Up to index of Isabelle/HOL/CSP/CSP_T
theory CSP_T_law_SKIP_DIV(*-------------------------------------------* | CSP-Prover on Isabelle2005 | | December 2005 | | April 2006 (modified) | | March 2007 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory CSP_T_law_SKIP_DIV imports CSP_T_law_SKIP CSP_T_law_DIV begin (********************************************************* (SKIP [+] DIV) *********************************************************) lemma cspT_SKIP_DIV_Ext_choice1: "(SKIP [+] DIV) =T[M1,M2] SKIP" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule, simp add: in_traces) apply (force) (* <= *) apply (rule, simp add: in_traces) done lemma cspT_SKIP_DIV_Ext_choice2: "(DIV [+] SKIP) =T[M1,M2] SKIP" apply (simp add: cspT_semantics) apply (rule order_antisym) apply (rule, simp add: in_traces)+ done lemmas cspT_SKIP_DIV_Ext_choice = cspT_SKIP_DIV_Ext_choice1 cspT_SKIP_DIV_Ext_choice2 (********************************************************* SKIP |[X]| DIV *********************************************************) lemma cspT_SKIP_DIV_Parallel1: "SKIP |[X]| DIV =T[M1,M2] DIV" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule) apply (simp add: in_traces) apply (elim disjE conjE exE) apply (simp_all) (* <= *) apply (rule) apply (simp add: in_traces) done lemma cspT_SKIP_DIV_Parallel2: "DIV |[X]| SKIP =T[M1,M2] DIV" apply (rule cspT_rw_left) apply (rule cspT_commut) apply (rule cspT_rw_left) apply (rule cspT_SKIP_DIV_Parallel1) apply (rule cspT_reflex) done lemmas cspT_SKIP_DIV_Parallel = cspT_SKIP_DIV_Parallel1 cspT_SKIP_DIV_Parallel2 cspT_Parallel_term cspT_DIV_Parallel (********************************************************* DIV and Parallel-SKIP *********************************************************) (*** SKIP and DIV ***) lemma cspT_DIV_Parallel_Ext_choice_SKIP_l: "(P [+] SKIP) |[X]| DIV =T[M,M] (P |[X]| DIV)" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule, simp add: in_traces) apply (elim conjE exE disjE) apply (simp_all) apply (simp add: par_tr_nil_right) apply (elim conjE) apply (simp add: image_iff) (* <= *) apply (rule, simp add: in_traces) apply (elim conjE exE disjE) apply (simp add: par_tr_nil_right) apply (elim conjE) apply (simp add: image_iff) done lemma cspT_DIV_Parallel_Ext_choice_SKIP_r: "DIV |[X]| (P [+] SKIP) =T[M,M] (DIV |[X]| P)" apply (rule cspT_rw_left) apply (rule cspT_commut) apply (rule cspT_rw_left) apply (rule cspT_DIV_Parallel_Ext_choice_SKIP_l) apply (rule cspT_commut) done lemmas cspT_DIV_Parallel_Ext_choice_SKIP = cspT_DIV_Parallel_Ext_choice_SKIP_l cspT_DIV_Parallel_Ext_choice_SKIP_r lemmas cspT_DIV_Parallel_Ext_choice = cspT_DIV_Parallel_Ext_choice_SKIP cspT_DIV_Parallel_Ext_choice_DIV (********************************************************* SKIP and Parallel-DIV *********************************************************) (*** DIV and SKIP ***) lemma cspT_SKIP_Parallel_Ext_choice_DIV_l: "((? :Y -> Pf) [+] DIV) |[X]| SKIP =T[M,M] (? x:(Y - X) -> (Pf x |[X]| SKIP)) [+] DIV" apply (simp add: cspT_semantics) apply (rule order_antisym) (* => *) apply (rule, simp add: in_traces) apply (elim conjE exE disjE) apply (simp_all) apply (rule disjI2) apply (simp add: par_tr_nil_right) apply (elim conjE) apply (simp add: image_iff) apply (rule_tac x="sa" in exI) apply (rule_tac x="<>" in exI) apply (simp add: par_tr_nil_right) apply (rule disjI2) apply (simp add: par_tr_Tick_right) apply (elim conjE) apply (simp add: image_iff) apply (rule_tac x="sa" in exI) apply (rule_tac x="<Tick>" in exI) apply (simp add: par_tr_Tick_right) (* <= *) apply (rule, simp add: in_traces) apply (elim conjE exE disjE) apply (simp_all) apply (simp add: par_tr_nil_right) apply (elim conjE) apply (rule_tac x="<Ev a> ^^ sa" in exI) apply (rule_tac x="<>" in exI) apply (simp add: par_tr_nil_right) apply (simp add: image_iff) apply (simp add: par_tr_Tick_right) apply (elim conjE) apply (rule_tac x="<Ev a> ^^ sa" in exI) apply (rule_tac x="<Tick>" in exI) apply (simp add: par_tr_Tick_right) apply (simp add: