF (a : X1 & a : X2) THEN (P1f a |~| P2f a) ELSE IF (a : X1) THEN P1f a ELSE P2f a)" apply (simp add: Rep_int_choice_com_def) apply (rule cspT_rw_left) apply (rule cspT_Int_Rep_int_choice_set_union) apply (rule cspT_decompo) by (auto) lemma cspT_Int_Rep_int_choice_f_union: "inj f ==> (!<f> :X1 .. P1f) |~| (!<f> :X2 .. P2f) =T[M,M] (!<f> a:(X1 Un X2) .. IF (a : X1 & a : X2) THEN (P1f a |~| P2f a) ELSE IF (a : X1) THEN P1f a ELSE P2f a)" apply (simp add: Rep_int_choice_f_def) apply (rule cspT_rw_left) apply (rule cspT_Int_Rep_int_choice_com_union) apply (rule cspT_decompo) apply (auto simp add: inj_image_mem_iff) done lemmas cspT_Int_Rep_int_choice_union = cspT_Int_Rep_int_choice_sum_union cspT_Int_Rep_int_choice_nat_union cspT_Int_Rep_int_choice_set_union cspT_Int_Rep_int_choice_com_union cspT_Int_Rep_int_choice_f_union (*-----------------------------------* | !!-union-|~| | *-----------------------------------*) lemma cspT_Rep_int_choice_sum_union_Int: "C1 =type= C2 ==> (!! :(C1 Uns C2) .. Pf) =T[M,M] (!! c:C1 .. Pf c) |~| (!! c:C2 .. Pf c)" apply (rule cspT_rw_right) apply (rule cspT_Int_Rep_int_choice_union) apply (simp) apply (rule cspT_decompo) apply (simp) apply (rule cspT_rw_right) apply (rule cspT_IF_split) apply (simp) apply (simp add: cspT_idem[THEN cspT_sym]) apply (intro impI) apply (rule cspT_rw_right) apply (rule cspT_IF_split) apply (simp) done lemma cspT_Rep_int_choice_nat_union_Int: "(!nat :(N1 Un N2) .. Pf) =T[M,M] (!nat n:N1 .. Pf n) |~| (!nat n:N2 .. Pf n)" apply (simp add: Rep_int_choice_ss_def) apply (rule cspT_rw_right) apply (rule cspT_Rep_int_choice_sum_union_Int[THEN cspT_sym]) apply (simp_all) done lemma cspT_Rep_int_choice_set_union_Int: "(!set :(Xs1 Un Xs2) .. Pf) =T[M,M] (!set X:Xs1 .. Pf X) |~| (!set X:Xs2 .. Pf X)" apply (simp add: Rep_int_choice_ss_def) apply (rule cspT_rw_right) apply (rule cspT_Rep_int_choice_sum_union_Int[THEN cspT_sym]) apply (simp_all) done lemma cspT_Rep_int_choice_com_union_Int: "(! :(X1 Un X2) .. Pf) =T[M,M] (! a:X1 .. Pf a) |~| (! a:X2 .. Pf a)" apply (simp add: Rep_int_choice_com_def) apply (rule cspT_rw_right) apply (rule cspT_Rep_int_choice_set_union_Int[THEN cspT_sym]) apply (rule cspT_decompo) apply (auto) done lemma cspT_Rep_int_choice_f_union_Int: "inj f ==> (!<f> :(X1 Un X2) .. Pf) =T[M,M] (!<f> a:X1 .. Pf a) |~| (!<f> a:X2 .. Pf a)" apply (simp add: Rep_int_choice_f_def) apply (rule cspT_rw_right) apply (rule cspT_Rep_int_choice_com_union_Int[THEN cspT_sym]) apply (rule cspT_decompo) apply (auto) done lemmas cspT_Rep_int_choice_union_Int = cspT_Rep_int_choice_sum_union_Int cspT_Rep_int_choice_nat_union_Int cspT_Rep_int_choice_set_union_Int cspT_Rep_int_choice_com_union_Int cspT_Rep_int_choice_f_union_Int (********************************************************* Depth_rest *********************************************************) (*------------------* | csp law | *------------------*) lemma cspT_Depth_rest_Zero: "P |. 