Theory CSP_T_law_dist

Up to index of Isabelle/HOL/HOL-Complex/CSP/CSP_T

theory CSP_T_law_dist
imports CSP_T_law_basic
begin

           (*-------------------------------------------*
            |        CSP-Prover on Isabelle2004         |
            |               December 2004               |
            |                   July 2005  (modified)   |
            |              September 2005  (modified)   |
            |                                           |
            |        CSP-Prover on Isabelle2005         |
            |                October 2005  (modified)   |
            |                  April 2006  (modified)   |
            |                  March 2007  (modified)   |
            |                                           |
            |        Yoshinao Isobe (AIST JAPAN)        |
            *-------------------------------------------*)

theory CSP_T_law_dist
imports CSP_T_law_basic
begin

(*****************************************************************

      distribution over internal choice

         1. (P1 |~| P2) [+] Q
         2. Q [+] (P1 |~| P2)
         3. (P1 |~| P2) |[X]| Q
         4. Q |[X]| (P1 |~| P2)
         5. (P1 |~| P2) -- X
         6. (P1 |~| P2) [[r]]
         7. (P1 |~| P2) ;; Q
         8. (P1 |~| P2) |. n
         9. !! x:X .. (P1 |~| P2)

 *****************************************************************)

(*********************************************************
                dist law for Ext_choice (l)
 *********************************************************)

lemma cspT_Ext_choice_dist_l: 
  "(P1 |~| P2) [+] Q =T[M,M]
   (P1 [+] Q) |~| (P2 [+] Q)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces, fast)+
done

(*********************************************************
                dist law for Ext_choice (r)
 *********************************************************)

lemma cspT_Ext_choice_dist_r: 
  "P [+] (Q1 |~| Q2) =T[M,M]
   (P [+] Q1) |~| (P [+] Q2)"
apply (rule cspT_rw_left)
apply (rule cspT_commut)
apply (rule cspT_rw_left)
apply (rule cspT_Ext_choice_dist_l)
apply (rule cspT_decompo)
apply (rule cspT_commut)+
done

(*********************************************************
                dist law for Parallel (l)
 *********************************************************)

lemma cspT_Parallel_dist_l: 
  "(P1 |~| P2) |[X]| Q =T[M,M]
   (P1 |[X]| Q) |~| (P2 |[X]| Q)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces, fast)+
done

(*********************************************************
                dist law for Parallel (r)
 *********************************************************)

lemma cspT_Parallel_dist_r: 
  "P |[X]| (Q1 |~| Q2) =T[M,M]
   (P |[X]| Q1) |~| (P |[X]| Q2)"
apply (rule cspT_rw_left)
apply (rule cspT_commut)
apply (rule cspT_rw_left)
apply (rule cspT_Parallel_dist_l)
apply (rule cspT_decompo)
apply (rule cspT_commut)+
done

(*********************************************************
                dist law for Hiding
 *********************************************************)

lemma cspT_Hiding_dist: 
  "(P1 |~| P2) -- X =T[M,M]
   (P1 -- X) |~| (P2 -- X)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces, fast)+
done

(*********************************************************
               dist law for Renaming
 *********************************************************)

lemma cspT_Renaming_dist: 
  "(P1 |~| P2) [[r]] =T[M,M]
   (P1 [[r]]) |~| (P2 [[r]])"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces, fast)+
done

(*********************************************************
         dist law for Sequential composition
 *********************************************************)

lemma cspT_Seq_compo_dist: 
  "(P1 |~| P2) ;; Q =T[M,M]
   (P1 ;; Q) |~| (P2 ;; Q)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces, fast)+
done

(*********************************************************
               dist law for Depth_rest
 *********************************************************)

lemma cspT_Depth_rest_dist: 
  "(P1 |~| P2) |. n =T[M,M]
   (P1 |. n) |~| (P2 |. n)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces)
apply (rule, simp add: in_traces)
apply (force)
done

(*********************************************************
               dist law for Rep_int_choice
 *********************************************************)

lemma cspT_Rep_int_choice_nat_dist:
  "!nat n:N .. (Pf n |~| Qf n) =T[M,M] (!nat n:N .. Pf n) |~| (!nat n:N .. Qf n)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces, fast)+
done

lemma cspT_Rep_int_choice_set_dist:
  "!set X:Xs .. (Pf X |~| Qf X) =T[M,M] (!set X:Xs .. Pf X) |~| (!set X:Xs .. Qf X)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces, fast)+
done

lemma cspT_Rep_int_choice_com_dist:
  "! a:X .. (Pf a |~| Qf a) =T[M,M] (! a:X .. Pf a) |~| (! a:X .. Qf a)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces, fast)+
done

lemma cspT_Rep_int_choice_f_dist:
  "inj f ==>
   !<f> a:X .. (Pf a |~| Qf a) =T[M,M] (!<f> a:X .. Pf a) |~| (!<f> a:X .. Qf a)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces, fast)+
done

lemmas cspT_Rep_int_choice_dist =
       cspT_Rep_int_choice_nat_dist
       cspT_Rep_int_choice_set_dist
       cspT_Rep_int_choice_com_dist
       cspT_Rep_int_choice_f_dist

(*********************************************************
                     dist laws
 *********************************************************)

lemmas cspT_dist = cspT_Ext_choice_dist_l cspT_Ext_choice_dist_r
                   cspT_Parallel_dist_l   cspT_Parallel_dist_r
                   cspT_Hiding_dist       cspT_Renaming_dist
                   cspT_Seq_compo_dist    cspT_Depth_rest_dist
                   cspT_Rep_int_choice_dist

(*****************************************************************

      distribution over replicated internal choice

         1. (!nat :C .. Pf) [+] Q
         2. Q [+] (!nat :C .. Pf)
         3. (!nat :C .. Pf) |[X]| Q
         4. Q |[X]| (!nat :C .. Pf)
         5. (!nat :C .. Pf) -- X
         6. (!nat :C .. Pf) [[r]]
         7. (!nat :C .. Pf) |. n

 *****************************************************************)

(*********************************************************
                Rep_dist law for Ext_choice (l)
 *********************************************************)

lemma cspT_Ext_choice_Dist_nat_l_nonempty: 
  "N ~= {} ==> (!nat :N .. Pf) [+] Q =T[M,M]
               !nat n:N .. (Pf n [+] Q)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces, fast)+
done

(*** Dist ***)

lemma cspT_Ext_choice_Dist_nat_l: 
  "(!nat :N .. Pf) [+] Q =T[M,M]
   IF (N={}) THEN (DIV [+] Q) ELSE (!nat n:N .. (Pf n [+] Q))"
apply (case_tac "N={}")
apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_decompo)
apply (simp add: cspT_Rep_int_choice_empty)
apply (simp)

apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_Ext_choice_Dist_nat_l_nonempty)
apply (simp)
done

(*********************************************************
                Dist_nat law for Ext_choice (r)
 *********************************************************)

lemma cspT_Ext_choice_Dist_nat_r_nonempty: 
  "N ~= {} ==> P [+] (!nat :N .. Qf) =T[M,M]
               !nat n:N .. (P [+] Qf n)"
apply (rule cspT_rw_left)
apply (rule cspT_commut)
apply (rule cspT_rw_left)
apply (rule cspT_Ext_choice_Dist_nat_l_nonempty, simp)
apply (rule cspT_decompo, simp)
apply (rule cspT_commut)
done

(*** Dist ***)

lemma cspT_Ext_choice_Dist_nat_r: 
  "P [+] (!nat :N .. Qf) =T[M,M]
   IF (N={}) THEN (P [+] DIV) ELSE (!nat n:N .. (P [+] Qf n))"
apply (case_tac "N={}")
apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_decompo)
apply (simp)
apply (simp add: cspT_Rep_int_choice_empty)

apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_Ext_choice_Dist_nat_r_nonempty)
apply (simp)
done

(*********************************************************
                Dist_nat law for Parallel (l)
 *********************************************************)

lemma cspT_Parallel_Dist_nat_l_nonempty: 
  "N ~= {} ==>
     (!nat :N .. Pf) |[X]| Q =T[M,M]
     !nat n:N .. (Pf n |[X]| Q)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)

 apply (rule, simp add: in_traces)
 apply (elim disjE conjE exE bexE)
  apply (subgoal_tac "EX n. n:N")
  apply (elim exE)
  apply (rule disjI2)
  apply (rule_tac x="n" in bexI)
  apply (simp)
  apply (rule_tac x="<>" in exI)
  apply (rule_tac x="ta" in exI)
  apply (simp)
  apply (simp)
  apply (fast)
  (* *)
  apply (rule disjI2)
  apply (rule_tac x="n" in bexI)
  apply (fast)
  apply (simp)

 apply (rule, simp add: in_traces)
 apply (elim disjE conjE exE bexE)
  apply (rule_tac x="<>" in exI)
  apply (rule_tac x="<>" in exI)
  apply (simp)
  apply (fast)
done

(*** Dist ***)

lemma cspT_Parallel_Dist_nat_l: 
  "(!nat :N .. Pf) |[X]| Q =T[M,M]
   IF (N={}) THEN (DIV |[X]| Q) ELSE (!nat n:N .. (Pf n |[X]| Q))"
apply (case_tac "N={}")
apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_decompo)
apply (simp)
apply (simp add: cspT_Rep_int_choice_empty)
apply (simp)

apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_Parallel_Dist_nat_l_nonempty)
apply (simp)
done

(*********************************************************
                Dist_nat law for Parallel (r)
 *********************************************************)

lemma cspT_Parallel_Dist_nat_r_nonempty: 
  "N ~= {} ==>
     P |[X]| (!nat :N .. Qf) =T[M,M]
     !nat n:N .. (P |[X]| Qf n)"
apply (rule cspT_rw_left)
apply (rule cspT_commut)
apply (rule cspT_rw_left)
apply (rule cspT_Parallel_Dist_nat_l_nonempty, simp)
apply (rule cspT_decompo, simp)
apply (rule cspT_commut)
done

(*** Dist ***)

lemma cspT_Parallel_Dist_nat_r: 
  "P |[X]| (!nat :N .. Qf) =T[M,M]
   IF (N={}) THEN (P |[X]| DIV) ELSE (!nat n:N .. (P |[X]| Qf n))"
apply (case_tac "N={}")
apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_decompo)
apply (simp)
apply (simp)
apply (simp add: cspT_Rep_int_choice_empty)

apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_Parallel_Dist_nat_r_nonempty)
apply (simp)
done

(*********************************************************
                Dist_nat law for Hiding
 *********************************************************)

lemma cspT_Hiding_Dist_nat: 
  "(!nat :N .. Pf) -- X =T[M,M]
   !nat n:N .. (Pf n -- X)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)

 apply (rule, simp add: in_traces)
 apply (elim disjE conjE exE, simp, fast)

 apply (rule, simp add: in_traces)
 apply (elim disjE conjE exE bexE)
 apply (rule_tac x="<>" in exI, simp)
 apply (rule_tac x="s" in exI, fast)
done

(*********************************************************
                Dist_nat law for Renaming
 *********************************************************)

lemma cspT_Renaming_Dist_nat: 
  "(!nat :N .. Pf) [[r]] =T[M,M]
   !nat n:N .. (Pf n [[r]])"
apply (simp add: cspT_semantics)
apply (rule order_antisym)

 apply (rule, simp add: in_traces)
 apply (elim disjE conjE exE, simp, fast)
 apply (rule, simp add: in_traces)
 apply (elim disjE conjE exE, simp, fast)
done

(*********************************************************
          Dist_nat law for Sequential composition
 *********************************************************)

lemma cspT_Seq_compo_Dist_nat: 
  "(!nat :N .. Pf) ;; Q =T[M,M]
   !nat n:N .. (Pf n ;; Q)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)

 apply (rule, simp add: in_traces)
 apply (elim disjE conjE exE bexE)
 apply (simp)
 apply (fast)
 apply (force)
 apply (rule disjI2)
 apply (rule_tac x="n" in bexI)
 apply (force)
 apply (simp)

 apply (rule, simp add: in_traces)
 apply (elim disjE conjE exE bexE)
 apply (rule disjI1)
 apply (rule_tac x="<>" in exI, simp)
 apply (fast)
 apply (fast)
done

(*********************************************************
                Dist_nat law for Depth_rest
 *********************************************************)

lemma cspT_Depth_rest_Dist_nat: 
  "(!nat :N .. Pf) |. m =T[M,M]
   !nat n:N .. (Pf n |. m)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)

 apply (rule, simp add: in_traces)
 apply (rule, simp add: in_traces)
 apply (force)
done