image_iff) done lemma cspT_SKIP_Parallel_Ext_choice_DIV_r: "SKIP |[X]| ((? :Y -> Pf) [+] DIV) =T[M,M] (? x:(Y - X) -> (SKIP |[X]| Pf x)) [+] DIV" apply (rule cspT_rw_left) apply (rule cspT_commut) apply (rule cspT_rw_left) apply (rule cspT_SKIP_Parallel_Ext_choice_DIV_l) apply (rule cspT_rw_left) apply (rule cspT_decompo) apply (rule cspT_decompo) apply (simp) apply (rule cspT_commut) apply (rule cspT_reflex) apply (rule cspT_reflex) done lemmas cspT_SKIP_Parallel_Ext_choice_DIV = cspT_SKIP_Parallel_Ext_choice_DIV_l cspT_SKIP_Parallel_Ext_choice_DIV_r lemmas cspT_SKIP_Parallel_Ext_choice = cspT_SKIP_Parallel_Ext_choice_SKIP cspT_SKIP_Parallel_Ext_choice_DIV (*---------------------------------------------* | SKIP , DIV | *---------------------------------------------*) lemmas cspT_SKIP_DIV_Parallel_step = cspT_Parallel_preterm cspT_DIV_Parallel_step lemmas cspT_SKIP_DIV_Parallel_Ext_choice = cspT_SKIP_Parallel_Ext_choice cspT_DIV_Parallel_Ext_choice lemmas cspT_SKIP_DIV_Hiding_Id = cspT_SKIP_Hiding_Id cspT_DIV_Hiding_Id lemmas cspT_SKIP_DIV_Hiding_step = cspT_DIV_Hiding_step cspT_SKIP_Hiding_step lemmas cspT_SKIP_DIV_Renaming_Id = cspT_SKIP_Renaming_Id cspT_DIV_Renaming_Id lemmas cspT_SKIP_DIV_Seq_compo = cspT_Seq_compo_unit cspT_DIV_Seq_compo lemmas cspT_SKIP_DIV_Seq_compo_step = cspT_SKIP_Seq_compo_step cspT_DIV_Seq_compo_step lemmas cspT_SKIP_DIV_Depth_rest = cspT_SKIP_Depth_rest cspT_DIV_Depth_rest lemmas cspT_SKIP_DIV = cspT_SKIP_DIV_Parallel_step cspT_SKIP_DIV_Ext_choice cspT_SKIP_DIV_Parallel cspT_SKIP_DIV_Parallel_Ext_choice cspT_SKIP_DIV_Hiding_Id cspT_SKIP_DIV_Hiding_step cspT_SKIP_DIV_Renaming_Id cspT_SKIP_DIV_Seq_compo cspT_SKIP_DIV_Seq_compo_step cspT_SKIP_DIV_Depth_rest (*** resolve ***) lemmas cspT_Ext_choice_SKIP_DIV_resolve = cspT_Ext_choice_SKIP_resolve cspT_Ext_choice_DIV_resolve (*----------------------------------------------* | | | for convenienve (SKIP or DIV) | | | *----------------------------------------------*) (********************************************************* (SKIP or DIV [+] SKIP or DIV) *********************************************************) lemma cspT_SKIP_or_DIV_Ext_choice: "[| P = SKIP | P = DIV ; Q = SKIP | Q = DIV |] ==> (P [+] Q) =T[M1,M2] (if (P = SKIP | Q = SKIP) then SKIP else DIV)" apply (elim disjE) apply (simp_all) apply (rule cspT_rw_left) apply (rule cspT_Ext_choice_idem) apply (simp) apply (simp add: cspT_SKIP_DIV) apply (simp add: cspT_SKIP_DIV) apply (rule cspT_rw_left) apply (rule cspT_Ext_choice_idem) apply (simp) done (********************************************************* (SKIP or DIV |[X]| SKIP or DIV) *********************************************************) lemma cspT_SKIP_or_DIV_Parallel: "[| P = SKIP | P = DIV ; Q = SKIP | Q = DIV |] ==> (P |[X]| Q) =T[M1,M2] (if (P = SKIP & Q = SKIP) then SKIP else DIV)" apply (elim disjE) apply (simp_all add: cspT_SKIP_DIV) done (********************************************************* (SKIP or DIV) and Hiding *********************************************************) lemma cspT_SKIP_or_DIV_Hiding_step: "Q = SKIP | Q = DIV ==> ((? :Y -> Pf) [+] Q) -- X =T[M,M] (((? x:(Y-X) -> (Pf x -- X)) [+] Q) |~| (! x:(Y Int X) .. (Pf x -- X)))" apply (erule disjE) apply (simp_all add: cspT_SKIP_DIV) done (********************************************************* SKIP or DIV |. Suc n *********************************************************) lemma cspT_SKIP_or_DIV_Depth_rest: "Q = SKIP | Q = DIV ==> Q |. (Suc n) =T[M1,M2] Q" apply (erule disjE) apply (simp_all add: cspT_SKIP_DIV) done (********************************************************* P [+] (SKIP or DIV) *********************************************************) lemma cspT_Ext_choice_SKIP_or_DIV_resolve: "Q = SKIP | Q = DIV ==> P [+] Q =T[M,M] P [> Q" apply (erule disjE) apply (simp_all add: cspT_Ext_choice_SKIP_DIV_resolve) done lemmas cspT_SKIP_or_DIV = cspT_SKIP_or_DIV_Ext_choice cspT_SKIP_or_DIV_Parallel cspT_SKIP_or_DIV_Hiding_step cspT_SKIP_or_DIV_Depth_rest (* no resolve *) end