0 =T[M1,M2] DIV" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule) apply (simp add: in_traces) apply (simp add: lengtht_zero) (* <= *) apply (rule) apply (simp add: in_traces) done lemma cspT_Depth_rest_min: "P |. n |. m =T[M,M] P |. min n m" apply (simp add: cspT_semantics) apply (simp add: traces.simps) apply (simp add: min_rs) done lemma cspT_Depth_rest_congE: "[| P =T[M1,M2] Q ; ALL m. P |. m =T[M1,M2] Q |. m ==> S |] ==> S" apply (simp add: cspT_semantics) apply (simp add: traces.simps) done (*------------------* | !nat-rest | *------------------*) lemma cspT_nat_Depth_rest_UNIV: "P =T[M,M] !nat n .. (P |. n)" apply (simp add: cspT_eqT_semantics) apply (rule order_antisym) (* <= *) apply (rule) apply (simp add: in_traces) apply (rule disjI2) apply (rule_tac x="lengtht t" in exI) apply (simp) (* => *) apply (rule) apply (simp add: in_traces) apply (erule disjE) apply (simp_all) done lemma cspT_nat_Depth_rest_lengthset: "P =T[M,M] !nat n:(lengthset P M) .. (P |. n)" apply (simp add: cspT_eqT_semantics) apply (rule order_antisym) (* <= *) apply (rule) apply (simp add: in_traces) apply (rule disjI2) apply (rule_tac x="lengtht t" in bexI) apply (simp) apply (simp add: lengthset_def) apply (rule_tac x="t" in exI) apply (simp) (* => *) apply (rule) apply (simp add: in_traces) apply (erule disjE) apply (simp_all) done lemmas cspT_nat_Depth_rest = cspT_nat_Depth_rest_UNIV cspT_nat_Depth_rest_lengthset (*------------------* | ?-partial | *------------------*) lemma cspT_Ext_pre_choice_partial: "? :X -> Pf =T[M,M] ? x:X -> (IF (x:X) THEN Pf x ELSE DIV)" apply (rule cspT_decompo) apply (simp_all) apply (rule cspT_rw_right) apply (rule cspT_IF) apply (simp) done (*------------------* | !!-partial | *------------------*) lemma cspT_Rep_int_choice_sum_partial: "!! :C .. Pf =T[M,M] !! c:C .. (IF (c: sumset C) THEN Pf c ELSE DIV)" apply (rule cspT_decompo) apply (simp_all) apply (rule cspT_rw_right) apply (rule cspT_IF) apply (simp) done lemma cspT_Rep_int_choice_nat_partial: "!nat :N .. Pf =T[M,M] !nat n:N .. (IF (n:N) THEN Pf n ELSE DIV)" apply (rule cspT_decompo) apply (simp_all) apply (rule cspT_rw_right) apply (rule cspT_IF) apply (simp) done lemma cspT_Rep_int_choice_set_partial: "!set :Xs .. Pf =T[M,M] !set X:Xs .. (IF (X:Xs) THEN Pf X ELSE DIV)" apply (rule cspT_decompo) apply (simp_all) apply (rule cspT_rw_right) apply (rule cspT_IF) apply (simp) done lemma cspT_Rep_int_choice_com_partial: "! :X .. Pf =T[M,M] ! a:X .. (IF (a:X) THEN Pf a ELSE DIV)" apply (rule cspT_decompo) apply (simp_all) apply (rule cspT_rw_right) apply (rule cspT_IF) apply (simp) done lemma cspT_Rep_int_choice_f_partial: "inj f ==> !<f> :X .. Pf =T[M,M] !<f> a:X .. (IF (a:X) THEN Pf a ELSE DIV)" apply (rule cspT_decompo) apply (simp_all) apply (rule cspT_rw_right) apply (rule cspT_IF) apply (simp) done lemmas cspT_Rep_int_choice_partial = cspT_Rep_int_choice_sum_partial cspT_Rep_int_choice_nat_partial cspT_Rep_int_choice_set_partial cspT_Rep_int_choice_com_partial cspT_Rep_int_choice_f_partial (********************************************************* Rep_int_choice *********************************************************) lemma cspT_Rep_int_choice_sum_set: "!! : type1 Xs .. Pf =T[M,M] !set X: Xs .. Pf (type1 X)" apply (simp add: _Rep_int_choice_ss_def) apply (rule cspT_decompo) apply (auto simp add: image_def) done lemma cspT_Rep_int_choice_sum_nat: "!! : type2 N .. Pf =T[M,M] !nat n: N .. Pf (type2 n)" apply (simp add: _Rep_int_choice_ss_def) apply (rule cspT_decompo) apply (auto simp add: image_def) done lemma cspT_Rep_int_choice_sum: "!! :C .. Pf =T[M,M] IF type1? C THEN (!set X: open1 C .. Pf (type1 X)) ELSE (!nat n: open2 C .. Pf (type2 n))" apply (insert type1_or_type2) apply (drule_tac