(*********************************************************
                     Dist_nat laws
 *********************************************************)

lemmas cspT_Dist_nat = cspT_Ext_choice_Dist_nat_l cspT_Ext_choice_Dist_nat_r
                        cspT_Parallel_Dist_nat_l   cspT_Parallel_Dist_nat_r
                        cspT_Hiding_Dist_nat       cspT_Renaming_Dist_nat
                        cspT_Seq_compo_Dist_nat    cspT_Depth_rest_Dist_nat

lemmas cspT_Dist_nat_nonempty = 
       cspT_Ext_choice_Dist_nat_l_nonempty cspT_Ext_choice_Dist_nat_r_nonempty
       cspT_Parallel_Dist_nat_l_nonempty   cspT_Parallel_Dist_nat_r_nonempty
       cspT_Hiding_Dist_nat       cspT_Renaming_Dist_nat
       cspT_Seq_compo_Dist_nat    cspT_Depth_rest_Dist_nat

(*****************************************************************

      distribution over replicated internal choice

         1. (!set :C .. Pf) [+] Q
         2. Q [+] (!set :C .. Pf)
         3. (!set :C .. Pf) |[X]| Q
         4. Q |[X]| (!set :C .. Pf)
         5. (!set :C .. Pf) -- X
         6. (!set :C .. Pf) [[r]]
         7. (!set :C .. Pf) |. n

 *****************************************************************)

(*********************************************************
                Rep_dist law for Ext_choice (l)
 *********************************************************)

lemma cspT_Ext_choice_Dist_set_l_nonempty: 
  "Xs ~= {} ==> (!set :Xs .. Pf) [+] Q =T[M,M]
               !set X:Xs .. (Pf X [+] Q)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
apply (rule, simp add: in_traces, fast)+
done

(*** Dist ***)

lemma cspT_Ext_choice_Dist_set_l: 
  "(!set :Xs .. Pf) [+] Q =T[M,M]
   IF (Xs={}) THEN (DIV [+] Q) ELSE (!set X:Xs .. (Pf X [+] Q))"
apply (case_tac "Xs={}")
apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_decompo)
apply (simp add: cspT_Rep_int_choice_empty)
apply (simp)

apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_Ext_choice_Dist_set_l_nonempty)
apply (simp)
done

(*********************************************************
                Dist_set law for Ext_choice (r)
 *********************************************************)

lemma cspT_Ext_choice_Dist_set_r_nonempty: 
  "Xs ~= {} ==> P [+] (!set :Xs .. Qf) =T[M,M]
               !set X:Xs .. (P [+] Qf X)"
apply (rule cspT_rw_left)
apply (rule cspT_commut)
apply (rule cspT_rw_left)
apply (rule cspT_Ext_choice_Dist_set_l_nonempty, simp)
apply (rule cspT_decompo, simp)
apply (rule cspT_commut)
done

(*** Dist ***)

lemma cspT_Ext_choice_Dist_set_r: 
  "P [+] (!set :Xs .. Qf) =T[M,M]
   IF (Xs={}) THEN (P [+] DIV) ELSE (!set X:Xs .. (P [+] Qf X))"
apply (case_tac "Xs={}")
apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_decompo)
apply (simp)
apply (simp add: cspT_Rep_int_choice_empty)

apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_Ext_choice_Dist_set_r_nonempty)
apply (simp)
done

(*********************************************************
                Dist_set law for Parallel (l)
 *********************************************************)

lemma cspT_Parallel_Dist_set_l_nonempty: 
  "Xs ~= {} ==>
     (!set :Xs .. Pf) |[Y]| Q =T[M,M]
     !set X:Xs .. (Pf X |[Y]| Q)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)

 apply (rule, simp add: in_traces)
 apply (elim disjE conjE exE bexE)
  apply (subgoal_tac "EX X. X:Xs")
  apply (elim exE)
  apply (rule disjI2)
  apply (rule_tac x="X" in bexI)
  apply (simp)
  apply (rule_tac x="<>" in exI)
  apply (rule_tac x="ta" in exI)
  apply (simp)
  apply (simp)
  apply (fast)
  (* *)
  apply (rule disjI2)
  apply (rule_tac x="X" in bexI)
  apply (fast)
  apply (simp)

 apply (rule, simp add: in_traces)
 apply (elim disjE conjE exE bexE)
  apply (rule_tac x="<>" in exI)
  apply (rule_tac x="<>" in exI)
  apply (simp)
  apply (fast)
done

(*** Dist ***)

lemma cspT_Parallel_Dist_set_l: 
  "(!set :Xs .. Pf) |[Y]| Q =T[M,M]
   IF (Xs={}) THEN (DIV |[Y]| Q) ELSE (!set X:Xs .. (Pf X |[Y]| Q))"
apply (case_tac "Xs={}")
apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_decompo)
apply (simp)
apply (simp add: cspT_Rep_int_choice_empty)
apply (simp)

apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_Parallel_Dist_set_l_nonempty)
apply (simp)
done

(*********************************************************
                Dist_set law for Parallel (r)
 *********************************************************)

lemma cspT_Parallel_Dist_set_r_nonempty: 
  "Xs ~= {} ==>
     P |[Y]| (!set :Xs .. Qf) =T[M,M]
     !set X:Xs .. (P |[Y]| Qf X)"
apply (rule cspT_rw_left)
apply (rule cspT_commut)
apply (rule cspT_rw_left)
apply (rule cspT_Parallel_Dist_set_l_nonempty, simp)
apply (rule cspT_decompo, simp)
apply (rule cspT_commut)
done

(*** Dist ***)

lemma cspT_Parallel_Dist_set_r: 
  "P |[Y]| (!set :Xs .. Qf) =T[M,M]
   IF (Xs={}) THEN (P |[Y]| DIV) ELSE (!set X:Xs .. (P |[Y]| Qf X))"
apply (case_tac "Xs={}")
apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_decompo)
apply (simp)
apply (simp)
apply (simp add: cspT_Rep_int_choice_empty)

apply (simp)
apply (rule cspT_rw_right)
apply (rule cspT_IF)
apply (rule cspT_Parallel_Dist_set_r_nonempty)
apply (simp)
done

(*********************************************************
                Dist_set law for Hiding
 *********************************************************)

lemma cspT_Hiding_Dist_set: 
  "(!set :Xs .. Pf) -- Y =T[M,M]
   !set X:Xs .. (Pf X -- Y)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)

 apply (rule, simp add: in_traces)
 apply (elim disjE conjE exE, simp, fast)

 apply (rule, simp add: in_traces)
 apply (elim disjE conjE exE bexE)
 apply (rule_tac x="<>" in exI, simp)
 apply (rule_tac x="s" in exI, fast)
done

(*********************************************************
                Dist_set law for Renaming
 *********************************************************)

lemma cspT_Renaming_Dist_set: 
  "(!set :Xs .. Pf) [[r]] =T[M,M]
   !set X:Xs .. (Pf X [[r]])"
apply (simp add: cspT_semantics)
apply (rule order_antisym)

 apply (rule, simp add: in_traces)
 apply (elim disjE conjE exE, simp, fast)
 apply (rule, simp add: in_traces)
 apply (elim disjE conjE exE, simp, fast)
done

(*********************************************************
          Dist_set law for Sequential composition
 *********************************************************)

lemma cspT_Seq_compo_Dist_set: 
  "(!set :Xs .. Pf) ;; Q =T[M,M]
   !set X:Xs .. (Pf X ;; Q)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)

 apply (rule, simp add: in_traces)
 apply (elim disjE conjE exE bexE)
 apply (simp)
 apply (fast)
 apply (force)
 apply (rule disjI2)
 apply (rule_tac x="X" in bexI)
 apply (force)
 apply (simp)

 apply (rule, simp add: in_traces)
 apply (elim disjE conjE exE bexE)
 apply (rule disjI1)
 apply (rule_tac x="<>" in exI, simp)
 apply (fast)
 apply (fast)
done

(*********************************************************
                Dist_set law for Depth_rest
 *********************************************************)

lemma cspT_Depth_rest_Dist_set: 
  "(!set :Xs .. Pf) |. m =T[M,M]
   !set X:Xs .. (Pf X |. m)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)

 apply (rule, simp add: in_traces)
 apply (rule, simp add: in_traces)
 apply (force)
done

(*********************************************************
                     Dist_set laws
 *********************************************************)

lemmas cspT_Dist_set = cspT_Ext_choice_Dist_set_l cspT_Ext_choice_Dist_set_r
                        cspT_Parallel_Dist_set_l   cspT_Parallel_Dist_set_r
                        cspT_Hiding_Dist_set       cspT_Renaming_Dist_set
                        cspT_Seq_compo_Dist_set    cspT_Depth_rest_Dist_set

lemmas cspT_Dist_set_nonempty = 
       cspT_Ext_choice_Dist_set_l_nonempty cspT_Ext_choice_Dist_set_r_nonempty
       cspT_Parallel_Dist_set_l_nonempty   cspT_Parallel_Dist_set_r_nonempty
       cspT_Hiding_Dist_set       cspT_Renaming_Dist_set
       cspT_Seq_compo_Dist_set    cspT_Depth_rest_Dist_set

(*****************************************************************

      for convenience

         1. (! :X .. Pf) [+] Q
         2. Q [+] (! :X .. Pf)
         3. (! :X .. Pf) |[X]| Q
         4. Q |[X]| (! :X .. Pf)
         5. (! :X .. Pf) -- X
         6. (! :X .. Pf) [[r]]
         7. (! :X .. Pf) |. n

 *****************************************************************)

(*------------------*
 |      csp law     |
 *------------------*)

lemma cspT_Ext_choice_Dist_com_l_nonempty: 
  "X ~= {}
   ==> (! :X .. Pf) [+] Q =T[M,M] ! x:X .. (Pf x [+] Q)"
by (simp add: Rep_int_choice_com_def cspT_Dist_set_nonempty)

lemma cspT_Ext_choice_Dist_com_r_nonempty: 
  "X ~= {}
   ==> P [+] (! :X .. Qf) =T[M,M] ! x:X .. (P [+] Qf x)"
by (simp add: Rep_int_choice_com_def cspT_Dist_set_nonempty)

lemma cspT_Parallel_Dist_com_l_nonempty: 
  "Y ~= {}
   ==> (! :Y .. Pf) |[X]| Q =T[M,M] ! x:Y .. (Pf x |[X]| Q)"
by (simp add: Rep_int_choice_com_def cspT_Dist_set_nonempty)

lemma cspT_Parallel_Dist_com_r_nonempty: 
  "Y ~= {}
   ==> P |[X]| (! :Y .. Qf) =T[M,M] ! x:Y .. (P |[X]| Qf x)"
by (simp add: Rep_int_choice_com_def cspT_Dist_set_nonempty)

lemma cspT_Ext_choice_Dist_com_l: 
  "(! :X .. Pf) [+] Q =T[M,M] 
   IF (X ={}) THEN (DIV [+] Q) ELSE (! x:X .. (Pf x [+] Q))"
apply (simp add: Rep_int_choice_com_def)
apply (rule cspT_rw_left)
apply (rule cspT_Dist_set)
apply (rule cspT_decompo)
apply (auto)
done

lemma cspT_Ext_choice_Dist_com_r: 
  "P [+] (! :X .. Qf) =T[M,M]
   IF (X ={}) THEN (P [+] DIV) ELSE (! x:X .. (P [+] Qf x))"
apply (simp add: Rep_int_choice_com_def)
apply (rule cspT_rw_left)
apply (rule cspT_Dist_set)
apply (rule cspT_decompo)
apply (auto)
done

lemma cspT_Parallel_Dist_com_l: 
  "(! :Y .. Pf) |[X]| Q =T[M,M]
   IF (Y ={}) THEN (DIV |[X]| Q) ELSE (! x:Y .. (Pf x |[X]| Q))"
apply (simp add: Rep_int_choice_com_def)
apply (rule cspT_rw_left)
apply (rule cspT_Dist_set)
apply (rule cspT_decompo)
apply (auto)
done

lemma cspT_Parallel_Dist_com_r: 
  "P |[X]| (! :Y .. Qf) =T[M,M] 
   IF (Y ={}) THEN (P |[X]| DIV) ELSE (! x:Y .. (P |[X]| Qf x))"
apply (simp add: Rep_int_choice_com_def)
apply (rule cspT_rw_left)
apply (rule cspT_Dist_set)
apply (rule cspT_decompo)
apply (auto)
done

lemma cspT_Hiding_Dist_com: 
  "(! :Y .. Pf) -- X =T[M,M] ! x:Y .. (Pf x -- X)"
by (simp add: Rep_int_choice_com_def cspT_Dist_set_nonempty)

lemma cspT_Renaming_Dist_com: 
  "(! :X .. Pf) [[r]] =T[M,M] ! x:X .. (Pf x [[r]])"
by (simp add: Rep_int_choice_com_def cspT_Dist_set_nonempty)

lemma cspT_Seq_compo_Dist_com:
  "(! :X .. Pf) ;; Q =T[M,M] ! x:X .. (Pf x ;; Q)"
by (simp add: Rep_int_choice_com_def cspT_Dist_set_nonempty)

lemma cspT_Depth_rest_Dist_com: 
  "(! :X .. Pf) |. n =T[M,M] ! x:X .. (Pf x |. n)"
by (simp add: Rep_int_choice_com_def cspT_Dist_set_nonempty)

