Up to index of Isabelle/HOL/HOL-Complex/CSP
theory Infra_nat(*-------------------------------------------* | CSP-Prover on Isabelle2004 | | November 2004 | | June 2005 (modified) | | July 2005 (modified) | | | | CSP-Prover on Isabelle2005 | | October 2005 (modified) | | | | Yoshinao Isobe (AIST JAPAN) | *-------------------------------------------*) theory Infra_nat imports Infra_common begin (***************************************************** nat *****************************************************) lemma nat_zero_or_Suc: "ALL n::nat. n=0 | (EX m::nat. n=Suc m)" apply (intro allI) apply (induct_tac n) apply (simp) apply (rule disjI2) apply (erule disjE) apply (rule_tac x=0 in exI) apply (simp) apply (erule exE) apply (rule_tac x="Suc m" in exI) apply (simp) done (*** min ***) lemma min_is1: "(m::'a::order) <= n ==> min m n = m" by (simp add: min_def) lemma min_is2: "(n::'a::order) <= m ==> min m n = n" apply (simp add: min_def) done lemmas min_is = min_is1 min_is2 (*** max ***) lemma max_is1: "(m::'a::order) <= n ==> max m n = n" by (simp add: max_def) lemma max_is2: "(n::'a::order) <= m ==> max m n = m" apply (simp add: max_def) done lemmas max_is = max_is1 max_is2 end
lemma nat_zero_or_Suc:
∀n. n = 0 ∨ (∃m. n = Suc m)
lemma min_is1:
m ≤ n ==> min m n = m
lemma min_is2:
n ≤ m ==> min m n = n
lemmas min_is:
m ≤ n ==> min m n = m
n ≤ m ==> min m n = n
lemmas min_is:
m ≤ n ==> min m n = m
n ≤ m ==> min m n = n
lemma max_is1:
m ≤ n ==> max m n = n
lemma max_is2:
n ≤ m ==> max m n = m
lemmas max_is:
m ≤ n ==> max m n = n
n ≤ m ==> max m n = m
lemmas max_is:
m ≤ n ==> max m n = n
n ≤ m ==> max m n = m