x="C" in spec) apply (elim disjE exE) apply (simp_all) apply (rule cspT_rw_right) apply (rule cspT_IF) apply (simp add: cspT_Rep_int_choice_sum_set) apply (rule cspT_rw_right) apply (rule cspT_IF) apply (simp add: cspT_Rep_int_choice_sum_nat) done (* =================================================== * | addition for CSP-Prover 5 | * =================================================== *) (* --------------------------------------------------- * unfold only the first Sending and Receiving * --------------------------------------------------- *) lemma cspT_first_Send_prefix: "a ! v -> P =T[M,M] a v -> P" by (simp add: csp_prefix_ss_def) lemma cspT_first_Rec_prefix: "a ? x:X -> Pf x =T[M,M] ? : (a ` X) -> (%x. (Pf ((inv a) x)))" by (simp add: csp_prefix_ss_def) lemma cspT_first_Int_pre_choice: "! :X -> Pf =T[M,M] ! :X .. (%x. x -> (Pf x))" by (simp add: csp_prefix_ss_def) lemma cspT_first_Nondet_send_prefix: "a !? x:X -> Pf x =T[M,M] ! :(a ` X) -> (%x. (Pf ((inv a) x)))" by (simp add: csp_prefix_ss_def) lemmas cspT_first_prefix_ss = cspT_first_Send_prefix cspT_first_Rec_prefix cspT_first_Int_pre_choice cspT_first_Nondet_send_prefix (* --------------------------------------------------- * Associativity of Sequential composition * --------------------------------------------------- *) lemma cspT_Seq_compo_assoc: "(P ;; Q) ;; R =T[M,M] P ;; (Q ;; R)" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule) apply (simp add: in_traces) apply (elim disjE conjE exE) apply (force) apply (rule disjI2) apply (rule_tac x="sa" in exI) apply (insert noTick_or_last_Tick2) apply (drule_tac x="ta" in spec) apply (elim disjE conjE exE) apply (rule_tac x="ta" in exI) apply (simp) apply (rule disjI1) apply (rule_tac x="ta" in exI) apply (simp) apply (simp) apply (rule_tac x="tb" in exI) apply (simp) apply (rule disjI2) apply (rule_tac x="tb" in exI) apply (rule_tac x="<>" in exI) apply (simp) apply (subgoal_tac "noTick (s ^^ <Tick>)") apply (rotate_tac 3) apply (erule rem_asmE) apply (simp) apply (simp) apply (rule disjI2) apply (simp add: appt_decompo) apply (elim disjE conjE exE) apply (simp) apply (elim disjE conjE exE) apply (simp) apply (simp) apply (rule_tac x="sa" in exI) apply (rule_tac x="ta" in exI) apply (simp) apply (rule disjI2) apply (rule_tac x="<>" in exI) apply (rule_tac x="ta" in exI) apply (simp) apply (simp) apply (rotate_tac -2) apply (drule sym) apply (simp) apply (rotate_tac -2) apply (drule sym) apply (simp) apply (simp) apply (rule_tac x="sa" in exI) apply (rule_tac x="u ^^ ta" in exI) apply (simp add: appt_assoc) apply (rule disjI2) apply (rule_tac x="u" in exI) apply (rule_tac x="ta" in exI) apply (simp) (* => *) apply (rule) apply (simp add: in_traces) apply (elim disjE conjE exE) apply (rule disjI1) apply (rule_tac x="t" in exI) apply (simp) apply (rule disjI1) apply (rule_tac x="s" in exI) apply (simp) apply (rule disjI1) apply (rule_tac x="s ^^ ta" in exI) apply (simp) apply (rule disjI2) apply (rule_tac x="s" in exI) apply (rule_tac x="ta" in exI) apply (simp) apply (rule memT_prefix_closed) apply (simp) apply (simp) apply (rule disjI2) apply (rule_tac x="s ^^ sa" in exI) apply (rule_tac x="tb" in exI) apply (simp add: appt_assoc) apply (rule disjI2) apply (rule_tac x="s" in exI) apply (rule_tac x="sa ^^ <Tick>" in exI) apply (simp) done (* ---------------------------------------------- * decompose