(*********************************************************
                     Dist laws
 *********************************************************)

lemmas cspT_Dist_com = cspT_Ext_choice_Dist_com_l cspT_Ext_choice_Dist_com_r
                           cspT_Parallel_Dist_com_l   cspT_Parallel_Dist_com_r
                           cspT_Hiding_Dist_com       cspT_Renaming_Dist_com
                           cspT_Seq_compo_Dist_com    cspT_Depth_rest_Dist_com

lemmas cspT_Dist_com_nonempty = 
       cspT_Ext_choice_Dist_com_l_nonempty cspT_Ext_choice_Dist_com_r_nonempty
       cspT_Parallel_Dist_com_l_nonempty   cspT_Parallel_Dist_com_r_nonempty
       cspT_Hiding_Dist_com       cspT_Renaming_Dist_com
       cspT_Seq_compo_Dist_com    cspT_Depth_rest_Dist_com

(*****************************************************************

      for convenience

         1. (!<f> :X .. Pf) [+] Q
         2. Q [+] (!<f> :X .. Pf)
         3. (!<f> :X .. Pf) |[X]| Q
         4. Q |[X]| (!<f> :X .. Pf)
         5. (!<f> :X .. Pf) -- X
         6. (!<f> :X .. Pf) [[r]]
         7. (!<f> :X .. Pf) |. n

 *****************************************************************)

(*------------------*
 |      csp law     |
 *------------------*)

lemma cspT_Ext_choice_Dist_f_l_nonempty: 
  "[| inj f ; X ~= {} |]
   ==> (!<f> :X .. Pf) [+] Q =T[M,M] !<f> x:X .. (Pf x [+] Q)"
by (simp add: Rep_int_choice_f_def cspT_Dist_com_nonempty)

lemma cspT_Ext_choice_Dist_f_r_nonempty: 
  "[| inj f ; X ~= {} |]
   ==> P [+] (!<f> :X .. Qf) =T[M,M] !<f> x:X .. (P [+] Qf x)"
by (simp add: Rep_int_choice_f_def cspT_Dist_com_nonempty)

lemma cspT_Parallel_Dist_f_l_nonempty: 
  "[| inj f ; Y ~= {} |]
   ==> (!<f> :Y .. Pf) |[X]| Q =T[M,M] !<f> x:Y .. (Pf x |[X]| Q)"
by (simp add: Rep_int_choice_f_def cspT_Dist_com_nonempty)

lemma cspT_Parallel_Dist_f_r_nonempty: 
  "[| inj f ; Y ~= {} |]
   ==> P |[X]| (!<f> :Y .. Qf) =T[M,M] !<f> x:Y .. (P |[X]| Qf x)"
by (simp add: Rep_int_choice_f_def cspT_Dist_com_nonempty)

lemma cspT_Ext_choice_Dist_f_l: 
  "(!<f> :X .. Pf) [+] Q =T[M,M] 
   IF (X ={}) THEN (DIV [+] Q) ELSE (!<f> x:X .. (Pf x [+] Q))"
apply (simp add: Rep_int_choice_f_def)
apply (rule cspT_rw_left)
apply (rule cspT_Dist_com)
apply (rule cspT_decompo)
apply (auto)
done

lemma cspT_Ext_choice_Dist_f_r: 
  "P [+] (!<f> :X .. Qf) =T[M,M]
   IF (X ={}) THEN (P [+] DIV) ELSE (!<f> x:X .. (P [+] Qf x))"
apply (simp add: Rep_int_choice_f_def)
apply (rule cspT_rw_left)
apply (rule cspT_Dist_com)
apply (rule cspT_decompo)
apply (auto)
done

lemma cspT_Parallel_Dist_f_l: 
  "(!<f> :Y .. Pf) |[X]| Q =T[M,M]
   IF (Y ={}) THEN (DIV |[X]| Q) ELSE (!<f> x:Y .. (Pf x |[X]| Q))"
apply (simp add: Rep_int_choice_f_def)
apply (rule cspT_rw_left)
apply (rule cspT_Dist_com)
apply (rule cspT_decompo)
apply (auto)
done

lemma cspT_Parallel_Dist_f_r: 
  "P |[X]| (!<f> :Y .. Qf) =T[M,M] 
   IF (Y ={}) THEN (P |[X]| DIV) ELSE (!<f> x:Y .. (P |[X]| Qf x))"
apply (simp add: Rep_int_choice_f_def)
apply (rule cspT_rw_left)
apply (rule cspT_Dist_com)
apply (rule cspT_decompo)
apply (auto)
done

lemma cspT_Hiding_Dist_f: 
  "(!<f> :Y .. Pf) -- X =T[M,M] !<f> x:Y .. (Pf x -- X)"
by (simp add: Rep_int_choice_f_def cspT_Dist_com)

lemma cspT_Renaming_Dist_f: 
  "(!<f> :X .. Pf) [[r]] =T[M,M] !<f> x:X .. (Pf x [[r]])"
by (simp add: Rep_int_choice_f_def cspT_Dist_com)

lemma cspT_Seq_compo_Dist_f:
  "(!<f> :X .. Pf) ;; Q =T[M,M] !<f> x:X .. (Pf x ;; Q)"
by (simp add: Rep_int_choice_f_def cspT_Dist_com)

lemma cspT_Depth_rest_Dist_f: 
  "(!<f> :X .. Pf) |. n =T[M,M] !<f> x:X .. (Pf x |. n)"
by (simp add: Rep_int_choice_f_def cspT_Dist_com)

(*********************************************************
                     Dist laws
 *********************************************************)

lemmas cspT_Dist_f = cspT_Ext_choice_Dist_f_l cspT_Ext_choice_Dist_f_r
                           cspT_Parallel_Dist_f_l   cspT_Parallel_Dist_f_r
                           cspT_Hiding_Dist_f       cspT_Renaming_Dist_f
                           cspT_Seq_compo_Dist_f    cspT_Depth_rest_Dist_f

lemmas cspT_Dist_f_nonempty = 
       cspT_Ext_choice_Dist_f_l_nonempty cspT_Ext_choice_Dist_f_r_nonempty
       cspT_Parallel_Dist_f_l_nonempty   cspT_Parallel_Dist_f_r_nonempty
       cspT_Hiding_Dist_f       cspT_Renaming_Dist_f
       cspT_Seq_compo_Dist_f    cspT_Depth_rest_Dist_f

(*** all rules ***)

lemmas cspT_Dist = cspT_Dist_nat cspT_Dist_set cspT_Dist_com cspT_Dist_f

lemmas cspT_Dist_nonempty = cspT_Dist_nat_nonempty
                            cspT_Dist_set_nonempty
                            cspT_Dist_com_nonempty
                            cspT_Dist_f_nonempty

(*****************************************************************

      additional distribution over replicated internal choice

         1. (!nat :X .. (a -> P))
         2. (!nat :Y .. (? :X -> P))

 *****************************************************************)

(*********************************************************
              Dist law for Act_prefix
 *********************************************************)

lemma cspT_Act_prefix_Dist_nat:
  "N ~= {} ==> 
   a -> (!nat :N .. Pf) =T[M,M] !nat n:N .. (a -> Pf n)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* <= *)
 apply (rule)
 apply (simp add: in_traces)
 apply (elim disjE conjE exE bexE)
 apply (simp_all)
 apply (force)
 apply (force)

(* => *)
 apply (rule)
 apply (simp add: in_traces)
 apply (elim disjE conjE exE bexE)
 apply (simp_all)
 apply (force)
done

(*********************************************************
              Dist_nat law for Ext_pre_choice
 *********************************************************)

lemma cspT_Ext_pre_choice_Dist_nat:
  "N ~= {} ==> 
   ? x:X -> (!nat n:N .. (Pf n) x) =T[M,M] !nat n:N .. (? :X -> (Pf n))"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* <= *)
 apply (rule)
 apply (simp add: in_traces)
 apply (elim disjE conjE exE bexE)
 apply (simp_all)
 apply (force)
 apply (force)

(* => *)
 apply (rule)
 apply (simp add: in_traces)
 apply (elim disjE conjE exE bexE)
 apply (simp_all)
 apply (force)
done

(*****************************************************************

      additional distribution over replicated internal choice

         1. (!set :X .. (a -> P))
         2. (!set :Y .. (? :X -> P))

 *****************************************************************)

(*********************************************************
              Dist law for Act_prefix
 *********************************************************)

lemma cspT_Act_prefix_Dist_set:
  "Xs ~= {} ==> 
   a -> (!set :Xs .. Pf) =T[M,M] !set X:Xs .. (a -> Pf X)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* <= *)
 apply (rule)
 apply (simp add: in_traces)
 apply (elim disjE conjE exE bexE)
 apply (simp_all)
 apply (force)
 apply (force)

(* => *)
 apply (rule)
 apply (simp add: in_traces)
 apply (elim disjE conjE exE bexE)
 apply (simp_all)
 apply (force)
done

(*********************************************************
              Dist_set law for Ext_pre_choice
 *********************************************************)

lemma cspT_Ext_pre_choice_Dist_set:
  "Ys ~= {} ==> 
   ? x:X -> (!set Y:Ys .. (Pf Y) x) =T[M,M] !set Y:Ys .. (? :X -> (Pf Y))"
apply (simp add: cspT_semantics)
apply (rule order_antisym)
(* <= *)
 apply (rule)
 apply (simp add: in_traces)
 apply (elim disjE conjE exE bexE)
 apply (simp_all)
 apply (force)
 apply (force)

(* => *)
 apply (rule)
 apply (simp add: in_traces)
 apply (elim disjE conjE exE bexE)
 apply (simp_all)
 apply (force)
done

(*****************************************************************

      for convenience

         1. (! :X .. (a -> P))
         2. (! :Y .. (? :X -> P))

         1. (!<f> :X .. (a -> P))
         2. (!<f> :Y .. (? :X -> P))

 *****************************************************************)

lemma cspT_Act_prefix_Dist_com:
  "X ~= {} ==> 
   a -> (! :X .. Pf) =T[M,M] ! x:X .. (a -> Pf x)"
by (simp add: Rep_int_choice_com_def cspT_Act_prefix_Dist_set)

lemma cspT_Ext_pre_choice_Dist_com:
  "Y ~= {} ==> 
   ? x:X -> (! y:Y .. (Pf y) x) =T[M,M] ! y:Y .. (? :X -> (Pf y))"
by (simp add: Rep_int_choice_com_def cspT_Ext_pre_choice_Dist_set)

lemma cspT_Act_prefix_Dist_f:
  "X ~= {} ==> 
   a -> (!<f> :X .. Pf) =T[M,M] !<f> x:X .. (a -> Pf x)"
by (simp add: Rep_int_choice_f_def cspT_Act_prefix_Dist_com)

lemma cspT_Ext_pre_choice_Dist_f:
  "Y ~= {} ==> 
   ? x:X -> (!<f> y:Y .. (Pf y) x) =T[M,M] !<f> y:Y .. (? :X -> (Pf y))"
by (simp add: Rep_int_choice_f_def cspT_Ext_pre_choice_Dist_com)

(*** arias ***)

lemmas cspT_Act_prefix_Dist 
     = cspT_Act_prefix_Dist_nat
       cspT_Act_prefix_Dist_set
       cspT_Act_prefix_Dist_com
       cspT_Act_prefix_Dist_f

lemmas cspT_Ext_pre_choice_Dist
     = cspT_Ext_pre_choice_Dist_nat
       cspT_Ext_pre_choice_Dist_set
       cspT_Ext_pre_choice_Dist_com
       cspT_Ext_pre_choice_Dist_f

(*****************************************************************
      distribution over external choice
         1. (P1 [+] P2) [[r]]
         2. (P1 [+] P2) |. n
 *****************************************************************)

(*********************
     [[r]]-[+]-dist
 *********************)

lemma cspT_Renaming_Ext_dist:
  "(P1 [+] P2) [[r]] =T[M,M]
   (P1 [[r]]) [+] (P2 [[r]])"
apply (simp add: cspT_semantics)
apply (rule order_antisym)

(* => *)
 apply (rule)
 apply (simp add: in_traces)
 apply (force)

(* <= *)
 apply (rule)
 apply (simp add: in_traces)
 apply (force)
done

(*********************
     |.-[+]-dist
 *********************)

lemma cspT_Depth_rest_Ext_dist: 
  "(P1 [+] P2) |. n =T[M,M]
   (P1 |. n) [+] (P2 |. n)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)

(* => *)
 apply (rule)
 apply (simp add: in_traces)

(* <= *)
 apply (rule)
 apply (simp add: in_traces)
 apply (force)
done

lemmas cspT_Ext_dist = cspT_Renaming_Ext_dist cspT_Depth_rest_Ext_dist

(*---------------------------------------------------------*
 |                   complex distribution                  |
 *---------------------------------------------------------*)

(*********************
     !!-input-!set
 *********************)

lemma cspT_Rep_int_choice_nat_input_set:
  "(!nat n:N .. (? :(Yf n) -> Rff n))
   =T[M,M]
   (!set Y : {Yf n|n. n:N} .. (? a : Y -> (!nat n:{n:N. a : Yf n} .. Rff n a)))"
apply (simp add: cspT_semantics)
apply (rule order_antisym)