right internal choice * ---------------------------------------------- *) lemma cspT_Int_choice_eq_right: "[| P =T[M1,M2] Q1 ; P =T[M1,M2] Q2 |] ==> P =T[M1,M2] Q1 |~| Q2" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule) apply (simp add: in_traces) apply (rule) apply (simp add: in_traces) done (* -------- right -------- *) lemma cspT_Rep_int_choice_sum_eq_right_ALL: "[| sumset C ~= {} ; ALL c : (sumset C). P =T[M1,M2] Qf c |] ==> P =T[M1,M2] !! :C .. Qf" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule) apply (simp add: in_traces) apply (subgoal_tac "EX c. c: sumset C") apply (erule exE) apply (drule_tac x="c" in bspec, simp) apply (erule order_antisymE) apply (erule subdomTE_ALL) apply (drule_tac x="t" in spec) apply (fast) apply (fast) apply (rule) apply (simp add: in_traces) apply (erule disjE) apply (simp) apply (erule bexE) apply (drule_tac x="c" in bspec, simp) apply (erule order_antisymE) apply (rotate_tac -1) apply (erule subdomTE_ALL) apply (drule_tac x="t" in spec) apply (simp) done lemma cspT_Rep_int_choice_sum_eq_right: "[| sumset C ~= {} ; !! c. c : (sumset C) ==> P =T[M1,M2] Qf c |] ==> P =T[M1,M2] !! :C .. Qf" by (simp add: cspT_Rep_int_choice_sum_eq_right_ALL) (* nat *) lemma cspT_Rep_int_choice_nat_eq_right: "[| N ~= {} ; !! n. n : N ==> P =T[M1,M2] Qf n |] ==> P =T[M1,M2] !nat :N .. Qf" apply (simp add: Rep_int_choice_ss_def) by (rule cspT_Rep_int_choice_sum_eq_right, auto) lemma cspT_Rep_int_choice_set_eq_right: "[| Xs ~= {} ; !! X. X : Xs ==> P =T[M1,M2] Qf X |] ==> P =T[M1,M2] !set :Xs .. Qf" apply (simp add: Rep_int_choice_ss_def) by (rule cspT_Rep_int_choice_sum_eq_right, auto) lemma cspT_Rep_int_choice_com_eq_right: "[| X ~= {} ; !! a. a:X ==> P =T[M1,M2] Qf a |] ==> P =T[M1,M2] ! :X .. Qf" apply (simp add: Rep_int_choice_ss_def) by (rule cspT_Rep_int_choice_sum_eq_right, auto) lemma cspT_Rep_int_choice_f_eq_right: "[| inj f ; X ~= {} ; !! a. a:X ==> P =T[M1,M2] Qf a |] ==> P =T[M1,M2] !<f> :X .. Qf" apply (simp add: Rep_int_choice_ss_def) by (rule cspT_Rep_int_choice_sum_eq_right, auto) lemmas cspT_int_eq_right = cspT_Rep_int_choice_sum_eq_right cspT_Rep_int_choice_nat_eq_right cspT_Rep_int_choice_set_eq_right cspT_Rep_int_choice_com_eq_right cspT_Rep_int_choice_f_eq_right cspT_Int_choice_eq_right (* -------- left -------- *) lemma cspT_Int_choice_eq_left: "[| Q1 =T[M1,M2] P ; Q2 =T[M1,M2] P |] ==> Q1 |~| Q2 =T[M1,M2] P" apply (rule cspT_sym) apply (rule cspT_int_eq_right) apply (rule cspT_sym, simp) apply (rule cspT_sym, simp) done lemma cspT_Rep_int_choice_sum_eq_left: "[| sumset C ~= {} ; !! c. c : (sumset C) ==> Qf c =T[M1,M2] P |] ==> !! :C .. Qf =T[M1,M2] P" apply (rule cspT_sym, rule cspT_int_eq_right, simp) apply (rule cspT_sym, simp) done lemma cspT_Rep_int_choice_nat_eq_left: "[| N ~= {} ; !! n. n : N ==> Qf n =T[M1,M2] P |] ==> !nat :N .. Qf =T[M1,M2] P" apply (simp add: Rep_int_choice_ss_def) by (rule cspT_Rep_int_choice_sum_eq_left, auto) lemma cspT_Rep_int_choice_set_eq_left: "[| Xs ~= {} ; !! X. X : Xs ==> Qf X =T[M1,M2] P |] ==> !set :Xs .. Qf =T[M1,M2] P" apply (simp add: Rep_int_choice_ss_def) by (rule cspT_Rep_int_choice_sum_eq_left, auto) lemma cspT_Rep_int_choice_com_eq_left: "[| X ~= {} ; !! a. a:X ==> Qf a =T[M1,M2] P |] ==> ! :X .. Qf =T[M1,M2] P" apply (simp add: Rep_int_choice_ss_def) by (rule cspT_Rep_int_choice_sum_eq_left, auto) lemma cspT_Rep_int_choice_f_eq_left: "[| inj f ; X ~= {} ; !! a. a:X ==> Qf a =T[M1,M2] P |] ==> !<f> :X .. Qf =T[M1,M2] P" apply (simp add: Rep_int_choice_ss_def) by (rule cspT_Rep_int_choice_sum_eq_left, auto) lemmas cspT_int_eq_left = cspT_Rep_int_choice_sum_eq_left cspT_Rep_int_choice_nat_eq_left cspT_Rep_int_choice_set_eq_left cspT_Rep_int_choice_com_eq_left cspT_Rep_int_choice_f_eq_left cspT_Int_choice_eq_left (* ---------------------------------------------- * replicated internal choice -> binary ... * ---------------------------------------------- *) (* ---- Un ---- *) (* nat *) lemma cspT_Rep_int_choice_nat_Un: "!nat n:(N1 Un N2) .. Pf n =T[M,M] !nat n:N1 .. Pf n |~| !nat n:N2 .. Pf n" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (auto simp add: in_traces) done (* set *) lemma cspT_Rep_int_choice_set_Un: "!set X:(Xs1 Un Xs2) .. Pf X =T[M,M] !set X:Xs2 .. Pf X |~| !set X:Xs1 .. Pf X" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (auto simp add: in_traces) done (* com *) lemma cspT_Rep_int_choice_com_Un: "! x:(X1 Un X2) .. Pf x =T[M,M] ! x:X1 .. Pf x |~| ! x:X2 .. Pf x" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (auto simp add: in_traces) done (* f *) lemma cspT_Rep_int_choice_f_Un: "inj f ==> !<f> x:(X1 Un X2) .. Pf x =T[M,M] !<f> x:X1 .. Pf x |~| !<f> x:X2 .. Pf x" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (auto simp add: in_traces) done lemmas cspT_Rep_int_choice_Un = cspT_Rep_int_choice_nat_Un cspT_Rep_int_choice_set_Un cspT_Rep_int_choice_com_Un cspT_Rep_int_choice_f_Un (* ---- insert ---- *) (* nat *) lemma cspT_Rep_int_choice_nat_insert: "!nat n:(insert m N) .. Pf n =T[M,M] Pf m |~| !nat n:N .. Pf n" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (auto simp add: in_traces) done (* set *) lemma cspT_Rep_int_choice_set_insert: "!set X:(insert Y Xs) .. Pf X =T[M,M] Pf Y |~| !set X:Xs .. Pf X" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (auto simp add: in_traces) done (* com *) lemma cspT_Rep_int_choice_com_insert: "! x:(insert a X) .. Pf x =T[M,M] Pf a |~| ! x:X .. Pf x" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (auto simp add: in_traces) done (* f *) lemma cspT_Rep_int_choice_f_insert: "inj f ==> !<f> x:(insert a X) .. Pf x =T[M,M] Pf a |~| !<f> x:X .. Pf x" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (auto simp add: in_traces) done lemmas cspT_Rep_int_choice_insert = cspT_Rep_int_choice_nat_insert cspT_Rep_int_choice_set_insert cspT_Rep_int_choice_com_insert cspT_Rep_int_choice_f_insert lemmas cspT_Rep_int_choice_sepa = cspT_Rep_int_choice_insert cspT_Rep_int_choice_Un (* ---------------------------------------------- * simplify replicated internal choice * ---------------------------------------------- *) lemma cspT_Rep_int_choice_com_map_f: "inj f ==> ! x:(f ` X) .. Pf x =T[M,M] !<f> x:X .. Pf (f x)" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (auto simp add: in_traces) done lemma cspT_Rep_int_choice_f_map_f: "[| inj f ; inj g |] ==> !<f> x:(g ` X) .. Pf x =T[M,M] !<f o g> x:X .. Pf (g x)" apply (subgoal_tac "inj (f o g)") apply (simp add: cspT_semantics) apply (rule order_antisym) apply (auto simp add: in_traces) apply (auto simp add: inj_on_def) done lemmas cspT_Rep_int_choice_f_map = cspT_Rep_int_choice_com_map_f cspT_Rep_int_choice_f_map_f end