(* => *)
 apply (rule, simp add: in_traces)
 apply (elim disjE conjE exE bexE)
 apply (simp_all)
  apply (force)

(* <= *)
 apply (rule, simp add: in_traces)
 apply (elim disjE conjE exE)
 apply (simp_all)
 apply (fast)
 apply (force)
done

lemma cspT_Rep_int_choice_set_input_set:
  "(!set X:Xs .. (? :(Yf X) -> Rff X))
   =T[M,M]
   (!set Y : {Yf X|X. X:Xs} .. (? a : Y -> (!set X:{X:Xs. a : Yf X} .. Rff X a)))"
apply (simp add: cspT_semantics)
apply (rule order_antisym)

(* => *)
 apply (rule, simp add: in_traces)
 apply (elim disjE conjE exE bexE)
 apply (simp_all)
  apply (force)

(* <= *)
 apply (rule, simp add: in_traces)
 apply (elim disjE conjE exE)
 apply (simp_all)
 apply (fast)
 apply (force)
done

lemmas cspT_Rep_int_choice_input_set =
       cspT_Rep_int_choice_nat_input_set
       cspT_Rep_int_choice_set_input_set

(*-------------------------------*
          !!-[+]-Dist
 *-------------------------------*)

lemma cspT_Rep_int_choice_Ext_Dist_nat:
  "ALL n:N. (Qf n = SKIP | Qf n = DIV) ==>
   (!nat n:N .. (Pf n [+] Qf n)) =T[M,M]
   ((!nat :N .. Pf) [+] (!nat :N .. Qf))"
apply (simp add: cspT_semantics)
apply (rule order_antisym)

(* <= *)
 apply (rule)
 apply (simp add: in_traces)
 apply (elim conjE exE bexE disjE)
 apply (simp_all)
 apply (force)
 apply (drule_tac x="n" in bspec)
 apply (simp)
 apply (erule disjE)
 apply (simp_all add: in_traces)
 apply (erule disjE)
 apply (simp_all)
 apply (rule disjI2)
 apply (rule_tac x="n" in bexI)
 apply (simp_all add: in_traces)

(* => *)
 apply (rule)
 apply (simp add: in_traces)
 apply (elim conjE exE bexE disjE)
 apply (simp_all)
 apply (fast)
 apply (fast)
done

lemma cspT_Rep_int_choice_Ext_Dist_set:
  "ALL X:Xs. (Qf X = SKIP | Qf X = DIV) ==>
   (!set X:Xs .. (Pf X [+] Qf X)) =T[M,M]
   ((!set :Xs .. Pf) [+] (!set :Xs .. Qf))"
apply (simp add: cspT_semantics)
apply (rule order_antisym)

(* <= *)
 apply (rule)
 apply (simp add: in_traces)
 apply (elim conjE exE bexE disjE)
 apply (simp_all)
 apply (force)
 apply (drule_tac x="X" in bspec)
 apply (simp)
 apply (erule disjE)
 apply (simp_all add: in_traces)
 apply (erule disjE)
 apply (simp_all)
 apply (rule disjI2)
 apply (rule_tac x="X" in bexI)
 apply (simp_all add: in_traces)

(* => *)
 apply (rule)
 apply (simp add: in_traces)
 apply (elim conjE exE bexE disjE)
 apply (simp_all)
 apply (fast)
 apply (fast)
done

lemma cspT_Rep_int_choice_Ext_Dist_com:
  "ALL a:X. (Qf a = SKIP | Qf a = DIV) ==>
   (! a:X .. (Pf a [+] Qf a)) =T[M,M]
   ((! :X .. Pf) [+] (! :X .. Qf))"
apply (simp add: Rep_int_choice_com_def)
apply (rule cspT_Rep_int_choice_Ext_Dist_set)
by (auto)

lemma cspT_Rep_int_choice_Ext_Dist_f:
  "[| inj f ; ALL a:X. (Qf a = SKIP | Qf a = DIV) |] ==>
   (!<f> a:X .. (Pf a [+] Qf a)) =T[M,M]
   ((!<f> :X .. Pf) [+] (!<f> :X .. Qf))"
apply (simp add: Rep_int_choice_f_def)
apply (rule cspT_Rep_int_choice_Ext_Dist_com)
by (auto)

lemmas cspT_Rep_int_choice_Ext_Dist =
       cspT_Rep_int_choice_Ext_Dist_nat
       cspT_Rep_int_choice_Ext_Dist_set
       cspT_Rep_int_choice_Ext_Dist_com
       cspT_Rep_int_choice_Ext_Dist_f

(*-------------------------------*
          !!-input-Dist
 *-------------------------------*)

lemma cspT_Rep_int_choice_input:
  "!set X:Xs .. (? :X -> Pf) =T[M,M] (? :(Union Xs) -> Pf)"
apply (simp add: cspT_semantics)
apply (rule order_antisym)

(* => *)
 apply (rule, simp add: in_traces)
 apply (force)

(* <= *)
 apply (rule, simp add: in_traces)
 apply (force)
done

lemma cspT_Rep_int_choice_input_Dist:
  "(!set X:Xs .. (? :X -> Pf)) [+] Q =T[M,M] (? :(Union Xs) -> Pf) [+] Q"
apply (rule cspT_decompo)
apply (rule cspT_Rep_int_choice_input)
apply (rule cspT_reflex)
done

(****************** to add them again ******************)

end

lemma cspT_Ext_choice_dist_l:

  (P1.0 |~| P2.0) [+] Q =T[M,M] P1.0 [+] Q |~| P2.0 [+] Q

lemma cspT_Ext_choice_dist_r:

  P [+] (Q1.0 |~| Q2.0) =T[M,M] P [+] Q1.0 |~| P [+] Q2.0

lemma cspT_Parallel_dist_l:

  (P1.0 |~| P2.0) |[X]| Q =T[M,M] P1.0 |[X]| Q |~| P2.0 |[X]| Q

lemma cspT_Parallel_dist_r:

  P |[X]| (Q1.0 |~| Q2.0) =T[M,M] P |[X]| Q1.0 |~| P |[X]| Q2.0

lemma cspT_Hiding_dist:

  (P1.0 |~| P2.0) -- X =T[M,M] P1.0 -- X |~| P2.0 -- X

lemma cspT_Renaming_dist:

  (P1.0 |~| P2.0) [[r]] =T[M,M] P1.0 [[r]] |~| P2.0 [[r]]

lemma cspT_Seq_compo_dist:

  (P1.0 |~| P2.0) ;; Q =T[M,M] P1.0 ;; Q |~| P2.0 ;; Q

lemma cspT_Depth_rest_dist:

  (P1.0 |~| P2.0) |. n =T[M,M] P1.0 |. n |~| P2.0 |. n

lemma cspT_Rep_int_choice_nat_dist:

  !nat n:N .. (Pf n |~| Qf n) =T[M,M] !nat :N .. Pf |~| !nat :N .. Qf

lemma cspT_Rep_int_choice_set_dist:

  !set X:Xs .. (Pf X |~| Qf X) =T[M,M] !set :Xs .. Pf |~| !set :Xs .. Qf

lemma cspT_Rep_int_choice_com_dist:

  ! a:X .. (Pf a |~| Qf a) =T[M,M] ! :X .. Pf |~| ! :X .. Qf

lemma cspT_Rep_int_choice_f_dist:

  inj f ==> !<f> a:X .. (Pf a |~| Qf a) =T[M,M] !<f> :X .. Pf |~| !<f> :X .. Qf

lemmas cspT_Rep_int_choice_dist:

  !nat n:N .. (Pf n |~| Qf n) =T[M,M] !nat :N .. Pf |~| !nat :N .. Qf
  !set X:Xs .. (Pf X |~| Qf X) =T[M,M] !set :Xs .. Pf |~| !set :Xs .. Qf
  ! a:X .. (Pf a |~| Qf a) =T[M,M] ! :X .. Pf |~| ! :X .. Qf
  inj f ==> !<f> a:X .. (Pf a |~| Qf a) =T[M,M] !<f> :X .. Pf |~| !<f> :X .. Qf

lemmas cspT_Rep_int_choice_dist:

  !nat n:N .. (Pf n |~| Qf n) =T[M,M] !nat :N .. Pf |~| !nat :N .. Qf
  !set X:Xs .. (Pf X |~| Qf X) =T[M,M] !set :Xs .. Pf |~| !set :Xs .. Qf
  ! a:X .. (Pf a |~| Qf a) =T[M,M] ! :X .. Pf |~| ! :X .. Qf
  inj f ==> !<f> a:X .. (Pf a |~| Qf a) =T[M,M] !<f> :X .. Pf |~| !<f> :X .. Qf

lemmas cspT_dist:

  (P1.0 |~| P2.0) [+] Q =T[M,M] P1.0 [+] Q |~| P2.0 [+] Q
  P [+] (Q1.0 |~| Q2.0) =T[M,M] P [+] Q1.0 |~| P [+] Q2.0
  (P1.0 |~| P2.0) |[X]| Q =T[M,M] P1.0 |[X]| Q |~| P2.0 |[X]| Q
  P |[X]| (Q1.0 |~| Q2.0) =T[M,M] P |[X]| Q1.0 |~| P |[X]| Q2.0
  (P1.0 |~| P2.0) -- X =T[M,M] P1.0 -- X |~| P2.0 -- X
  (P1.0 |~| P2.0) [[r]] =T[M,M] P1.0 [[r]] |~| P2.0 [[r]]
  (P1.0 |~| P2.0) ;; Q =T[M,M] P1.0 ;; Q |~| P2.0 ;; Q
  (P1.0 |~| P2.0) |. n =T[M,M] P1.0 |. n |~| P2.0 |. n
  !nat n:N .. (Pf n |~| Qf n) =T[M,M] !nat :N .. Pf |~| !nat :N .. Qf
  !set X:Xs .. (Pf X |~| Qf X) =T[M,M] !set :Xs .. Pf |~| !set :Xs .. Qf
  ! a:X .. (Pf a |~| Qf a) =T[M,M] ! :X .. Pf |~| ! :X .. Qf
  inj f ==> !<f> a:X .. (Pf a |~| Qf a) =T[M,M] !<f> :X .. Pf |~| !<f> :X .. Qf

lemmas cspT_dist:

  (P1.0 |~| P2.0) [+] Q =T[M,M] P1.0 [+] Q |~| P2.0 [+] Q
  P [+] (Q1.0 |~| Q2.0) =T[M,M] P [+] Q1.0 |~| P [+] Q2.0
  (P1.0 |~| P2.0) |[X]| Q =T[M,M] P1.0 |[X]| Q |~| P2.0 |[X]| Q
  P |[X]| (Q1.0 |~| Q2.0) =T[M,M] P |[X]| Q1.0 |~| P |[X]| Q2.0
  (P1.0 |~| P2.0) -- X =T[M,M] P1.0 -- X |~| P2.0 -- X
  (P1.0 |~| P2.0) [[r]] =T[M,M] P1.0 [[r]] |~| P2.0 [[r]]
  (P1.0 |~| P2.0) ;; Q =T[M,M] P1.0 ;; Q |~| P2.0 ;; Q
  (P1.0 |~| P2.0) |. n =T[M,M] P1.0 |. n |~| P2.0 |. n
  !nat n:N .. (Pf n |~| Qf n) =T[M,M] !nat :N .. Pf |~| !nat :N .. Qf
  !set X:Xs .. (Pf X |~| Qf X) =T[M,M] !set :Xs .. Pf |~| !set :Xs .. Qf
  ! a:X .. (Pf a |~| Qf a) =T[M,M] ! :X .. Pf |~| ! :X .. Qf
  inj f ==> !<f> a:X .. (Pf a |~| Qf a) =T[M,M] !<f> :X .. Pf |~| !<f> :X .. Qf

lemma cspT_Ext_choice_Dist_nat_l_nonempty:

  N ≠ {} ==> (!nat :N .. Pf) [+] Q =T[M,M] !nat n:N .. Pf n [+] Q

lemma cspT_Ext_choice_Dist_nat_l:

  (!nat :N .. Pf) [+] Q =T[M,M] 
  IF (N = {}) THEN DIV [+] Q ELSE !nat n:N .. Pf n [+] Q

lemma cspT_Ext_choice_Dist_nat_r_nonempty:

  N ≠ {} ==> P [+] (!nat :N .. Qf) =T[M,M] !nat n:N .. P [+] Qf n

lemma cspT_Ext_choice_Dist_nat_r:

  P [+] (!nat :N .. Qf) =T[M,M] 
  IF (N = {}) THEN P [+] DIV ELSE !nat n:N .. P [+] Qf n

lemma cspT_Parallel_Dist_nat_l_nonempty:

  N ≠ {} ==> (!nat :N .. Pf) |[X]| Q =T[M,M] !nat n:N .. Pf n |[X]| Q

lemma cspT_Parallel_Dist_nat_l:

  (!nat :N .. Pf) |[X]| Q =T[M,M] 
  IF (N = {}) THEN DIV |[X]| Q ELSE !nat n:N .. Pf n |[X]| Q

lemma cspT_Parallel_Dist_nat_r_nonempty:

  N ≠ {} ==> P |[X]| (!nat :N .. Qf) =T[M,M] !nat n:N .. P |[X]| Qf n

lemma cspT_Parallel_Dist_nat_r:

  P |[X]| (!nat :N .. Qf) =T[M,M] 
  IF (N = {}) THEN P |[X]| DIV ELSE !nat n:N .. P |[X]| Qf n

lemma cspT_Hiding_Dist_nat:

  (!nat :N .. Pf) -- X =T[M,M] !nat n:N .. Pf n -- X

lemma cspT_Renaming_Dist_nat:

  (!nat :N .. Pf) [[r]] =T[M,M] !nat n:N .. Pf n [[r]]

lemma cspT_Seq_compo_Dist_nat:

  (!nat :N .. Pf) ;; Q =T[M,M] !nat n:N .. Pf n ;; Q

lemma cspT_Depth_rest_Dist_nat:

  (!nat :N .. Pf) |. m =T[M,M] !nat n:N .. Pf n |. m

lemmas cspT_Dist_nat:

  (!nat :N .. Pf) [+] Q =T[M,M] 
  IF (N = {}) THEN DIV [+] Q ELSE !nat n:N .. Pf n [+] Q
  P [+] (!nat :N .. Qf) =T[M,M] 
  IF (N = {}) THEN P [+] DIV ELSE !nat n:N .. P [+] Qf n
  (!nat :N .. Pf) |[X]| Q =T[M,M] 
  IF (N = {}) THEN DIV |[X]| Q ELSE !nat n:N .. Pf n |[X]| Q
  P |[X]| (!nat :N .. Qf) =T[M,M] 
  IF (N = {}) THEN P |[X]| DIV ELSE !nat n:N .. P |[X]| Qf n
  (!nat :N .. Pf) -- X =T[M,M] !nat n:N .. Pf n -- X
  (!nat :N .. Pf) [[r]] =T[M,M] !nat n:N .. Pf n [[r]]
  (!nat :N .. Pf) ;; Q =T[M,M] !nat n:N .. Pf n ;; Q
  (!nat :N .. Pf) |. m =T[M,M] !nat n:N .. Pf n |. m

lemmas cspT_Dist_nat:

  (!nat :N .. Pf) [+] Q =T[M,M] 
  IF (N = {}) THEN DIV [+] Q ELSE !nat n:N .. Pf n [+] Q
  P [+] (!nat :N .. Qf) =T[M,M] 
  IF (N = {}) THEN P [+] DIV ELSE !nat n:N .. P [+] Qf n
  (!nat :N .. Pf) |[X]| Q =T[M,M] 
  IF (N = {}) THEN DIV |[X]| Q ELSE !nat n:N .. Pf n |[X]| Q
  P |[X]| (!nat :N .. Qf) =T[M,M] 
  IF (N = {}) THEN P |[X]| DIV ELSE !nat n:N .. P |[X]| Qf n
  (!nat :N .. Pf) -- X =T[M,M] !nat n:N .. Pf n -- X
  (!nat :N .. Pf) [[r]] =T[M,M] !nat n:N .. Pf n [[r]]
  (!nat :N .. Pf) ;; Q =T[M,M] !nat n:N .. Pf n ;; Q
  (!nat :N .. Pf) |. m =T[M,M] !nat n:N .. Pf n |. m

lemmas cspT_Dist_nat_nonempty:

  N ≠ {} ==> (!nat :N .. Pf) [+] Q =T[M,M] !nat n:N .. Pf n [+] Q
  N ≠ {} ==> P [+] (!nat :N .. Qf) =T[M,M] !nat n:N .. P [+] Qf n
  N ≠ {} ==> (!nat :N .. Pf) |[X]| Q =T[M,M] !nat n:N .. Pf n |[X]| Q
  N ≠ {} ==> P |[X]| (!nat :N .. Qf) =T[M,M] !nat n:N .. P |[X]| Qf n
  (!nat :N .. Pf) -- X =T[M,M] !nat n:N .. Pf n -- X
  (!nat :N .. Pf) [[r]] =T[M,M] !nat n:N .. Pf n [[r]]
  (!nat :N .. Pf) ;; Q =T[M,M] !nat n:N .. Pf n ;; Q
  (!nat :N .. Pf) |. m =T[M,M] !nat n:N .. Pf n |. m

lemmas cspT_Dist_nat_nonempty:

  N ≠ {} ==> (!nat :N .. Pf) [+] Q =T[M,M] !nat n:N .. Pf n [+] Q
  N ≠ {} ==> P [+] (!nat :N .. Qf) =T[M,M] !nat n:N .. P [+] Qf n
  N ≠ {} ==> (!nat :N .. Pf) |[X]| Q =T[M,M] !nat n:N .. Pf n |[X]| Q
  N ≠ {} ==> P |[X]| (!nat :N .. Qf) =T[M,M] !nat n:N .. P |[X]| Qf n
  (!nat :N .. Pf) -- X =T[M,M] !nat n:N .. Pf n -- X
  (!nat :N .. Pf) [[r]] =T[M,M] !nat n:N .. Pf n [[r]]
  (!nat :N .. Pf) ;; Q =T[M,M] !nat n:N .. Pf n ;; Q
  (!nat :N .. Pf) |. m =T[M,M] !nat n:N .. Pf n |. m

lemma cspT_Ext_choice_Dist_set_l_nonempty:

  Xs ≠ {} ==> (!set :Xs .. Pf) [+] Q =T[M,M] !set X:Xs .. Pf X [+] Q

lemma cspT_Ext_choice_Dist_set_l:

  (!set :Xs .. Pf) [+] Q =T[M,M] 
  IF (Xs = {}) THEN DIV [+] Q ELSE !set X:Xs .. Pf X [+] Q

lemma cspT_Ext_choice_Dist_set_r_nonempty:

  Xs ≠ {} ==> P [+] (!set :Xs .. Qf) =T[M,M] !set X:Xs .. P [+] Qf X

lemma cspT_Ext_choice_Dist_set_r:

  P [+] (!set :Xs .. Qf) =T[M,M] 
  IF (Xs = {}) THEN P [+] DIV ELSE !set X:Xs .. P [+] Qf X

lemma cspT_Parallel_Dist_set_l_nonempty:

  Xs ≠ {} ==> (!set :Xs .. Pf) |[Y]| Q =T[M,M] !set X:Xs .. Pf X |[Y]| Q

lemma cspT_Parallel_Dist_set_l:

  (!set :Xs .. Pf) |[Y]| Q =T[M,M] 
  IF (Xs = {}) THEN DIV |[Y]| Q ELSE !set X:Xs .. Pf X |[Y]| Q

lemma cspT_Parallel_Dist_set_r_nonempty:

  Xs ≠ {} ==> P |[Y]| (!set :Xs .. Qf) =T[M,M] !set X:Xs .. P |[Y]| Qf X

lemma cspT_Parallel_Dist_set_r:

  P |[Y]| (!set :Xs .. Qf) =T[M,M] 
  IF (Xs = {}) THEN P |[Y]| DIV ELSE !set X:Xs .. P |[Y]| Qf X

lemma cspT_Hiding_Dist_set:

  (!set :Xs .. Pf) -- Y =T[M,M] !set X:Xs .. Pf X -- Y

lemma cspT_Renaming_Dist_set:

  (!set :Xs .. Pf) [[r]] =T[M,M] !set X:Xs .. Pf X [[r]]

lemma cspT_Seq_compo_Dist_set:

  (!set :Xs .. Pf) ;; Q =T[M,M] !set X:Xs .. Pf X ;; Q

lemma cspT_Depth_rest_Dist_set:

  (!set :Xs .. Pf) |. m =T[M,M] !set X:Xs .. Pf X |. m

lemmas cspT_Dist_set:

  (!set :Xs .. Pf) [+] Q =T[M,M] 
  IF (Xs = {}) THEN DIV [+] Q ELSE !set X:Xs .. Pf X [+] Q
  P [+] (!set :Xs .. Qf) =T[M,M] 
  IF (Xs = {}) THEN P [+] DIV ELSE !set X:Xs .. P [+] Qf X
  (!set :Xs .. Pf) |[Y]| Q =T[M,M] 
  IF (Xs = {}) THEN DIV |[Y]| Q ELSE !set X:Xs .. Pf X |[Y]| Q
  P |[Y]| (!set :Xs .. Qf) =T[M,M] 
  IF (Xs = {}) THEN P |[Y]| DIV ELSE !set X:Xs .. P |[Y]| Qf X
  (!set :Xs .. Pf) -- Y =T[M,M] !set X:Xs .. Pf X -- Y
  (!set :Xs .. Pf) [[r]] =T[M,M] !set X:Xs .. Pf X [[r]]
  (!set :Xs .. Pf) ;; Q =T[M,M] !set X:Xs .. Pf X ;; Q
  (!set :Xs .. Pf) |. m =T[M,M] !set X:Xs .. Pf X |. m

lemmas cspT_Dist_set:

  (!set :Xs .. Pf) [+] Q =T[M,M] 
  IF (Xs = {}) THEN DIV [+] Q ELSE !set X:Xs .. Pf X [+] Q
  P [+] (!set :Xs .. Qf) =T[M,M] 
  IF (Xs = {}) THEN P [+] DIV ELSE !set X:Xs .. P [+] Qf X
  (!set :Xs .. Pf) |[Y]| Q =T[M,M] 
  IF (Xs = {}) THEN DIV |[Y]| Q ELSE !set X:Xs .. Pf X |[Y]| Q
  P |[Y]| (!set :Xs .. Qf) =T[M,M] 
  IF (Xs = {}) THEN P |[Y]| DIV ELSE !set X:Xs .. P |[Y]| Qf X
  (!set :Xs .. Pf) -- Y =T[M,M] !set X:Xs .. Pf X -- Y
  (!set :Xs .. Pf) [[r]] =T[M,M] !set X:Xs .. Pf X [[r]]
  (!set :Xs .. Pf) ;; Q =T[M,M] !set X:Xs .. Pf X ;; Q
  (!set :Xs .. Pf) |. m =T[M,M] !set X:Xs .. Pf X |. m

lemmas cspT_Dist_set_nonempty:

  Xs ≠ {} ==> (!set :Xs .. Pf) [+] Q =T[M,M] !set X:Xs .. Pf X [+] Q
  Xs ≠ {} ==> P [+] (!set :Xs .. Qf) =T[M,M] !set X:Xs .. P [+] Qf X
  Xs ≠ {} ==> (!set :Xs .. Pf) |[Y]| Q =T[M,M] !set X:Xs .. Pf X |[Y]| Q
  Xs ≠ {} ==> P |[Y]| (!set :Xs .. Qf) =T[M,M] !set X:Xs .. P |[Y]| Qf X
  (!set :Xs .. Pf) -- Y =T[M,M] !set X:Xs .. Pf X -- Y
  (!set :Xs .. Pf) [[r]] =T[M,M] !set X:Xs .. Pf X [[r]]
  (!set :Xs .. Pf) ;; Q =T[M,M] !set X:Xs .. Pf X ;; Q
  (!set :Xs .. Pf) |. m =T[M,M] !set X:Xs .. Pf X |. m

lemmas cspT_Dist_set_nonempty:

  Xs ≠ {} ==> (!set :Xs .. Pf) [+] Q =T[M,M] !set X:Xs .. Pf X [+] Q
  Xs ≠ {} ==> P [+] (!set :Xs .. Qf) =T[M,M] !set X:Xs .. P [+] Qf X
  Xs ≠ {} ==> (!set :Xs .. Pf) |[Y]| Q =T[M,M] !set X:Xs .. Pf X |[Y]| Q
  Xs ≠ {} ==> P |[Y]| (!set :Xs .. Qf) =T[M,M] !set X:Xs .. P |[Y]| Qf X
  (!set :Xs .. Pf) -- Y =T[M,M] !set X:Xs .. Pf X -- Y
  (!set :Xs .. Pf) [[r]] =T[M,M] !set X:Xs .. Pf X [[r]]
  (!set :Xs .. Pf) ;; Q =T[M,M] !set X:Xs .. Pf X ;; Q
  (!set :Xs .. Pf) |. m =T[M,M] !set X:Xs .. Pf X |. m

lemma cspT_Ext_choice_Dist_com_l_nonempty:

  X ≠ {} ==> (! :X .. Pf) [+] Q =T[M,M] ! x:X .. Pf x [+] Q

lemma cspT_Ext_choice_Dist_com_r_nonempty:

  X ≠ {} ==> P [+] (! :X .. Qf) =T[M,M] ! x:X .. P [+] Qf x

lemma cspT_Parallel_Dist_com_l_nonempty:

  Y ≠ {} ==> (! :Y .. Pf) |[X]| Q =T[M,M] ! x:Y .. Pf x |[X]| Q

lemma cspT_Parallel_Dist_com_r_nonempty:

  Y ≠ {} ==> P |[X]| (! :Y .. Qf) =T[M,M] ! x:Y .. P |[X]| Qf x

lemma cspT_Ext_choice_Dist_com_l:

  (! :X .. Pf) [+] Q =T[M,M] IF (X = {}) THEN DIV [+] Q ELSE ! x:X .. Pf x [+] Q

lemma cspT_Ext_choice_Dist_com_r:

  P [+] (! :X .. Qf) =T[M,M] IF (X = {}) THEN P [+] DIV ELSE ! x:X .. P [+] Qf x

lemma cspT_Parallel_Dist_com_l:

  (! :Y .. Pf) |[X]| Q =T[M,M] 
  IF (Y = {}) THEN DIV |[X]| Q ELSE ! x:Y .. Pf x |[X]| Q

lemma cspT_Parallel_Dist_com_r:

  P |[X]| (! :Y .. Qf) =T[M,M] 
  IF (Y = {}) THEN P |[X]| DIV ELSE ! x:Y .. P |[X]| Qf x

lemma cspT_Hiding_Dist_com:

  (! :Y .. Pf) -- X =T[M,M] ! x:Y .. Pf x -- X

lemma cspT_Renaming_Dist_com:

  (! :X .. Pf) [[r]] =T[M,M] ! x:X .. Pf x [[r]]

lemma cspT_Seq_compo_Dist_com:

  (! :X .. Pf) ;; Q =T[M,M] ! x:X .. Pf x ;; Q

lemma cspT_Depth_rest_Dist_com:

  (! :X .. Pf) |. n =T[M,M] ! x:X .. Pf x |. n

lemmas cspT_Dist_com:

  (! :X .. Pf) [+] Q =T[M,M] IF (X = {}) THEN DIV [+] Q ELSE ! x:X .. Pf x [+] Q
  P [+] (! :X .. Qf) =T[M,M] IF (X = {}) THEN P [+] DIV ELSE ! x:X .. P [+] Qf x
  (! :Y .. Pf) |[X]| Q =T[M,M] 
  IF (Y = {}) THEN DIV |[X]| Q ELSE ! x:Y .. Pf x |[X]| Q
  P |[X]| (! :Y .. Qf) =T[M,M] 
  IF (Y = {}) THEN P |[X]| DIV ELSE ! x:Y .. P |[X]| Qf x
  (! :Y .. Pf) -- X =T[M,M] ! x:Y .. Pf x -- X
  (! :X .. Pf) [[r]] =T[M,M] ! x:X .. Pf x [[r]]
  (! :X .. Pf) ;; Q =T[M,M] ! x:X .. Pf x ;; Q
  (! :X .. Pf) |. n =T[M,M] ! x:X .. Pf x |. n

lemmas cspT_Dist_com:

  (! :X .. Pf) [+] Q =T[M,M] IF (X = {}) THEN DIV [+] Q ELSE ! x:X .. Pf x [+] Q
  P [+] (! :X .. Qf) =T[M,M] IF (X = {}) THEN P [+] DIV ELSE ! x:X .. P [+] Qf x
  (! :Y .. Pf) |[X]| Q =T[M,M] 
  IF (Y = {}) THEN DIV |[X]| Q ELSE ! x:Y .. Pf x |[X]| Q
  P |[X]| (! :Y .. Qf) =T[M,M] 
  IF (Y = {}) THEN P |[X]| DIV ELSE ! x:Y .. P |[X]| Qf x
  (! :Y .. Pf) -- X =T[M,M] ! x:Y .. Pf x -- X
  (! :X .. Pf) [[r]] =T[M,M] ! x:X .. Pf x [[r]]
  (! :X .. Pf) ;; Q =T[M,M] ! x:X .. Pf x ;; Q
  (! :X .. Pf) |. n =T[M,M] ! x:X .. Pf x |. n

lemmas cspT_Dist_com_nonempty:

  X ≠ {} ==> (! :X .. Pf) [+] Q =T[M,M] ! x:X .. Pf x [+] Q
  X ≠ {} ==> P [+] (! :X .. Qf) =T[M,M] ! x:X .. P [+] Qf x
  Y ≠ {} ==> (! :Y .. Pf) |[X]| Q =T[M,M] ! x:Y .. Pf x |[X]| Q
  Y ≠ {} ==> P |[X]| (! :Y .. Qf) =T[M,M] ! x:Y .. P |[X]| Qf x
  (! :Y .. Pf) -- X =T[M,M] ! x:Y .. Pf x -- X
  (! :X .. Pf) [[r]] =T[M,M] ! x:X .. Pf x [[r]]
  (! :X .. Pf) ;; Q =T[M,M] ! x:X .. Pf x ;; Q
  (! :X .. Pf) |. n =T[M,M] ! x:X .. Pf x |. n

lemmas cspT_Dist_com_nonempty:

  X ≠ {} ==> (! :X .. Pf) [+] Q =T[M,M] ! x:X .. Pf x [+] Q
  X ≠ {} ==> P [+] (! :X .. Qf) =T[M,M] ! x:X .. P [+] Qf x
  Y ≠ {} ==> (! :Y .. Pf) |[X]| Q =T[M,M] ! x:Y .. Pf x |[X]| Q
  Y ≠ {} ==> P |[X]| (! :Y .. Qf) =T[M,M] ! x:Y .. P |[X]| Qf x
  (! :Y .. Pf) -- X =T[M,M] ! x:Y .. Pf x -- X
  (! :X .. Pf) [[r]] =T[M,M] ! x:X .. Pf x [[r]]
  (! :X .. Pf) ;; Q =T[M,M] ! x:X .. Pf x ;; Q
  (! :X .. Pf) |. n =T[M,M] ! x:X .. Pf x |. n

lemma cspT_Ext_choice_Dist_f_l_nonempty:

  [| inj f; X ≠ {} |] ==> (!<f> :X .. Pf) [+] Q =T[M,M] !<f> x:X .. Pf x [+] Q

lemma cspT_Ext_choice_Dist_f_r_nonempty:

  [| inj f; X ≠ {} |] ==> P [+] (!<f> :X .. Qf) =T[M,M] !<f> x:X .. P [+] Qf x

lemma cspT_Parallel_Dist_f_l_nonempty:

  [| inj f; Y ≠ {} |] ==> (!<f> :Y .. Pf) |[X]| Q =T[M,M] !<f> x:Y .. Pf x |[X]| Q

lemma cspT_Parallel_Dist_f_r_nonempty:

  [| inj f; Y ≠ {} |] ==> P |[X]| (!<f> :Y .. Qf) =T[M,M] !<f> x:Y .. P |[X]| Qf x

lemma cspT_Ext_choice_Dist_f_l:

  (!<f> :X .. Pf) [+] Q =T[M,M] 
  IF (X = {}) THEN DIV [+] Q ELSE !<f> x:X .. Pf x [+] Q

lemma cspT_Ext_choice_Dist_f_r:

  P [+] (!<f> :X .. Qf) =T[M,M] 
  IF (X = {}) THEN P [+] DIV ELSE !<f> x:X .. P [+] Qf x

lemma cspT_Parallel_Dist_f_l:

  (!<f> :Y .. Pf) |[X]| Q =T[M,M] 
  IF (Y = {}) THEN DIV |[X]| Q ELSE !<f> x:Y .. Pf x |[X]| Q

lemma cspT_Parallel_Dist_f_r:

  P |[X]| (!<f> :Y .. Qf) =T[M,M] 
  IF (Y = {}) THEN P |[X]| DIV ELSE !<f> x:Y .. P |[X]| Qf x

lemma cspT_Hiding_Dist_f:

  (!<f> :Y .. Pf) -- X =T[M,M] !<f> x:Y .. Pf x -- X

lemma cspT_Renaming_Dist_f:

  (!<f> :X .. Pf) [[r]] =T[M,M] !<f> x:X .. Pf x [[r]]

lemma cspT_Seq_compo_Dist_f:

  (!<f> :X .. Pf) ;; Q =T[M,M] !<f> x:X .. Pf x ;; Q

lemma cspT_Depth_rest_Dist_f:

  (!<f> :X .. Pf) |. n =T[M,M] !<f> x:X .. Pf x |. n

lemmas cspT_Dist_f:

  (!<f> :X .. Pf) [+] Q =T[M,M] 
  IF (X = {}) THEN DIV [+] Q ELSE !<f> x:X .. Pf x [+] Q
  P [+] (!<f> :X .. Qf) =T[M,M] 
  IF (X = {}) THEN P [+] DIV ELSE !<f> x:X .. P [+] Qf x
  (!<f> :Y .. Pf) |[X]| Q =T[M,M] 
  IF (Y = {}) THEN DIV |[X]| Q ELSE !<f> x:Y .. Pf x |[X]| Q
  P |[X]| (!<f> :Y .. Qf) =T[M,M] 
  IF (Y = {}) THEN P |[X]| DIV ELSE !<f> x:Y .. P |[X]| Qf x
  (!<f> :Y .. Pf) -- X =T[M,M] !<f> x:Y .. Pf x -- X
  (!<f> :X .. Pf) [[r]] =T[M,M] !<f> x:X .. Pf x [[r]]
  (!<f> :X .. Pf) ;; Q =T[M,M] !<f> x:X .. Pf x ;; Q
  (!<f> :X .. Pf) |. n =T[M,M] !<f> x:X .. Pf x |. n

lemmas cspT_Dist_f:

  (!<f> :X .. Pf) [+] Q =T[M,M] 
  IF (X = {}) THEN DIV [+] Q ELSE !<f> x:X .. Pf x [+] Q
  P [+] (!<f> :X .. Qf) =T[M,M] 
  IF (X = {}) THEN P [+] DIV ELSE !<f> x:X .. P [+] Qf x
  (!<f> :Y .. Pf) |[X]| Q =T[M,M] 
  IF (Y = {}) THEN DIV |[X]| Q ELSE !<f> x:Y .. Pf x |[X]| Q
  P |[X]| (!<f> :Y .. Qf) =T[M,M] 
  IF (Y = {}) THEN P |[X]| DIV ELSE !<f> x:Y .. P |[X]| Qf x
  (!<f> :Y .. Pf) -- X =T[M,M] !<f> x:Y .. Pf x -- X
  (!<f> :X .. Pf) [[r]] =T[M,M] !<f> x:X .. Pf x [[r]]
  (!<f> :X .. Pf) ;; Q =T[M,M] !<f> x:X .. Pf x ;; Q
  (!<f> :X .. Pf) |. n =T[M,M] !<f> x:X .. Pf x |. n

lemmas cspT_Dist_f_nonempty:

  [| inj f; X ≠ {} |] ==> (!<f> :X .. Pf) [+] Q =T[M,M] !<f> x:X .. Pf x [+] Q
  [| inj f; X ≠ {} |] ==> P [+] (!<f> :X .. Qf) =T[M,M] !<f> x:X .. P [+] Qf x
  [| inj f; Y ≠ {} |] ==> (!<f> :Y .. Pf) |[X]| Q =T[M,M] !<f> x:Y .. Pf x |[X]| Q
  [| inj f; Y ≠ {} |] ==> P |[X]| (!<f> :Y .. Qf) =T[M,M] !<f> x:Y .. P |[X]| Qf x
  (!<f> :Y .. Pf) -- X =T[M,M] !<f> x:Y .. Pf x -- X
  (!<f> :X .. Pf) [[r]] =T[M,M] !<f> x:X .. Pf x [[r]]
  (!<f> :X .. Pf) ;; Q =T[M,M] !<f> x:X .. Pf x ;; Q
  (!<f> :X .. Pf) |. n =T[M,M] !<f> x:X .. Pf x |. n

lemmas cspT_Dist_f_nonempty:

  [| inj f; X ≠ {} |] ==> (!<f> :X .. Pf) [+] Q =T[M,M] !<f> x:X .. Pf x [+] Q
  [| inj f; X ≠ {} |] ==> P [+] (!<f> :X .. Qf) =T[M,M] !<f> x:X .. P [+] Qf x
  [| inj f; Y ≠ {} |] ==> (!<f> :Y .. Pf) |[X]| Q =T[M,M] !<f> x:Y .. Pf x |[X]| Q
  [| inj f; Y ≠ {} |] ==> P |[X]| (!<f> :Y .. Qf) =T[M,M] !<f> x:Y .. P |[X]| Qf x
  (!<f> :Y .. Pf) -- X =T[M,M] !<f> x:Y .. Pf x -- X
  (!<f> :X .. Pf) [[r]] =T[M,M] !<f> x:X .. Pf x [[r]]
  (!<f> :X .. Pf) ;; Q =T[M,M] !<f> x:X .. Pf x ;; Q
  (!<f> :X .. Pf) |. n =T[M,M] !<f> x:X .. Pf x |. n

lemmas cspT_Dist:

  (!nat :N .. Pf) [+] Q =T[M,M] 
  IF (N = {}) THEN DIV [+] Q ELSE !nat n:N .. Pf n [+] Q
  P [+] (!nat :N .. Qf) =T[M,M] 
  IF (N = {}) THEN P [+] DIV ELSE !nat n:N .. P [+] Qf n
  (!nat :N .. Pf) |[X]| Q =T[M,M] 
  IF (N = {}) THEN DIV |[X]| Q ELSE !nat n:N .. Pf n |[X]| Q
  P |[X]| (!nat :N .. Qf) =T[M,M] 
  IF (N = {}) THEN P |[X]| DIV ELSE !nat n:N .. P |[X]| Qf n
  (!nat :N .. Pf) -- X =T[M,M] !nat n:N .. Pf n -- X
  (!nat :N .. Pf) [[r]] =T[M,M] !nat n:N .. Pf n [[r]]
  (!nat :N .. Pf) ;; Q =T[M,M] !nat n:N .. Pf n ;; Q
  (!nat :N .. Pf) |. m =T[M,M] !nat n:N .. Pf n |. m
  (!set :Xs .. Pf) [+] Q =T[M,M] 
  IF (Xs = {}) THEN DIV [+] Q ELSE !set X:Xs .. Pf X [+] Q
  P [+] (!set :Xs .. Qf) =T[M,M] 
  IF (Xs = {}) THEN P [+] DIV ELSE !set X:Xs .. P [+] Qf X
  (!set :Xs .. Pf) |[Y]| Q =T[M,M] 
  IF (Xs = {}) THEN DIV |[Y]| Q ELSE !set X:Xs .. Pf X |[Y]| Q
  P |[Y]| (!set :Xs .. Qf) =T[M,M] 
  IF (Xs = {}) THEN P |[Y]| DIV ELSE !set X:Xs .. P |[Y]| Qf X
  (!set :Xs .. Pf) -- Y =T[M,M] !set X:Xs .. Pf X -- Y
  (!set :Xs .. Pf) [[r]] =T[M,M] !set X:Xs .. Pf X [[r]]
  (!set :Xs .. Pf) ;; Q =T[M,M] !set X:Xs .. Pf X ;; Q
  (!set :Xs .. Pf) |. m =T[M,M] !set X:Xs .. Pf X |. m
  (! :X .. Pf) [+] Q =T[M,M] IF (X = {}) THEN DIV [+] Q ELSE ! x:X .. Pf x [+] Q
  P [+] (! :X .. Qf) =T[M,M] IF (X = {}) THEN P [+] DIV ELSE ! x:X .. P [+] Qf x
  (! :Y .. Pf) |[X]| Q =T[M,M] 
  IF (Y = {}) THEN DIV |[X]| Q ELSE ! x:Y .. Pf x |[X]| Q
  P |[X]| (! :Y .. Qf) =T[M,M] 
  IF (Y = {}) THEN P |[X]| DIV ELSE ! x:Y .. P |[X]| Qf x
  (! :Y .. Pf) -- X =T[M,M] ! x:Y .. Pf x -- X
  (! :X .. Pf) [[r]] =T[M,M] ! x:X .. Pf x [[r]]
  (! :X .. Pf) ;; Q =T[M,M] ! x:X .. Pf x ;; Q
  (! :X .. Pf) |. n =T[M,M] ! x:X .. Pf x |. n
  (!<f> :X .. Pf) [+] Q =T[M,M] 
  IF (X = {}) THEN DIV [+] Q ELSE !<f> x:X .. Pf x [+] Q
  P [+] (!<f> :X .. Qf) =T[M,M] 
  IF (X = {}) THEN P [+] DIV ELSE !<f> x:X .. P [+] Qf x
  (!<f> :Y .. Pf) |[X]| Q =T[M,M] 
  IF (Y = {}) THEN DIV |[X]| Q ELSE !<f> x:Y .. Pf x |[X]| Q
  P |[X]| (!<f> :Y .. Qf) =T[M,M] 
  IF (Y = {}) THEN P |[X]| DIV ELSE !<f> x:Y .. P |[X]| Qf x
  (!<f> :Y .. Pf) -- X =T[M,M] !<f> x:Y .. Pf x -- X
  (!<f> :X .. Pf) [[r]] =T[M,M] !<f> x:X .. Pf x [[r]]
  (!<f> :X .. Pf) ;; Q =T[M,M] !<f> x:X .. Pf x ;; Q
  (!<f> :X .. Pf) |. n =T[M,M] !<f> x:X .. Pf x |. n

lemmas cspT_Dist:

  (!nat :N .. Pf) [+] Q =T[M,M] 
  IF (N = {}) THEN DIV [+] Q ELSE !nat n:N .. Pf n [+] Q
  P [+] (!nat :N .. Qf) =T[M,M] 
  IF (N = {}) THEN P [+] DIV ELSE !nat n:N .. P [+] Qf n
  (!nat :N .. Pf) |[X]| Q =T[M,M] 
  IF (N = {}) THEN DIV |[X]| Q ELSE !nat n:N .. Pf n |[X]| Q
  P |[X]| (!nat :N .. Qf) =T[M,M] 
  IF (N = {}) THEN P |[X]| DIV ELSE !nat n:N .. P |[X]| Qf n
  (!nat :N .. Pf) -- X =T[M,M] !nat n:N .. Pf n -- X
  (!nat :N .. Pf) [[r]] =T[M,M] !nat n:N .. Pf n [[r]]
  (!nat :N .. Pf) ;; Q =T[M,M] !nat n:N .. Pf n ;; Q
  (!nat :N .. Pf) |. m =T[M,M] !nat n:N .. Pf n |. m
  (!set :Xs .. Pf) [+] Q =T[M,M] 
  IF (Xs = {}) THEN DIV [+] Q ELSE !set X:Xs .. Pf X [+] Q
  P [+] (!set :Xs .. Qf) =T[M,M] 
  IF (Xs = {}) THEN P [+] DIV ELSE !set X:Xs .. P [+] Qf X
  (!set :Xs .. Pf) |[Y]| Q =T[M,M] 
  IF (Xs = {}) THEN DIV |[Y]| Q ELSE !set X:Xs .. Pf X |[Y]| Q
  P |[Y]| (!set :Xs .. Qf) =T[M,M] 
  IF (Xs = {}) THEN P |[Y]| DIV ELSE !set X:Xs .. P |[Y]| Qf X
  (!set :Xs .. Pf) -- Y =T[M,M] !set X:Xs .. Pf X -- Y
  (!set :Xs .. Pf) [[r]] =T[M,M] !set X:Xs .. Pf X [[r]]
  (!set :Xs .. Pf) ;; Q =T[M,M] !set X:Xs .. Pf X ;; Q
  (!set :Xs .. Pf) |. m =T[M,M] !set X:Xs .. Pf X |. m
  (! :X .. Pf) [+] Q =T[M,M] IF (X = {}) THEN DIV [+] Q ELSE ! x:X .. Pf x [+] Q
  P [+] (! :X .. Qf) =T[M,M] IF (X = {}) THEN P [+] DIV ELSE ! x:X .. P [+] Qf x
  (! :Y .. Pf) |[X]| Q =T[M,M] 
  IF (Y = {}) THEN DIV |[X]| Q ELSE ! x:Y .. Pf x |[X]| Q
  P |[X]| (! :Y .. Qf) =T[M,M] 
  IF (Y = {}) THEN P |[X]| DIV ELSE ! x:Y .. P |[X]| Qf x
  (! :Y .. Pf) -- X =T[M,M] ! x:Y .. Pf x -- X
  (! :X .. Pf) [[r]] =T[M,M] ! x:X .. Pf x [[r]]
  (! :X .. Pf) ;; Q =T[M,M] ! x:X .. Pf x ;; Q
  (! :X .. Pf) |. n =T[M,M] ! x:X .. Pf x |. n
  (!<f> :X .. Pf) [+] Q =T[M,M] 
  IF (X = {}) THEN DIV [+] Q ELSE !<f> x:X .. Pf x [+] Q
  P [+] (!<f> :X .. Qf) =T[M,M] 
  IF (X = {}) THEN P [+] DIV ELSE !<f> x:X .. P [+] Qf x
  (!<f> :Y .. Pf) |[X]| Q =T[M,M] 
  IF (Y = {}) THEN DIV |[X]| Q ELSE !<f> x:Y .. Pf x |[X]| Q
  P |[X]| (!<f> :Y .. Qf) =T[M,M] 
  IF (Y = {}) THEN P |[X]| DIV ELSE !<f> x:Y .. P |[X]| Qf x
  (!<f> :Y .. Pf) -- X =T[M,M] !<f> x:Y .. Pf x -- X
  (!<f> :X .. Pf) [[r]] =T[M,M] !<f> x:X .. Pf x [[r]]
  (!<f> :X .. Pf) ;; Q =T[M,M] !<f> x:X .. Pf x ;; Q
  (!<f> :X .. Pf) |. n =T[M,M] !<f> x:X .. Pf x |. n

lemmas cspT_Dist_nonempty:

  N ≠ {} ==> (!nat :N .. Pf) [+] Q =T[M,M] !nat n:N .. Pf n [+] Q
  N ≠ {} ==> P [+] (!nat :N .. Qf) =T[M,M] !nat n:N .. P [+] Qf n
  N ≠ {} ==> (!nat :N .. Pf) |[X]| Q =T[M,M] !nat n:N .. Pf n |[X]| Q
  N ≠ {} ==> P |[X]| (!nat :N .. Qf) =T[M,M] !nat n:N .. P |[X]| Qf n
  (!nat :N .. Pf) -- X =T[M,M] !nat n:N .. Pf n -- X
  (!nat :N .. Pf) [[r]] =T[M,M] !nat n:N .. Pf n [[r]]
  (!nat :N .. Pf) ;; Q =T[M,M] !nat n:N .. Pf n ;; Q
  (!nat :N .. Pf) |. m =T[M,M] !nat n:N .. Pf n |. m
  Xs ≠ {} ==> (!set :Xs .. Pf) [+] Q =T[M,M] !set X:Xs .. Pf X [+] Q
  Xs ≠ {} ==> P [+] (!set :Xs .. Qf) =T[M,M] !set X:Xs .. P [+] Qf X
  Xs ≠ {} ==> (!set :Xs .. Pf) |[Y]| Q =T[M,M] !set X:Xs .. Pf X |[Y]| Q
  Xs ≠ {} ==> P |[Y]| (!set :Xs .. Qf) =T[M,M] !set X:Xs .. P |[Y]| Qf X
  (!set :Xs .. Pf) -- Y =T[M,M] !set X:Xs .. Pf X -- Y
  (!set :Xs .. Pf) [[r]] =T[M,M] !set X:Xs .. Pf X [[r]]
  (!set :Xs .. Pf) ;; Q =T[M,M] !set X:Xs .. Pf X ;; Q
  (!set :Xs .. Pf) |. m =T[M,M] !set X:Xs .. Pf X |. m
  X ≠ {} ==> (! :X .. Pf) [+] Q =T[M,M] ! x:X .. Pf x [+] Q
  X ≠ {} ==> P [+] (! :X .. Qf) =T[M,M] ! x:X .. P [+] Qf x
  Y ≠ {} ==> (! :Y .. Pf) |[X]| Q =T[M,M] ! x:Y .. Pf x |[X]| Q
  Y ≠ {} ==> P |[X]| (! :Y .. Qf) =T[M,M] ! x:Y .. P |[X]| Qf x
  (! :Y .. Pf) -- X =T[M,M] ! x:Y .. Pf x -- X
  (! :X .. Pf) [[r]] =T[M,M] ! x:X .. Pf x [[r]]
  (! :X .. Pf) ;; Q =T[M,M] ! x:X .. Pf x ;; Q
  (! :X .. Pf) |. n =T[M,M] ! x:X .. Pf x |. n
  [| inj f; X ≠ {} |] ==> (!<f> :X .. Pf) [+] Q =T[M,M] !<f> x:X .. Pf x [+] Q
  [| inj f; X ≠ {} |] ==> P [+] (!<f> :X .. Qf) =T[M,M] !<f> x:X .. P [+] Qf x
  [| inj f; Y ≠ {} |] ==> (!<f> :Y .. Pf) |[X]| Q =T[M,M] !<f> x:Y .. Pf x |[X]| Q
  [| inj f; Y ≠ {} |] ==> P |[X]| (!<f> :Y .. Qf) =T[M,M] !<f> x:Y .. P |[X]| Qf x
  (!<f> :Y .. Pf) -- X =T[M,M] !<f> x:Y .. Pf x -- X
  (!<f> :X .. Pf) [[r]] =T[M,M] !<f> x:X .. Pf x [[r]]
  (!<f> :X .. Pf) ;; Q =T[M,M] !<f> x:X .. Pf x ;; Q
  (!<f> :X .. Pf) |. n =T[M,M] !<f> x:X .. Pf x |. n

lemmas cspT_Dist_nonempty:

  N ≠ {} ==> (!nat :N .. Pf) [+] Q =T[M,M] !nat n:N .. Pf n [+] Q
  N ≠ {} ==> P [+] (!nat :N .. Qf) =T[M,M] !nat n:N .. P [+] Qf n
  N ≠ {} ==> (!nat :N .. Pf) |[X]| Q =T[M,M] !nat n:N .. Pf n |[X]| Q
  N ≠ {} ==> P |[X]| (!nat :N .. Qf) =T[M,M] !nat n:N .. P |[X]| Qf n
  (!nat :N .. Pf) -- X =T[M,M] !nat n:N .. Pf n -- X
  (!nat :N .. Pf) [[r]] =T[M,M] !nat n:N .. Pf n [[r]]
  (!nat :N .. Pf) ;; Q =T[M,M] !nat n:N .. Pf n ;; Q
  (!nat :N .. Pf) |. m =T[M,M] !nat n:N .. Pf n |. m
  Xs ≠ {} ==> (!set :Xs .. Pf) [+] Q =T[M,M] !set X:Xs .. Pf X [+] Q
  Xs ≠ {} ==> P [+] (!set :Xs .. Qf) =T[M,M] !set X:Xs .. P [+] Qf X
  Xs ≠ {} ==> (!set :Xs .. Pf) |[Y]| Q =T[M,M] !set X:Xs .. Pf X |[Y]| Q
  Xs ≠ {} ==> P |[Y]| (!set :Xs .. Qf) =T[M,M] !set X:Xs .. P |[Y]| Qf X
  (!set :Xs .. Pf) -- Y =T[M,M] !set X:Xs .. Pf X -- Y
  (!set :Xs .. Pf) [[r]] =T[M,M] !set X:Xs .. Pf X [[r]]
  (!set :Xs .. Pf) ;; Q =T[M,M] !set X:Xs .. Pf X ;; Q
  (!set :Xs .. Pf) |. m =T[M,M] !set X:Xs .. Pf X |. m
  X ≠ {} ==> (! :X .. Pf) [+] Q =T[M,M] ! x:X .. Pf x [+] Q
  X ≠ {} ==> P [+] (! :X .. Qf) =T[M,M] ! x:X .. P [+] Qf x
  Y ≠ {} ==> (! :Y .. Pf) |[X]| Q =T[M,M] ! x:Y .. Pf x |[X]| Q
  Y ≠ {} ==> P |[X]| (! :Y .. Qf) =T[M,M] ! x:Y .. P |[X]| Qf x
  (! :Y .. Pf) -- X =T[M,M] ! x:Y .. Pf x -- X
  (! :X .. Pf) [[r]] =T[M,M] ! x:X .. Pf x [[r]]
  (! :X .. Pf) ;; Q =T[M,M] ! x:X .. Pf x ;; Q
  (! :X .. Pf) |. n =T[M,M] ! x:X .. Pf x |. n
  [| inj f; X ≠ {} |] ==> (!<f> :X .. Pf) [+] Q =T[M,M] !<f> x:X .. Pf x [+] Q
  [| inj f; X ≠ {} |] ==> P [+] (!<f> :X .. Qf) =T[M,M] !<f> x:X .. P [+] Qf x
  [| inj f; Y ≠ {} |] ==> (!<f> :Y .. Pf) |[X]| Q =T[M,M] !<f> x:Y .. Pf x |[X]| Q
  [| inj f; Y ≠ {} |] ==> P |[X]| (!<f> :Y .. Qf) =T[M,M] !<f> x:Y .. P |[X]| Qf x
  (!<f> :Y .. Pf) -- X =T[M,M] !<f> x:Y .. Pf x -- X
  (!<f> :X .. Pf) [[r]] =T[M,M] !<f> x:X .. Pf x [[r]]
  (!<f> :X .. Pf) ;; Q =T[M,M] !<f> x:X .. Pf x ;; Q
  (!<f> :X .. Pf) |. n =T[M,M] !<f> x:X .. Pf x |. n

lemma cspT_Act_prefix_Dist_nat:

  N ≠ {} ==> a -> (!nat :N .. Pf) =T[M,M] !nat n:N .. a -> Pf n

lemma cspT_Ext_pre_choice_Dist_nat:

  N ≠ {} ==> ? x:X -> (!nat n:N .. Pf n x) =T[M,M] !nat n:N .. ? :X -> Pf n

lemma cspT_Act_prefix_Dist_set:

  Xs ≠ {} ==> a -> (!set :Xs .. Pf) =T[M,M] !set X:Xs .. a -> Pf X

lemma cspT_Ext_pre_choice_Dist_set:

  Ys ≠ {} ==> ? x:X -> (!set Y:Ys .. Pf Y x) =T[M,M] !set Y:Ys .. ? :X -> Pf Y

lemma cspT_Act_prefix_Dist_com:

  X ≠ {} ==> a -> (! :X .. Pf) =T[M,M] ! x:X .. a -> Pf x

lemma cspT_Ext_pre_choice_Dist_com:

  Y ≠ {} ==> ? x:X -> (! y:Y .. Pf y x) =T[M,M] ! y:Y .. ? :X -> Pf y

lemma cspT_Act_prefix_Dist_f:

  X ≠ {} ==> a -> (!<f> :X .. Pf) =T[M,M] !<f> x:X .. a -> Pf x

lemma cspT_Ext_pre_choice_Dist_f:

  Y ≠ {} ==> ? x:X -> (!<f> y:Y .. Pf y x) =T[M,M] !<f> y:Y .. ? :X -> Pf y

lemmas cspT_Act_prefix_Dist:

  N ≠ {} ==> a -> (!nat :N .. Pf) =T[M,M] !nat n:N .. a -> Pf n
  Xs ≠ {} ==> a -> (!set :Xs .. Pf) =T[M,M] !set X:Xs .. a -> Pf X
  X ≠ {} ==> a -> (! :X .. Pf) =T[M,M] ! x:X .. a -> Pf x
  X ≠ {} ==> a -> (!<f> :X .. Pf) =T[M,M] !<f> x:X .. a -> Pf x

lemmas cspT_Act_prefix_Dist:

  N ≠ {} ==> a -> (!nat :N .. Pf) =T[M,M] !nat n:N .. a -> Pf n
  Xs ≠ {} ==> a -> (!set :Xs .. Pf) =T[M,M] !set X:Xs .. a -> Pf X
  X ≠ {} ==> a -> (! :X .. Pf) =T[M,M] ! x:X .. a -> Pf x
  X ≠ {} ==> a -> (!<f> :X .. Pf) =T[M,M] !<f> x:X .. a -> Pf x

lemmas cspT_Ext_pre_choice_Dist:

  N ≠ {} ==> ? x:X -> (!nat n:N .. Pf n x) =T[M,M] !nat n:N .. ? :X -> Pf n
  Ys ≠ {} ==> ? x:X -> (!set Y:Ys .. Pf Y x) =T[M,M] !set Y:Ys .. ? :X -> Pf Y
  Y ≠ {} ==> ? x:X -> (! y:Y .. Pf y x) =T[M,M] ! y:Y .. ? :X -> Pf y
  Y ≠ {} ==> ? x:X -> (!<f> y:Y .. Pf y x) =T[M,M] !<f> y:Y .. ? :X -> Pf y

lemmas cspT_Ext_pre_choice_Dist:

  N ≠ {} ==> ? x:X -> (!nat n:N .. Pf n x) =T[M,M] !nat n:N .. ? :X -> Pf n
  Ys ≠ {} ==> ? x:X -> (!set Y:Ys .. Pf Y x) =T[M,M] !set Y:Ys .. ? :X -> Pf Y
  Y ≠ {} ==> ? x:X -> (! y:Y .. Pf y x) =T[M,M] ! y:Y .. ? :X -> Pf y
  Y ≠ {} ==> ? x:X -> (!<f> y:Y .. Pf y x) =T[M,M] !<f> y:Y .. ? :X -> Pf y

lemma cspT_Renaming_Ext_dist:

  (P1.0 [+] P2.0) [[r]] =T[M,M] P1.0 [[r]] [+] P2.0 [[r]]

lemma cspT_Depth_rest_Ext_dist:

  (P1.0 [+] P2.0) |. n =T[M,M] P1.0 |. n [+] P2.0 |. n

lemmas cspT_Ext_dist:

  (P1.0 [+] P2.0) [[r]] =T[M,M] P1.0 [[r]] [+] P2.0 [[r]]
  (P1.0 [+] P2.0) |. n =T[M,M] P1.0 |. n [+] P2.0 |. n

lemmas cspT_Ext_dist:

  (P1.0 [+] P2.0) [[r]] =T[M,M] P1.0 [[r]] [+] P2.0 [[r]]
  (P1.0 [+] P2.0) |. n =T[M,M] P1.0 |. n [+] P2.0 |. n

lemma cspT_Rep_int_choice_nat_input_set:

  !nat n:N .. ? :Yf n -> Rff n =T[M,M] 
  !set Y:{Yf n |n. nN} .. ? a:Y -> (!nat n:{n : N. aYf n} .. Rff n a)

lemma cspT_Rep_int_choice_set_input_set:

  !set X:Xs .. ? :Yf X -> Rff X =T[M,M] 
  !set Y:{Yf X |X. XXs} .. ? a:Y -> (!set X:{X : Xs. aYf X} .. Rff X a)

lemmas cspT_Rep_int_choice_input_set:

  !nat n:N .. ? :Yf n -> Rff n =T[M,M] 
  !set Y:{Yf n |n. nN} .. ? a:Y -> (!nat n:{n : N. aYf n} .. Rff n a)
  !set X:Xs .. ? :Yf X -> Rff X =T[M,M] 
  !set Y:{Yf X |X. XXs} .. ? a:Y -> (!set X:{X : Xs. aYf X} .. Rff X a)

lemmas cspT_Rep_int_choice_input_set:

  !nat n:N .. ? :Yf n -> Rff n =T[M,M] 
  !set Y:{Yf n |n. nN} .. ? a:Y -> (!nat n:{n : N. aYf n} .. Rff n a)
  !set X:Xs .. ? :Yf X -> Rff X =T[M,M] 
  !set Y:{Yf X |X. XXs} .. ? a:Y -> (!set X:{X : Xs. aYf X} .. Rff X a)

lemma cspT_Rep_int_choice_Ext_Dist_nat:

nN. Qf n = SKIP ∨ Qf n = DIV
  ==> !nat n:N .. Pf n [+] Qf n =T[M,M] (!nat :N .. Pf) [+] (!nat :N .. Qf)

lemma cspT_Rep_int_choice_Ext_Dist_set:

XXs. Qf X = SKIP ∨ Qf X = DIV
  ==> !set X:Xs .. Pf X [+] Qf X =T[M,M] (!set :Xs .. Pf) [+] (!set :Xs .. Qf)

lemma cspT_Rep_int_choice_Ext_Dist_com:

aX. Qf a = SKIP ∨ Qf a = DIV
  ==> ! a:X .. Pf a [+] Qf a =T[M,M] (! :X .. Pf) [+] (! :X .. Qf)

lemma cspT_Rep_int_choice_Ext_Dist_f:

  [| inj f; ∀aX. Qf a = SKIP ∨ Qf a = DIV |]
  ==> !<f> a:X .. Pf a [+] Qf a =T[M,M] (!<f> :X .. Pf) [+] (!<f> :X .. Qf)

lemmas cspT_Rep_int_choice_Ext_Dist:

nN. Qf n = SKIP ∨ Qf n = DIV
  ==> !nat n:N .. Pf n [+] Qf n =T[M,M] (!nat :N .. Pf) [+] (!nat :N .. Qf)
XXs. Qf X = SKIP ∨ Qf X = DIV
  ==> !set X:Xs .. Pf X [+] Qf X =T[M,M] (!set :Xs .. Pf) [+] (!set :Xs .. Qf)
aX. Qf a = SKIP ∨ Qf a = DIV
  ==> ! a:X .. Pf a [+] Qf a =T[M,M] (! :X .. Pf) [+] (! :X .. Qf)
  [| inj f; ∀aX. Qf a = SKIP ∨ Qf a = DIV |]
  ==> !<f> a:X .. Pf a [+] Qf a =T[M,M] (!<f> :X .. Pf) [+] (!<f> :X .. Qf)

lemmas cspT_Rep_int_choice_Ext_Dist:

nN. Qf n = SKIP ∨ Qf n = DIV
  ==> !nat n:N .. Pf n [+] Qf n =T[M,M] (!nat :N .. Pf) [+] (!nat :N .. Qf)
XXs. Qf X = SKIP ∨ Qf X = DIV
  ==> !set X:Xs .. Pf X [+] Qf X =T[M,M] (!set :Xs .. Pf) [+] (!set :Xs .. Qf)
aX. Qf a = SKIP ∨ Qf a = DIV
  ==> ! a:X .. Pf a [+] Qf a =T[M,M] (! :X .. Pf) [+] (! :X .. Qf)
  [| inj f; ∀aX. Qf a = SKIP ∨ Qf a = DIV |]
  ==> !<f> a:X .. Pf a [+] Qf a =T[M,M] (!<f> :X .. Pf) [+] (!<f> :X .. Qf)

lemma cspT_Rep_int_choice_input:

  !set X:Xs .. ? :X -> Pf =T[M,M] ? :Union Xs -> Pf

lemma cspT_Rep_int_choice_input_Dist:

  (!set X:Xs .. ? :X -> Pf) [+] Q =T[M,M] ? :Union Xs -> Pf [+] Q